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Simulating the Berezinskii-Kosterlitz-Thouless transition with the complex Langevin algorithm
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Numerical simulations of the full quantum properties of interacting many-body systems by means of field-
theoretic Monte Carlo techniques are often limited due to a sign problem. Here we simulate properties of a dilute
two-dimensional Bose gas in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) transition by means of
the complex Langevin (CL) algorithm, thereby extending our previous CL study of the three-dimensional Bose
gas to the lower-dimensional case. The purpose of the paper is twofold. On the one hand, it adds to benchmarking
of the CL method and thus contributes to further exploring the range of applicability of the method. With the
respective results, the universality of the equation of state is recovered, as well as the long-wave-length power-law
dependence of the single-particle momentum spectrum below the BKT transition. Analysis of the rotational
part of the current density corroborates vortex unbinding in crossing the transition. Beyond these measures of
consistency we compute quantum corrections to the critical density and chemical potential in the weakly coupled
regime. Our results show a shift of these quantities to lower values as compared to those obtained from classical
field theory. It points in the opposite direction as compared to the shift of the critical density found by means of
the path-integral Monte Carlo method at larger values of the coupling. Our simulations widen the perspective for
precision comparisons with experiment.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) [1–3] transi-
tion represents a prototypical example of a topological phase
transition and has been the interest of intensive experimental
[4–25] and theoretical studies [26–54]; cf., e.g., [55,56] for
theory reviews. Universal features of this phase transition,
such as the behavior of correlation functions and the super-
fluid fraction at the transition, can be successfully described
by the BKT renormalization group theory [1–3]. However,
there are also nonuniversal characteristics that depend on the
specific underlying system. For their quantitative determi-
nation one has to rely on quantum Monte Carlo numerical
simulations [31–34] or analytical tools such as the functional
renormalization group [35,42] or the Beliaev technique [40].

Here we study the example of a system undergoing a
BKT transition, namely, the interacting single-component
Bose gas in two spatial dimensions. While there has been
strong progress by means of the aforementioned numerical
techniques, in the limit of large particle numbers, a field-
theoretic approach would be desirable. The field-theoretic
action of an equilibrium Bose gas is complex due to a Berry
phase term. When simulated by Monte Carlo techniques it is
therefore subject to the so-called sign problem [57–62]. The
sign problem is absent in simulations of classical |ψ |4 the-
ory [29,30] and in semiclassical simulations of the Bose gas
[34,48]. These approximative descriptions become asymptot-
ically exact for a gas with vanishing coupling at the transition
point, while for nonzero coupling and away from the transition
quantum corrections generally play a role. Another approach
is to make use of a quantum-mechanical formulation by means
of the path integral Monte Carlo (PIMC) method [31,32], for
which the sign problem is absent.

Here we simulate the full quantum field-theoretic action
from first principles by means of the complex Langevin (CL)
method, which represents a generic approach for tackling the
sign problem [61]. While this method does not serve to solve
the (NP-hard [62]) sign problem for arbitrary systems and
fails in certain cases, it has been shown to succeed in a broad
range of problems [59,61,63–76] and can provide ab initio
simulations of the not too strongly coupled Bose gas [77,78].

In Sec. II we briefly summarize the main aspects of the
CL approach and of the near-critical characteristics of a two-
dimensional (2D) Bose gas. Our results demonstrate that CL is
a useful tool when looking for quantum corrections to nonuni-
versal features of the Bose gas that have been determined, in
the regime of weak couplings considered here by simulations
of the classical model so far [29] (Sec. III A). Besides that, the
application of CL to the nonrelativistic Bose gas is not very
well established yet in general. We thus want to show that
well-known predictions of BKT theory can be reproduced by
CL simulations: the scale invariance of the equation of state
near the transition (Sec. III B), the algebraic decay of corre-
lation functions below the phase transition (Sec. III C), and
the vortex unbinding process across the transition (Sec. III D).
These studies are to contribute in building trust in the method
in itself. We close with a summary and outlook (Sec. IV).

II. COMPLEX LANGEVIN APPROACH TO A BOSE GAS

We begin with a brief summary of the essential aspects
of the complex Langevin (CL) method for simulating many-
body quantum dynamics of a single scalar field as well as
for a single-component Bose gas. The technique and details
concerning various applications have been presented in great
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detail in, e.g., Refs. [61,63,64,66–68], as well as for an in-
teracting Bose gas in three dimensions in Ref. [78]. In this
section we discuss essential aspects of BKT physics that we
are going to probe by means of the CL approach.

A. Complex Langevin equations

Given a quantum field theory for a single scalar field φ

defined by an action S[φ] ∈ R, observables O(φ) can be com-
puted as

〈O〉S = Z−1
∫
Dφ exp(−S[φ])O(φ), (1)

with normalization given by the partition function

Z =
∫
Dφ exp(−S[φ]). (2)

Here
∫
Dφ denotes a path integral over all possible field

configurations subject to the respective boundary conditions.
In the case of thermal equilibrium and a bosonic field theory,
the field φ(τ, x) depends on position x and imaginary time
τ ∈ [0, β], with inverse temperature β, and must fulfill peri-
odic boundary conditions in imaginary time, φ(τ = 0, x) =
φ(τ = β, x).

The path integral can be reformulated as a Langevin-type
stochastic differential equation in a fictitious time ϑ :

∂φ

∂ϑ
= − δS

δφ
+ η(ϑ ), (3)

with η(ϑ ) being a Wiener noise subject to 〈η(ϑ )〉 = 0 and
〈η(ϑ )η(ϑ ′)〉 = 2δ(ϑ − ϑ ′). Observables are evaluated as the
temporal average of O(φ(ϑ )) along the Langevin trajectory.
The advantage of this formulation is that it can be eas-
ily generalized to the case of a complex action S[φ] ∈ C,
while standard algorithms for evaluating (1) based on impor-
tance sampling are applicable only for real actions. Namely,
we can straightforwardly complexify φ → φR + iφI , thereby
doubling the number of (real) degrees of freedom. We have
then to evolve twice as many Langevin equations,

∂φR

∂ϑ
= −Re

[
δS

δφ

]
+ ηR(ϑ ), (4)

∂φI

∂ϑ
= −Im

[
δS

δφ

]
+ ηI (ϑ ), (5)

where the real and imaginary noise, ηR(ϑ ) and ηI (ϑ ),
must fulfill 〈ηR(ϑ )〉 = 〈ηI (ϑ )〉 = 0 and 〈ηR(ϑ )ηR(ϑ ′)〉 =
2NRδ(ϑ − ϑ ′), 〈ηI (ϑ )ηI (ϑ ′)〉 = 2NI δ(ϑ − ϑ ′). NR and NI are
subject to the constraint NR − NI = 1 but can be chosen
arbitrarily in principle. However, it is numerically most con-
venient to set NR = 1 and NI = 0 [79], which we will do in
the following. This magnitude of the noise ensures, via the
fluctuation-dissipation theorem, that the correct action S is
simulated [61].

Analogously to the case of a real action, observables are
obtained as the temporal average of O(φR + iφI ) along the
Langevin trajectory. Since the expectation value of Hermitian
observables must be real if the Hamiltonian is Hermitian itself,
the imaginary part of O(φR + iφI ) vanishes when averaging
over the Langevin time.

B. Dilute Bose gas in two spatial dimensions

A one-component Bose gas in two spatial dimensions at
temperature T = 1/β and chemical potential μ is described
by the action

S[ψ,ψ∗] =
∫ β

0
dτ

∫
d2x[ψ∗∂τψ +H (ψ,ψ∗)], (6)

for a complex valued field ψ (τ, x), with Hamiltonian density

H (ψ,ψ∗) = 1

2m
∇ψ∗ · ∇ψ − μ |ψ |2 + gB

2
|ψ |4, (7)

where m is the mass and gB the (bare) coupling constant and
we have set h̄ = kB = 1. As is the case in three dimensions,
the 2D bosonic quantum gas is not UV-finite, and the coupling
needs to be renormalized.

The relation between the renormalized, physical coupling
g and the bare coupling gB can be expressed as

mg = 4π mgB

4π + mgB ln
(
�2/�2

0

) , (8)

where � is the momentum cutoff and �0 the momentum scale
at which the renormalized coupling is defined. Following the
convention of [80] to take the square root of the particle
density to be the momentum scale where the renormalized
coupling is defined, �0 = √

ρ, the renormalized coupling
reads

mg = 4π mgB

4π + mgB ln (�2/ρ)
. (9)

An alternative would be to define the coupling at the scale of
the healing momentum, �0 = √

2mgρ, as employed in [81].
The relative deviation in the renormalized coupling for the two
definitions is mg ln(2mg)/(4π ) and thus tiny in the weakly
interacting regime mg 	 1. In the following, we will take the
lattice cutoff to be the UV cutoff � of the theory.

In experimental settings, such a system is realized by a
dilute three-dimensional (3D) Bose gas highly confined in
the z direction, such that mg is proportional to the ratio of
the (3D) scattering length a and the effective extension az of
the condensate in the z direction:

mg =
√

8π
a

az
. (10)

In contrast to the 3D case, the coupling strength is indepen-
dent of the particle density and is purely determined by the
dimensionless quantity mg.

We write the complex Bose field ψ as ψ = ϕ + iχ , with
two real fields ϕ, χ ∈ R. By virtue of the CL algorithm,
these two real fields are again complexified, ϕ → ϕR + iϕI ,
χ → χR + iχI , such that it governs the dynamics of four real
fields. We quote the CL equations we solve numerically in
Appendix A.

C. Coherence properties across the BKT transition

We briefly summarize a few of the most important charac-
teristics of a Bose gas near the BKT transition that we will
consider in the following. For general reviews of the theory
cf., e.g., Refs. [55,56].
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The phase-ordered and disordered phases, which are sepa-
rated by the BKT transition, are most easily distinguished by
means of the first-order spatial coherence function or equal-
time two-point correlator g(r), defined as

g(r) = 〈ψ†(r + x)ψ (x)〉. (11)

Considering a homogeneous situation, it approaches the total
density ρ = 〈ψ†(x)ψ (x)〉 at zero distance r = 0 and, in the
disordered phase above the transition temperature TBKT, falls
off exponentially at large distances, g(r) ∼ exp{−|r|/ξc}, with
an in general temperature-dependent correlation length ξc.
Below the transition, g(r) shows algebraic behavior instead,

g(r) ∼ (|r|/ξ )−α, |r| → ∞, (12)

on length scales |r| � ξ larger than the zero-temperature
healing length ξ = (2mgρ)−1/2. The behavior of the
momentum-space occupation number f (k), defined as

f (k) = 〈ψ†(k)ψ (k)〉, (13)

correspondingly scales as

f (k) ∼ |k|α−2, |k| → 0. (14)

The scaling exponent

α = 1

λ2
T ρs

(15)

depends on the thermal de Broglie wave length λT =√
2π/mT and on the superfluid density ρs, which, in d spatial

dimensions is defined through [82]

ρs

ρ
= 1 − 〈P2〉

dmT Ntot
, (16)

where P is the total momentum of the system and Ntot the
total particle number. In the thermodynamic limit, decreasing
the temperature through the transition, ρs, according to Nelson
and Kosterlitz [83], makes a universal jump from 0 to

ρs,c = 2mT

π
= 4

λ2
T

, (17)

such that the scaling exponent approaches the critical value
α = 1/4 for T → T −

BKT, while α goes to 0 for T → 0.
Hence, at nonzero temperatures, near the BKT transition, the
superfluid density depends on temperature, and thus, nonlin-
ear couplings between the modes become important below
the then T -dependent healing-length scale kc ∼ √

mgρs ∼
m

√
gT ∼ √

mgkT , with thermal momentum kT ∼ √
mT . For

momenta kc 	 k 	 kT , the occupation number takes the
Rayleigh-Jeans form f (k) = 2mT/|k|2.

Whereas the superfluid density (17) takes a universal value
at the transition, the total density ρ does not and is dependent
on the microscopic details of the system instead. It has been
predicted in [29], on the basis of the observation that the
major contribution to the total density comes from the range
of momenta kc � k � kUV ∼ kT , that, for mg 	 1, the critical

density and chemical potential behave as

ρc = 1

λ2
T

ln

(
ζρ

mg

)
, (18)

μc = 2g

λ2
T

ln

(
ζμ

mg

)
. (19)

The numerical constants were given as ζρ = 380 ± 3 and
ζμ = 13.2 ± 0.4 [84]. As these were obtained from simula-
tions of the classical field theory, which become exact in the
limit mg → 0, it will be interesting to check this prediction
against the simulations of the full quantum model at nonzero
mg.

From the above results, one finds that the weakly coupled
2D Bose gas exhibits universal behavior across the BKT
transition: As was argued in Ref. [29], both ρc and μc are
nonuniversal quantities, which depend on the ultraviolet (UV)
cutoff scale kUV, through the relation ζμ/mg ≡ Ck2

UV/k2
c , etc.,

while the cutoff dependence cancels out in their quotient
ζρ/ζμ. As a result, μc − 2gρc also is cutoff-independent and
thus universal. Hence, it was proposed that this remains so in
the vicinity of the critical point. Specifically, this means that,
subtracting the chemical potential from the mean-field-type
expression 2gρ, that one has (2gρ − μ)/(mgT ) = θ (X ), and
thus that the equation of state can be written in terms of a
universal function θ (X ) that depends on the dimensionless
tuning parameter X = (μ − μc)/mgT only, valid within the
so-called fluctuation region, where X varies on the order of
unity. Evaluating the difference of this relation to the critical
one leads to the equation of state in the form

ρ(μ) − ρc = 1

λ2
T

F

(
μ − μc

mgT

)
, (20)

where the universal function F (X ) is related to θ (X ) by

F (X ) = π

[
θ (X ) + X − 1

π
ln

(
ζρ

ζμ

)]
. (21)

In the Bogoliubov mean-field limit, X → ∞, the function θ

asymptotically obeys

θ (X ) − 1

π
ln [θ (X )] → X + 1

π
ln(2ζμ), (22)

whereas for X → −∞, a Hartree-Fock approximation yields

θ (X ) + 1

π
ln [θ (X )] → |X | − 1

π
ln(ζμ), (23)

and the resulting universal scaling form (20) of the equation of
state was confirmed in this limit by means of classical Monte
Carlo simulations [30] for different values of the coupling mg.

Eventually, also the superfluid density, for chemical po-
tentials below the BKT transition and in its vicinity of the
transition, obeys a functional form generalizing the Nelson-
Kosterlitz result (17) [30],

ρs = 2mT

π
f (X ), (24)

with a universal function f (X ) obeying f (X → 0+) = 1 and
f (X < 0) ≡ 0.
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D. Topological characteristics across the BKT transition

A further important characteristic of the BKT transition is
topological in nature: Whereas above TBKT one considers the
gas to be dominated by free quantum vortices, which deterio-
rate the phase coherence over short distances, these mutually
annihilate as pairs of vortices and antivortices and thus disap-
pear below the transition, giving rise to an algebraically slow
decoherence (12).

To study topological properties, we evaluate the current
density, defined by

j = 1

2mi
[ψ∗∇ψ − ψ∇ψ∗]. (25)

According to the Helmholtz theorem, j can be decomposed
into an irrotational and rotational part

j = jirr + jrot. (26)

Under the simplifying assumptions that density fluctua-
tions are negligible and free vortices are uncorrelated, the
local density of free (unbound vortices) can be estimated in
terms of the mean of the rotational part of the current squared
as

ρv,free(x) � m2

2π ln(L/ξh)〈ρ〉2
|jrot(x)|2, (27)

where L is the system size and ξh = (2mμ)−1/2 the healing
length. A decrease of ρv,free across the transition reflects the
vortex-antivortex recombination process, when going over
from the disordered above to the ordered phase below the
transition.

E. Finite-size scaling

Numerical simulations must necessarily be performed in
a finite volume. For obtaining properties in the thermody-
namic limit, some extrapolation is necessary since finite-size
corrections vanish only logarithmically in a 2D Bose gas.
BKT renormalization group (RG) theory allows determining
the finite-size scaling of the superfluid density. On the ba-
sis of general scaling arguments, ρs(L), close to criticality,
can be written as a singular function of L times a nonsin-
gular function of L/ξT , where ξT ∼ ξcexp[a(T − TBKT)−1/2]
is the (at criticality diverging) correlation length [85] and
ξc ∼ 1/kc(TBKT) ∼ (m

√
gTBKT)−1 is a microscopic scale on

the order of the healing length near the critical point. For
the exact functional form, one needs to solve the BKT RG
equations. Keeping the temperature T fixed, one obtains, in
leading order, the finite-size correction to (17) at the infinite-
size critical chemical potential μc(L → ∞) [86],

ρLO
s (L) = 2mT

π

(
1 + 1

2 ln(L/ξc) + C

)
, (28)

with some constant C, which we have explicitly written, other
than usually found in the literature, in terms of the near-critical
healing-length scale ξc [87], which later, for a fixed temper-
ature, determines the scaling in terms of mg. Higher-order
expressions are also available [88]. For example, to next-to-

leading order one has

ρNLO
s (L) = 2mT

π

(
1 + 1

2 ln(L/ξc ) + C + ln [C/2 + ln(L/ξc )]

)
.

(29)

Instead of extrapolating the superfluid density to the infinite-
size limit for each single parameter set, we will follow the
somewhat different procedure described in [29]. Namely, one
defines a finite-size critical potential μc(L) by demanding that
the Nelson-Kosterlitz criterion [83], Eq. (17), be fulfilled at
μc(L) in the finite-size system [89]. Using then the universal
form (24) away from criticality, with an L-dependent function
fL(X ), one finds that the Kosterlitz-Thouless RG equations, in
the L → ∞ limit, cause f = fL→∞ to obey the relation f −1 +
ln f = 1 + κ ′X near X = 0, with a numerical constant κ ′ =
0.61(1) [30]. Expanding f about unity this yields that, at μ

closely above μc(L), the superfluid density obeys

ρsπ

2mT
− 1 = f

(
μ − μc(L)

mgT

)
− 1 �

√
2κ ′[μ − μc(L)]

mgT
.

(30)

Combining this with the leading-order approximation (28),
the finite-size scaling form of the difference between μc(L →
∞) and μc(L) results as

μc(L → ∞) − μc(L)
LO� mgT

2κ ′[2 ln(L/ξc) + C]2 . (31)

Finally, since the function F (X ) defined in Eq. (20) is, in
leading order, linear in X close to criticality (X = 0), one finds
that ρ − ρc(L) ∼ [μ − μc(L)]/g. Inserting 1/ξc = m

√
gT at

the fixed near-critical temperature T , one obtains the finite-
size scaling of the critical density ρc(L),

ρLO
c (L) = ρc(L → ∞) − AmT

ln2(BLm
√

gT )
, (32)

with dimensionless constants A and B, as introduced by [29].
Analogously, the next-to-leading-order expression (29) yields

ρNLO
c (L) = ρc(L → ∞)

− AmT[
ln(BLm

√
gT ) + 1

2 ln ln(BLm
√

gT )
]2 . (33)

For the extraction of the critical chemical potential from finite-
size data, similar relations apply. The leading order expression
reads

μLO
c (L) = μc(L → ∞) − AμmgT

ln2(BμLm
√

gT )
, (34)

and the next-to-leading-order expression is given by

μNLO
c (L) = μc(L → ∞)

− AμmgT[
ln(BμLm

√
gT ) + 1

2 ln ln(BμLm
√

gT )
]2 .

(35)

III. RESULTS OF THE CL SIMULATIONS

In the following we present the results of our CL sim-
ulations of properties of a dilute 2D Bose gas close to the
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BKT transition. We begin with a determination of the critical
density ρc as a function of mg in order to check the validity of
the prediction (18) in the quantum regime. Subsequently, we
evaluate the equation of state and the single-particle momen-
tum spectrum and their scaling properties near criticality, and
our study closes with an evaluation of the vorticity across the
BKT transition.

We express all quantities in units of the spatial lattice
constant as (not to be confused with the s-wave scattering
length a) and choose 2m = 1. Unless specified differently,
our simulations were done on a grid with 2562 spatial × 32
(simulations in Sec. III A) or ×16 (elsewhere) lattice points
in the imaginary-time direction, with periodic boundary con-
ditions imposed in both the temporal and spatial directions.
We set the temporal lattice spacing to at = 0.05 as, resulting
in a temperature T = 1.25 a−1

s and a thermal wave length
λT = √

2π/mT = 3.17 as. For the simulation of the Langevin
equation we use a simple Euler-Maruyama scheme with time
step chosen to be �ϑ = 5 × 10−3 as. While this first-order
scheme is employed in the majority of CL works, uses of
higher-order [90] and implicit schemes [91] also have been
reported.

Parameters are chosen such that the effects of spatial and
imaginary-time discretization are typically smaller than the
statistical errors of the CL simulations. The former can be es-
timated by comparing the discretized and continuous versions
of the noninteracting gas. Discretization errors affect only
the high-momentum modes, where the system is effectively
noninteracting. For Nτ = 32 and λT = √

2π/mT = 3.17 as,
this yields, as estimates for the errors on the density and
the superfluid density, λ2

T δρ ≡ λ2
T (ρcont − ρ latt ) = 4 × 10−5

and λ2
T δρs/4 ≡ λ2

T (ρcont
s − ρ latt

s )/4 = −6 × 10−3, which are
negligible in comparison with typical statistical errors.

Moreover, typical densities result on the order of ρ ∼
1 a−2

s . Inserting the lattice cutoff for the UV cutoff, � = π/as,
Eq. (9) yields a relative deviation between the bare coupling
gB and the renormalized coupling g in the range of ∼2 × 10−3

to ∼4 × 10−2 for the coupling strengths considered in the
following (mgB = 0.0125 . . . 0.2). Since these shifts are rather
tiny, we can, in the following, avoid an explicit distinction
between g and gB and choose the bare coupling that enters
the simulations as equal to the renormalized coupling g.

Due to a fundamental sign problem, CL simulations are
limited to a region below some maximum coupling strengths
mg beyond which the nonlinearity in the evolution equa-
tions causes runaway trajectories which are impossible to
average over in a reliable manner. The value of the coupling
beyond which such effects dominate also depends on the prox-
imity of the system to the BKT transition. Whereas far away
from the transition we could simulate up to mg � 0.4, closer
to criticality runaway trajectories frequently occur already for
mg ∼ 0.2. These are no sharp thresholds, and it is possible
that larger coupling strengths can be reached by employing
regulator techniques or adaptive step sizes [91–94]. In prob-
ing the BKT transition we restrict ourselves to the regime
mg � 0.1, where runaway trajectories have been found to be
absent and (polynomial) observables appear to converge well.
When studying the equation of state away from the transition,
we also include a coupling mg = 0.2. We have checked from
our simulations that the distribution function of the magnitude

of the drift, δS/δψ , has compact support in this regime, which
has been identified as a necessary and sufficient criterion for
the correctness of the complex Langevin method [95].

A. Critical density and chemical potential

We start by extracting, from our complex-Langevin data,
the critical density and chemical potential in the thermo-
dynamic limit as functions of the coupling strength, in the
weak-coupling regime. To this end, we need to perform a
finite-size scaling analysis as summarized in Sec. II E. Our
results can be compared with those from classical simulations
and, within limits, with quantum, path-integral Monte Carlo
as well as experimental results.

Making use of the definition (16) we extract the super-
fluid density ρs; see Appendix B for details of the numerical
evaluation of 〈P2〉. We then determine the critical chemical
potential at the transition point by matching the result of (16)
to the Nelson-Kosterlitz criterion (17). While our temporal
lattice spacing fixes the temperature T = 1.25 a−1

s , we vary
the chemical potential μ, whereby both the total and the
superfluid density change. As described in more detail in
Appendix D, we apply the secant algorithm to tune μ to the
point, where the superfluid density equals the value given by
(17).

As outlined in Sec. II E, one must expect the corresponding
critical (total) density ρc to be subject to finite-size effects.
We make use of the leading-order and next-to-leading order
finite-size scaling forms (32) and (33), respectively, which we
found to be indistinguishable within our statistical errors.

We computed the finite-size critical densities for four cou-
pling strengths, mg = 0.1, 0.05, 0.025, and 0.0125, for several
lattice sizes L/as ∈ [24, . . . , 256]. These are shown in Fig. 1
vs the dimensionless parameter x ≡ ln−2(Lm

√
gT ). Error bars

are obtained from the statistical variance of 12 statistically
independent runs. Fitting Eq. (32) to our data points for all
couplings and lattice sizes simultaneously we obtain A =
0.089 ± 0.015 and B = 0.446 ± 0.048. The parameters A and
B yield the x dependencies of the critical density shown as
solid lines in the upper panel of Fig. 1. By extrapolating these
curves to x = 0 we obtain our prediction for the infinite-size
critical densities ρc(mg) for the four different couplings mg.
Our results of this are depicted in the upper panel of Fig. 2,
in comparison with the functional dependence (18) obtained
in [29] from classical field theory simulations. Errors are
the standard fit errors on the four fitting parameters ρc(mg),
which are defined as the width of the likelihood function
in the direction of the respective parameter. This means, us-
ing a likelihood function L(p) with parameter vector p and
optimal parameters p̄, we define the error in pi as �pi =
(−L/∂2

i L)1/2 |p=p̄.
One observes that the critical densities are shifted by

around 4% downwards as compared to the result from the
classical simulations. If one assumes that the universal func-
tional form of the critical density (18) still holds in the full
quantum model at (small) finite mg, albeit with a different
nonuniversal constant ζρ , one may fit (18) to our data, yielding

ζρ = 260 ± 12, (36)
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FIG. 1. Critical density ρc (upper panel) and chemical potential
μc (lower) for various coupling strengths mg as a function of the
dimensionless parameter x = ln−2(Lm

√
gT ). Solid lines represent

a fit of (32) and (34) to the data points. Extrapolating them for
x → 0 we can recover the critical density and chemical potential in
the infinite-volume limit. Fits of the higher-order formula (33) are
shown as dashed lines, which hardly deviates from the leading-order
expression. Where no error bars are seen, they are shorter than the
width of the data points.

as compared with ζρ = 380 ± 3 obtained in [29]. Note that
the relative statistical error on ζρ is larger than the relative
shift between gB and g even for the largest considered cou-
pling, (gB − g)/g ∼ 1.6% for mgB = 0.1, which justifies our
approximation gB ≈ g.

The above result for the critical density may be compared
with the experimental findings of [16], which gave a down-
ward shift of ∼10% in comparison to (18) with ζρ = 380 ±
3. The experiment was conducted using an inhomogenous
trapping potential, at couplings mg = 0.05, 0.13, 0.19, 0.26.
Employing a local density approximation, the equation of
state was determined from the density profile, from which
in turn the authors extracted the critical densities. The effect
of the local density approximation may need to be taken into
account when comparing the by about a factor of two larger
deviation with the present results.

FIG. 2. Critical density ρc (upper panel) and chemical potential
μc (lower) in the infinite-volume limit as functions of the cou-
pling mg computed with the complex Langevin simulation of the
full quantum model (blue points), within a regime of couplings for
which runaway processes are absent. The results are compared to
the predictions (18) with constant ζρ = 380 and (19) with ζμ = 13.2
as obtained from the classical simulation of [29] (black lines). The
critical quantities appear to be shifted downwards in the full quantum
simulation by about 4% (2%). The blue dashed lines represent (18)
and (19) with constant ζρ = 260 ± 12 and (19) with ζμ = 12.3 ±
0.1, as obtained from fits to our data.

A different experimental approach was pursued in
Ref. [24], where the authors employed the vanishing of the
second-sound resonance as a criterion for the transition point
in a uniform Bose gas. Similarly to [16], the critical temper-
ature was found to be shifted by ∼10% upwards, i.e., the
critical density by ∼10% downwards in comparison to the
classical field theory result, though the statistical error is on
the same order of magnitude as the shift itself. Additionally,
the authors point to a possible bias due to finite-size effects.
The results of further experiments [17,20] are consistent,
within their error bars, with either of the present results and
the predictions of [29].

In contrast to our findings, the PIMC simulations of [32]
gave a shift of the critical temperature to lower values, i.e., of
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the critical density ρc to values higher than the ones predicted
in [29]. These simulations were performed, however, in the
strong-coupling regime mg > 1 (mg = 1.36, 2.73, 5.46) that
we did not find being accessible to CL. As described in the
next section, we can infer a value for the critical density at
mg = 0.2 from a scaling analysis of the equation of state.

For comparison, we also performed simulations of the clas-
sical field theory ourselves, as we can straightforwardly turn
off quantum effects in our simulation by setting Nτ = 1. The
results are presented in Appendix F.

We performed an analogous finite-size analysis for the crit-
ical chemical potential, in which we fitted our data by means
of the leading-order expression (34). This gave Aμ = 0.087 ±
0.003 and Bμ = 0.4 ± 0.007, and the corresponding fits are
shown in the lower panel of Fig. 1. (Note that one should have
B = Bμ, which is confirmed within errors. The same does
not apply to A and Aμ.) The corresponding infinite-size μc is
shown, again vs the coupling mg and in comparison with the
results obtained from the classical simulations of [29], in the
lower panel of Fig. 2. Assuming again the functional form of
the critical chemical potential (19) to hold in the full quantum
model at small mg, a fit of (19) to our data yields

ζμ = 12.3 ± 0.1, (37)

as compared with ζμ = 13.2 ± 0.4 obtained in [29].

B. Equation of state and scale invariance

As was outlined in Sec. II C, the weakly interacting Bose
gas is expected to feature universal behavior in a wide range of
the phase diagram, across the BKT transition and also farther
away from it. In order to analyze our data with respect to such
universality, we depict, in the upper panel of Fig. 3, the equa-
tion of state ρ(μ) for a set of chemical potentials as obtained
from our simulations for three different coupling strengths
mg ∈ {0.025, 0.1, 0.2}, with μ given in units of mgT . The
data points are spline interpolated for better visibility. The
respective critical μc are indicated as thin vertical lines above
the horizontal axis. Since most data points are sufficiently far
from criticality, for mg = 0.2 runaway trajectories also were
mostly absent. However, for the two data points closest to the
transition point, they started to occasionally occur, in which
case we excluded the respective run, whereby we could still
obtain a reasonable convergence of the total particle number.
The inset shows the unscaled data as functions of μ/T .

As is demonstrated in the lower panel of Fig. 3, shifting
the curves by the respective ρcλ

2
T downwards and μc/mgT to

the left, with the ρc and μc obtained as specified below, all
curves collapse, according to (20) to a single scaling function
F . Hence our data corroborate the predicted scaling within
the depicted window around the critical point. As similarly
found for the classical simulations in [30], the mean-field
(MF) prediction (21), (22) (dashed line) agrees remarkably
well with our CL results below the BKT transition, X =
(μ − μc)/(mgT ) > 0, when choosing the nonuniversal con-
stant ζμ = 13.2 of Ref. [29]. As in the classical simulations,
this is the case both, outside the fluctuation region, i.e., for
|X | � 1, and in the close vicinity of the transition. In contrast
to this, above the transition, X < 0, our results deviate from
the MF prediction (23) for the same value of ζμ (dashed line).

FIG. 3. Equation of state, relating density ρ, and chemical poten-
tial μ for three values of the coupling mg. The curves connecting the
data points are obtained by spline interpolation. Error bars are too
small to be visible. The inset of the upper panel shows the densities
as functions of μ/T . In the main part of the upper panel, their
arguments are rescaled with the coupling mg. The critical chemical
potentials are shown as dotted vertical lines in the respective color.
In the lower panel, the resulting curves are shifted by the critical
chemical potentials and densities; cf. Eq. (20). The curves collapse
for all three couplings considered, giving evidence of the universality
of the 2D Bose gas near the BKT transition. For the critical chemical
potentials and densities ρc and μc we took the result from Sec. III A
for mg = 0.1, whereas ρc and μc for mg = 0.025 and mg = 0.2
are obtained from the differences μc(mg = 0.025) − μc(mg = 0.1)
and μc(mg = 0.2) − μc(mg = 0.1) as well as ρc(mg = 0.025) −
ρc(mg = 0.1) and ρc(mg = 0.2) − ρc(mg = 0.1), which by means of
a least-squares fit were determined such that all three curves collapse.
The black lines in the lower panel represent the mean field (MF)
approximations (22) and (23), valid for X = (μ − μc )/(mgT ) � 1
and X 	 −1, respectively. The dashed lines show the MF behavior
for ζρ = 380 and ζμ = 13.2 of [29], the solid lines for the values (36)
and (37).

Since the definitions (18) and (19) of the constants ζρ and
ζμ, respectively, rest, however, on MF expressions for the
scales kc and kT , for our data to be consistent with the MF
prediction, (22) and (23), outside the fluctuation region rather
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requires the different value (37) of the nonuniversal constant
ζμ; cf. the solid lines in the lower panel of Fig. 3. Recall fur-
thermore that the function F , according to Eq. (21), depends
on the quotient ζρ/ζμ, which is understood to be independent
of the UV details of the quantum gas and determines the
value of the constant θ0 = θ (0) = ln(ζρ/ζμ)/π [30]. Hence,
since our result for the dependence of ρc on mg gave the
value (36), a modified value of ζμ also is required for F to
remain unchanged outside the fluctuation region and below
the transition, X � 1, as suggested by our results coinciding,
in this regime, with the findings of [30].

We emphasize that our data are obtained in the weakly
interacting regime, 0.025 � mg � 0.2, where the MF expres-
sions (22) and (23), which are also based on the approximation
that mgθ 	 1 [30], should be valid. As a result, our data yield
a value of the universal constant

θ0 = π−1 ln

(
ζρ

ζμ

)
= 0.97 ± 0.01, (38)

as compared with θ0 = 1.068 ± 0.01 reported in [30]. In sum-
mary, notwithstanding the modification of both, ζρ and ζμ

as compared with the classical result, the universal function
determining the equation of state remains unchanged within
errors below the BKT transition, while it is slightly increased
above, where quantum fluctuations are thus found to be more
significant.

Under the approximation that the universal scaling form
(20) holds, at least for the not too large values mg considered
here, we can also determine the shift in the critical chemical
potentials and densities between different mg by fitting the
curves to collapse onto each other. This allows extracting
the critical chemical potentials and densities independent of
the procedure described in the previous section once μc and
ρc are known for one value of mg. The μc and ρc employed
in this section were obtained in this way, with μc(mg =
0.1) = (1.531 ± 0.006) mgT and ρc(mg = 0.1) = (7.874 ±
0.008)λ−2

T taken from the 2562 lattice results of Sec. III A.
For a comparison of the critical densities obtained in this way,
with those from Sec. III A, see Appendix E.

C. Single-particle momentum spectra

In this section, we use the CL data to evaluate the
single-particle momentum-dependent occupation number dis-
tribution (13) for comparison with the infrared scaling
(14) expected close to and farther below the BKT transi-
tion. We performed simulations for a coupling mg = 0.1 at
several chemical potentials ranging from μ/(mgT ) = 2 to
μ/(mgT ) = 4.4, i.e., from slightly below to far below the
BKT transition. The results for μ/(mgT ) = 2 and 4 are shown
in Fig. 4.

As predicted by BKT theory, far below the transition, the
distribution exhibits a ∼k−2, Rayleigh-Jeans power law in the
infrared regime of momenta far below the temperature scale,
while it falls off exponentially at larger momenta. This is
consistent with a thermal distribution of Bogoliubov quasipar-
ticles, resulting in the dashed distribution in the lower panel.
Close to the BKT transition, in contrast, the power law in the
infrared is slightly reduced to ∼k−7/4. In order to make this
more systematic, we have extracted α for a range of chemical
potentials by fitting a linear function to ln f (k) vs ln k in the

FIG. 4. Single-particle momentum spectra f (k) = f (|k|),
Eq. (13), for a coupling mg = 0.1 and two different chemical
potentials: μ/(mgT ) = 2, slightly below the transition (upper
panel), and μ/(mgT ) = 4, far below the transition (lower panel).
The momentum is expressed in units of the thermal momentum
kT = 1/λT . Whereas slightly below the transition the spectrum
approximately shows a k−7/4 power law in the infrared, below the
thermal wave number kT , consistent with the near-critical scaling
predicted by BKT theory, we find a MF Rayleigh-Jeans ∼k−2 fall
off farther below the transition, which forms part of the Bogoliubov
distribution (dashed line). The condensate fractions f (k = 0)/Ntot

are 61% and 82%, respectively, i.e., due to the finite extent of our
system we find a macroscopic occupation of the condensate mode.

power-law region. The results are shown in Fig. 5. As one
can see, the value of α drops from α � 1/4 towards zero,
between the chemical potentials slightly below and far below
the transition, in accordance with the BKT prediction.

D. Vortex unbinding across the BKT transition

One of the key features of the BKT transition is that it
is characterized by the transition from a free vortex gas to
bound vortex-antivortex pairs, which we here attempt to study
within the CL framework. Let us first have a look at the
configurations produced by the Langevin process in position
space. We consider the density ρR and phase φR characteriz-
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FIG. 5. Power-law exponent α as a function of μ/(mgT ), as
obtained from a least-squares fit of a linear function to ln f (k) vs ln k,
obtained from our simulations for mg = 0.1. The critical chemical
potential is marked by a dotted black line. Going from close to the
transition to far below the transition, α decreases from �1/4 to zero,
in accordance with the prediction from BKT theory.

ing the real parts of the complexified two-component field,
defined as

ρR ≡ ϕ2
R + χ2

R, φR ≡ arg(ϕR + iχR). (39)

Their distribution across the spatial grid are shown in Fig. 6,
for four values of the chemical potential μ in the vicinity
of the BKT transition. While the density ρR seems entirely
dominated by noise, the phase φR reveals the phase-ordering
process across the transition. However, one does not observe
stable vortices in the position-space configurations. This is not
a genuine property of complex Langevin simulations, but is
also the case, e.g., for ordinary Monte Carlo simulations of
the XY model; cf. Fig. 1 in [96].

One may conclude that expectation values, i.e. long-time
averages along the Langevin trajectories, must be considered
in order to gain insight into the topological phase transition.
Here one encounters a CL-specific difficulty. The analysis of
topological properties of a Bose gas usually requires deter-
mining the phase of the complex field ψ or the velocity field
v = j/ρ. Both lead to observables that are nonholomorphic
in the fields. The CL algorithm, however, requires the real-
valued fields to be analytically continued, such that the action
and observables should preferably be holomorphic. Nonholo-
morphic actions and observables lead to both computational
problems (there can be numerical divergencies when the tra-
jectories come close to the singularities) as well as conceptual
ones (the correctness of the method is more difficult to es-
tablish) [97]. As a result, no vortex positions and numbers
can be determined from the data depicted in Fig. 6. This
clearly represents a limitation to the applicability of the CL
algorithm in this case. For this reason we resort to evaluating
the current density instead of the velocity field, as discussed in
Sec. II D, which is perfectly holomorphic in ϕ and χ but has
the drawback that it is affected by fluctuations of the density.

FIG. 6. Snapshots of the position-space density ρR ≡ ϕ2
R + χ 2

R

at ϑ = 4 × 103 a−1
s for mg = 0.1 and four different chemical po-

tentials (a) μ/(mgT ) = 0.8, (b) 1.2, (c) 1.6, and (d) 2.0 (upper
panel). The temperature is kept fixed while the chemical potential
is varied, such that the healing length ξh ≡ 1/

√
2mμ in units of the

lattice spacing varies between ξh = 3.16 as and ξh = 2 as. The MF
densities λ2

T ρ̄ ≡ λ2
T μ/g are λ2

T ρ̄ = 5.02, 7.54, 10.05, 12.56. As one
can see, the position-space densities are completely dominated by
fluctuations such that it is difficult to infer information about the
topological phase transition from them. The lower panel shows the
position-space phase φR ≡ arg(ϕR + iχR ) for the same parameters,
which indicates phase ordering across the transition.

In Fig. 7 we show the average

ξ 2
h

L2
Nv,free = ξ 2

h

L2

∫
d2x 〈 ρv,free(x)〉, (40)

with healing length ξh = (2mμ)−1/2, i.e., the mean number
of free vortices per healing length squared, which can be
considered to be a measure for the transition from a vor-
tex gas to bound vortex-antivortex pairs, and with ρv,free(x)
determined according to (27). Snapshots of spatial distribution
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FIG. 7. Mean integrated rotational part of the current squared,
ρv,freeξ

2
h , as defined in (40), as a function of μ/(mgT ), for mg = 0.1.

It can be considered as a measure for the mean number of unbound
vortices appearing in the system; see the discussion in the main text.
Error bars are too small to be visible.

of ρv,free(x) are depicted in Fig. 8, for mg = 0.1 and the same
four chemical potentials as chosen in Fig. 6. Details on the
numerical evaluation of ρv,free can be found in Appendix C.
The decrease of ρv,free across the transition corroborates the
vortex-antivortex recombination process, when going over
from the disordered above to the ordered phase below the
transition.

FIG. 8. Snapshots of the real part of ρv,free(x)ξ 2
h , as defined in

(27) and Appendix C for mg = 0.1 and the same four different
chemical potentials (a) μ/(mgT ) = 0.8, (b) 1.2, (c) 1.6, and (d) 2.0,
corresponding to the data shown in Fig. 6. For better visibility,
fluctuations above the healing momentum kh = √

2mμ are filtered
out by a low-pass filter. Note that by virtue of the complexification
prescription of the CL algorithm, ρv,free(x)ξ 2

h will be in general com-
plex in single realizations and its real part can become negative, while
in the long-time average, ρv,free(x)ξ 2

h will come out real and positive.

IV. SUMMARY AND OUTLOOK

Employing the complex Langevin algorithm, we have per-
formed an ab initio simulation of the interacting Bose gas
in two spatial dimensions across the BKT phase transition.
We have found that the CL method is able to successfully
reproduce central characteristics of BKT physics, namely, the
universality in the equation of state, the algebraic decay of
correlation functions and the vortex-unbinding mechanism.
We have furthermore analyzed the dependence of the critical
density on the interaction strength mg and compared to results
from simulations of the classical field theory [29]. Our simu-
lations of the full quantum model yield small but significant
deviations from the classical-field-theory predictions.

Hence, this work demonstrates that the CL algorithm
can be a viable tool for performing full quantum sim-
ulations of the topological phase transition in a weakly
interacting Bose gas, i.e., it could be of use when quan-
tum corrections beyond classical Gross-Pitaevskii simulations
play a role. Experimentally relevant applications include
the BKT transition in external trapping potentials [10,98],
with long-range interactions [54,99] or in multicomponent
gases [47,100,101].
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APPENDIX A: DISCRETIZED CL EQUATIONS

In this Appendix, we provide details of the discretized CL
equations of motions, Eqs. (4) and (5), for the case of a Bose
gas described by the action (6) in two spatial dimensions.
See Ref. [78] for a discretized version of the (3D) action.
We express the complex Bose fields in terms of its real and
imaginary parts as

ψ ≡ ϕ + iχ. (A1)

Discretizing these components on the N2
s × Nτ lattice,

ϕ(τ, x) = ϕ(iaτ , nas ) ≡ ϕi,n, etc. for χ , where the index
i enumerates the imaginary-time lattice sites with spacing
aτ , and the 3D index vector n the spatial lattice sites, with
discretization as. The CL are obtained from the discretized
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action [78] by taking derivatives with respect to ϕ and χ ,

∂ϕi,n

∂ϑ
= a2

s (ϕi+1,n + ϕi−1,n − 2ϕi,n + iχi−1,n − iχi+1,n)

+ aτ

2m
�lat(ϕi−1,n + ϕi+1,n + iχi−1,n − iχi+1,n )

+ μa2
s aτ (ϕi−1,n + ϕi+1,n + iχi−1,n − iχi+1,n)

− ga2
s aτ (�i−1,n ϕi−1,n + �i,n ϕi+1,n

+ i�i−1,n χi−1,n − i�i,n χi+1,n ) + η(ϑ ), (A2)

∂χi,n

∂ϑ
= a2

s (χi+1,n + χi−1,n − 2χi,n − iϕi−1,n + iϕi+1,n )

+ aτ

2m
�lat(χi−1,n + χi+1,n − iϕi−1,n + iϕi+1,n )

+ μa2
s aτ (χi−1,n + χi+1,n − iϕi−1,n + iϕi+1,n )

− ga2
s aτ (�i−1,n χi−1,n + �i,n χi+1,n

− i�i−1,n ϕi−1,n + i�i,n ϕi+1,n ) + η(ϑ ), (A3)

where

�i,n ≡ ϕi+1,n ϕi,n + χi+1,n χi,n + iϕi+1,n χi,n − iϕi,n χi+1,n.

(A4)

�lat is the Laplacian on the lattice, for which there are several
possible choices. One may approximate the Laplacian by
finite differences, i.e., as

�lat,FDAi,n ≡ Ai,n+ex + Ai,n−ex + Ai,n+ey + Ai,n−ey − 4Ai,n,

(A5)

with ex,y being the unit vectors in two dimensions. Here
we rather choose to evaluate the Laplacian via a spectral
derivative,

�lat,spAi,n ≡ − 1

N2
s

∑
mn′

exp

(
i
2π

Ns
m · (n − n′)

) ∣∣∣∣2πm
Ns

∣∣∣∣
2

Ai,n′ .

(A6)

While the spectral derivative is numerically more expensive
than finite differences because it involves two FFTs, it has the
advantage that it reproduces the correct quadratic continuum
dispersion, whereas for the finite difference discretization one
obtains a sine-like lattice dispersion. Thus, it is not necessary
to take into account the sine spacing of momenta in the eval-
uation of observables, as was done in [78], which simplifies
the computation of quantities like the superfluid density and
the currents discussed in the subsequent Appendixes.

Note furthermore that, in Eqs. (A2)–(A4), ψ∗ must be
evaluated infinitesimally later than ψ , i.e., at lattice point i + 1
rather than at i. This follows from the construction of the
coherent-state path integral where, in each time step, a† is
evaluated with respect to the coherent state on the left while a
acts to the right, on the state one step earlier. This is important
even in the analytical calculations where it ensures the right
convergence in the complex Matsubara plane [55].

APPENDIX B: EVALUATION OF
THE SUPERFLUID DENSITY

For the extraction of the superfluid density, we need the
variance of the total momentum P, which is measured by the
operator

P =
∑

p

a†
pap p. (B1)

The operator P2 can then be written as

P2 =
∑
pq

a†
papa†

qaq p · q

=
∑
pq

a†
pa†

qapaq p · q +
∑

p

a†
pap |p|2. (B2)

In the path integral formalism this translates into

〈P2〉 =
〈

1

Nτ

∑
i

{∣∣∣∣∑
p

ψ∗
i+1,pψi,p p

∣∣∣∣
2

+
∑

p

ψ∗
i+1,pψi,p |p|2

}〉
,

(B3)

where i numbers the imaginary time slices and Nτ is their total
number. Since we compute the Laplacian by a spectral deriva-
tive, (A6), the momenta can be defined as in the continuum,
p = 2πm/Nsas, with m the index of the corresponding mode.
Similarly, the total particle number is computed as

〈N〉 =
〈

1

Nτ

∑
i

∑
p

ψ∗
i+1,pψi,p

〉
. (B4)

APPENDIX C: EVALUATION OF THE VORTEX DENSITY

In this Appendix we provide details on the numerical ex-
traction of the mean vortex density (27) and of the integrated
vortex number (40) from the CL data. This is done most
conveniently in momentum space, since both the gradient ap-
pearing in the current as well as the Helmholtz decomposition
become a simple vector operation in momentum space. In
momentum space, the current ji,p, reads

ji,p = 1

2m

∑
q

(p + 2q) ψ∗
i+1,p+qψi,q. (C1)

The Helmholtz decomposition, in momentum space, reads

ji,p = jirr
i,p + jrot

i,p = p
p · ji,p

|p|2 − p × p × ji,p

|p|2 . (C2)

The integral over the squared current density can be straight-
forwardly computed in momentum space as

∫
d2x 〈|jrot(x)|2〉 =

〈
1

Nτ

∑
i

∑
p

jrot
i,p · jrot

i,−p

〉
. (C3)

For the position-space snapshots of |jrot(x)|2 we Fourier
transform jrot

i,p, i.e. jrot
i,x = (Nsas )−1 ∑

p eix·pjrot
i,p and define

|jrot(x)|2 ≡ jrot
i,x · jrot

i,x. Note that by virtue of the CL procedure,
the latter quantity will be in general complex in single snap-
shots, while in the long-time average it must become real and
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positive. In Fig. 8 we show the real part of jrot
i,x · jrot

i,x, multiplied
by m2ξ 2

h [2π ln(L/ξh)〈ρ〉2]−1.

APPENDIX D: FINDING THE CRITICAL CHEMICAL
POTENTIAL WITH THE SECANT ALGORITHM

We determined the chemical potential at the BKT transition
point, the value μc, for which the Nelson criterion (17) is ful-
filled, by means of a secant algorithm, which converges faster
than the common bisection algorithm. To this end, we start
from two initial guesses for the critical chemical potential, μ0

and μ1, and determine subsequent estimates as

μi+2 = μiρ̃s(μi+1) − μi+1ρ̃s(μi )

ρ̃s(μi+1) − ρ̃s(μi )
, (D1)

where ρ̃s ≡ ρs − ρs,c, and the critical superfluid density ρs,c

is defined by (17). As initial guesses we chose μ0 = 1.05μ̄

and μ1 = 0.95μ̄ with μ̄ the estimate for the critical chemical
potential from [29], determined by (19). We stop the iteration
once ρ̃s is indistinguishable from 0 within the statistical errors.
This procedure is illustrated in Fig. 9 (upper panel). As one
can see, the convergence is extremely fast. In fact, we rarely
had to perform more than four to five simulations for a given
coupling and lattice size. Sometimes it occurred, however,
that, due to statistical fluctuations, ρ̃s(μi+1) and ρ̃s(μi ) re-
sulted to be very close in magnitude, which could give rise to a
divergence of the secant algorithm. In such cases we replaced
ρ̃s(μi ) by hand by a suitable ρ̃s(μ j ), with j < i, and thereafter
continued the algorithm in the normal way.

APPENDIX E: CRITICAL DENSITY FROM SCALING

As an application of the CL algorithm for determining
the critical density for couplings mg � 0.1 was found to
be increasingly impeded by runaway trajectories, we could
not directly determine ρc for the largest coupling mg = 0.2
Nonetheless, as we could determine the equation of state
further away from criticality—cf. Fig. 3, where it was found
to approximately scale according to Eq. (20)—this allows us,
under certain assumptions, to infer the critical density also
for mg = 0.2. In Fig. 10 we show the critical density, for
mg = 0.025 and mg = 0.2 (green data points), as obtained by
rescaling the equation of state for these couplings to the one
for mg = 0.1 and thus inferring it from the critical density
λ2

T ρc(mg = 0.1) = 7.921 ± 0.032. The error bar is obtained
as a combination of the error on the value for mg = 0.1 and
the fitting error obtained as the mean-square deviation of the
rescaled curves from Fig. 3. For comparison, the directly
determined values from Fig. 2 are included as blue data points.

APPENDIX F: CLASSICAL FIELD THEORY
SIMULATIONS

Setting the number of lattice points in imaginary direction
to one, Nτ = 1, allows us to easily turn off quantum effects
and to simulate a purely classical field theory. In this Ap-
pendix we briefly discuss the results of such simulations for
comparison.

For such a theory, occupation numbers will follow a
Rayleigh-Jeans law in the UV, f (k) ∼ (k2/2m − μ)−1, such

FIG. 9. Determination of the BKT transition point by the se-
cant method for mg = 0.1 and L/as = 128. Starting from two
initial guesses for the critical chemical potential, μ0/(mgT ) =
1.633 μ1/(mgT ) = 1.477, subsequent guesses are chosen as the
intersection of the secant through the previous two data points and
the μ/T axis (upper panel). The convergence is extremely fast. The
lower panel shows the convergence of the superfluid densities as in
Langevin time ϑ , with error bands obtained from the variance of
several statistically independent runs.

that most quantities such as density or kinetic energy suffer
from a UV divergence that is absent in the full quantum
theory. In order to regulate said divergence, we follow the
procedure of [29] and correct the densities and chemical
potentials within classical field theory, ρclass and μclass, by
subtracting the (noninteracting) Rayleigh-Jeans distribution
and adding the (noninteracting) Bose-Einstein distribution,
i.e., we obtain the density and chemical potential ρ and μ in
the full quantum theory as

ρ = ρclass + �ρ, (F1)

μ = μclass − 2g�ρ, (F2)

with

�ρ ≡ 1

L2

∑
p

[
1

exp(βp2/2m) − 1
− 2m

βp2

]
. (F3)
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FIG. 10. Critical density ρc as a function of the coupling mg com-
puted by employing the Nelson criterion for the superfluid fraction
(SFF), as described in Sec. III A (blue points), in comparison to the
results from the rescaling of the equation of state (green points).
Since the latter yields only differences of critical densities, we chose
the critical density at mg = 0.1 to be equal to the result from the
superfluid fraction method. The black line represents Eq. (18) with
constant ζρ = 380 obtained from the classical simulation of [29].

For the lattice spacing employed here, λT = 3.17 as, this re-
sults in �ρ = 0.227 a−2

s . In [29] the superfluid density was
estimated by the number of windings in the systems, which
are directly accessible within the employed worm algorithm.
Since we have no access to winding numbers, we need, as in
the quantum simulations in the main text, to resort to Eq. (16),

FIG. 11. Critical density ρc as a function of the coupling mg
computed by Langevin simulations of the classical field theory, i.e.,
setting Nτ = 1 (green points) in comparison with the full quantum
simulations (blue points) and the result from the classical field theory
simulation of [29]. The critical densities from the classical Langevin
simulation are substantially higher than those from the full quantum
simulation, and they result as higher than those from the classical
field theory simulation [29].

which requires us to deal with the UV divergence of 〈P2〉
that is absent in the quantum simulation. We follow the same
strategy as for the density and subtract the value of 〈P2〉 in a
noninteracting classical field theory and add its value in in a
noninteracting quantum field theory. The latter reads

〈P2〉free =
∑

p

{
1

exp
(
β

p2

2m

) − 1
+ 1[

exp
(
β

p2

2m

) − 1
]2

}
p2,

(F4)

such that we obtain the true 〈P2〉 from 〈P2〉class as

〈P2〉 = 〈P2〉class + �〈P2〉, (F5)

with

�〈P2〉 ≡
∑

p

{
1

exp(βp2/2m) − 1
+ 1

[exp(βp2/2m) − 1]2

− 2m

βp2
−

(
2m

βp2

)2
}

p2, (F6)

which for our lattice gives �〈P2〉/L2 = 1.41 a−4
s .

In this way we have repeated the extraction of the critical
densities described in the main text for the classical field
theory, results of which are shown in Fig. 11. The critical

FIG. 12. Comparison of the momentum spectrum from the full
quantum simulation (blue points) and the classical simulation (green
points) for mg = 0.1 in the critical region, where the latter has been
corrected in the UV by subtracting a Rayleigh-Jeans distribution and
adding a Bose-Einstein distribution at zero chemical potential. Note
that the zero mode has been shifted to a finite k value in order to make
it visible on the double-logarithmic scale. The chemical potential
μ of the quantum simulation is matched to the one of the clas-
sical simulation, μclass, according to μ = μclass − 2g�ρ, Eq. (F2).
Apart from small deviations at very high momenta, the spectra agree
well over almost the entire momentum range. However, deviations
are visible in the strongly correlated IR-modes, with the quantum
system being farther in the superfluid phase than the classical one.
The corresponding density of the quantum system results only by
approximately 2% larger than the corrected density of the classical
system.
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densities are by around 15% larger than in the full quantum
simulation and larger than the results from [29], which could
indicate that the different classical field theory simulations are
not entirely compatible with each other or some residual UV
cutoff dependence remains.

To shed more light at the discrepancy between classical and
quantum simulations, we compare in Fig. 12 the momentum
spectra obtained from the classical and quantum simulations,
for mg = 0.1, with the chemical potentials matched according
to μ = μclass − 2g�ρ. After subtracting the free Rayleigh-
Jeans distribution and adding the Bose-Einstein distribution,
the two spectra agree with each other for k > kc, apart from
a small deviation in the far UV that is due to the Rayleigh-
Jeans falloff being slightly weaker than k−2 and that, as we

checked, has little effect on both, the particle number and
the superfluid density. For the strongly correlated IR modes,
k < kc, however, one observes a substantial deviation, with
the quantum system being already farther in the superfluid
phase. This suggests that, while the effect of the density bias
�ρ of the classical simulation can be accounted for in the
description of the modes k > kc by a shift of the effective
chemical potential by 2g�ρ, its effect on the effective chem-
ical potential governing the IR is more involved. The latter
could be expected in view of the fact that at the transition
point, the system is already substantially condensed, while the
approximation μeff = μ − 2gρ derives from the Hartree-Fock
substitution of the interaction term, which is valid only in the
noncondensed phase.
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