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Spectra and dynamics of quantum droplets in an optical lattice
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The optical lattice plays an important role in the stability and dynamics of quantum droplets. In this article, we
investigate the Bogoliubov excitation spectrum of quantum droplets in an optical lattice in the thermodynamic
limit. We classify the collective excitations as synchronous modes, Bloch phononic modes, and site-population-
imbalanced modes. For synchronous modes, we measure the dipole oscillation frequencies by quench dynamics
with a sudden shift of the optical lattice and the breathing frequencies by Floquet dynamics with a periodic
change of the lattice depth. Bloch phononic modes are observable from the Landau critical velocity of the
droplets. We further discuss the instability induced by site-dependent density fluctuations and calculate the
critical filling of atoms where the growth of lattice vacancy breaks down the translational symmetry of the system.
This work makes essential steps towards measuring the excitation spectrum and understanding the superfluid
nature of quantum droplets in an optical lattice.

DOI: 10.1103/PhysRevA.108.053310

I. INTRODUCTION

Quantum droplets are self-bound states formed through
a balance of particle-particle interactions without any exter-
nal trapping, where attractions bring the constituent particles
together and repulsions stabilize the droplets from col-
lapse [1–14]. In experiments with ultracold atoms, quantum
droplets have been achieved in single-component dipolar
Bose-Einstein condensates (BECs) and binary BECs with in-
terspecies attractions [15–21], where the competition arises
from the mean-field interaction and the Lee-Huang-Yang
(LHY) correction of the quantum zero-point energy [4,5,
8–10]. The roles of these interactions in the formation of
quantum droplets depend strongly on the dimensionality of
the system [5]. It was shown that with a decreasing number
of atoms N , free droplets become metastable and eventually
disappear when N is smaller than a critical value. The excita-
tions of free particle emissions, discrete monopole (breathing)
modes, and surface ripplon modes of three-dimensional (3D)
free droplets have also been well studied [4].

In systems with external traps, quantum droplets are stabi-
lized further by suppression of the emission of free particles,
and the trapping potential helps to manipulate the droplet
mechanically [22,23]. The effect of a weak harmonic trap-
ping potential on the surface modes of 3D quantum droplets
was studied in Ref. [24]. However, the trapping confinements
somehow obscure the characteristics of quantum droplets and
become an obstacle to observing the formation and inflation
of droplets. The optical lattice is an effective mean to stabi-
lize droplets and their topography, which integrates not only
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the advantages of a trap but also the capability to show the
growth of quantum droplets [25]. The existence of quantum
droplets of bosonic mixtures in an optical lattice has been
demonstrated in Ref. [26]. The formation of a quantum droplet
of a two-component Bose gas in a two-dimensional (2D)
optical lattice near the Mott insulator transition was studied in
Ref. [27]. A variety of phases of droplets can be reached for
bosonic atoms trapped in an optical lattice [28]. To understand
the features of quantum droplets, accurate frequency measure-
ment of collective modes is a powerful tool. For example, the
collective mode measured in arrays of dipolar droplets clearly
shows the symmetry breaking and the supersolid nature of
the system [29,30]. Therefore, it is interesting to study the
collective excitations of quantum droplets in optical lattices,
which would be an excellent way to characterize this fasci-
nating matter. It is also helpful to probe the interplay between
light and condensed matter, which usually brings novel phe-
nomena [31–38].

It is crucial to study 2D quantum droplets theoretically due
to the fact that the quantum effects strongly depend on di-
mensionality. Weakly interacting low-dimensional Bose-Bose
mixtures present themselves as promising candidates for in-
vestigating liquid phases in the ultracold ultradilute regime
and studying associated beyond-mean-field effects. In the one-
dimensional (1D) case, the droplet phase is formed when the
effective mean-field interaction is repulsive and the interac-
tion from the LHY correction is attractive [5], contrasting
the 3D case where a positive LHY correction is required
to stabilize the mixture with effective attractive interaction
[4]. The behavior in the 2D case exhibits a more intricate
nature. It has been shown that the resulting states induced by
dragging a defect in droplet BECs with different dimensions
are different [39]. Even though there are still some challenges
in realizing the corresponding 2D quantum droplets in binary
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BECs [40], recent experimental efforts have been directed
towards 2D quantum droplets [41–43].

In this article, we consider an infinitely large system of 2D
quantum droplets in an optical lattice. Therefore, the boundary
effects of a cluster of lattice quantum droplets existing in a
finite-size system are negligible and one can focus on the
universal behaviors of droplets. In Secs. II and III, the ground
state and the Bogoliubov excitation spectrum of the quantum
droplets for different lattice depths are calculated by using
the imaginary time evolution method and the exact diago-
nalization method, respectively. Bloch phononic modes are
observable from the Landau critical velocity of the droplets by
exciting density waves [44,45]. The properties of quench dy-
namics and Floquet dynamics of the droplets are investigated
by suddenly shifting the lattice potential and periodically
driving the system [46,47]. The oscillation frequency and
intrinsic breathing frequency obtained agree very well with
the Bogoliubov excitation spectrum and are measurable in
ongoing experiments. Moreover, as shown in Sec. IV, number
imbalances among different sites of the lattice may induce
instability of the droplets. We find that below a critical filling,
vacancies in the lattice appear spontaneously, and the trans-
lational symmetry of the system breaks down, which is the
prelude to producing the self-assembly of quantum droplets
from different sites.

II. DESCRIPTION OF LATTICE DROPLETS

Considering a binary BEC loaded in a 2D optical lattice
and taking into account the Lee-Huang-Yang correction, the
two components of the BEC with the same scattering length
and particle number can be described by a common wave
function. This wave function, in a rescaled form, follows the
extended Gross-Pitaevskii equation (GPE) in the dimension-
less form [25,48]

i∂tφ = − 1
2∇2φ + V (x, y)φ + |φ|2φ ln |φ|2, (1)

where the 2D optical lattice potential reads

V (x, y) = V0

[
sin2

[
π

(
x

d
+ δ

)]
+ sin2

(
π

d
y

)]
. (2)

Here, V0 is the optical lattice depth, d is the lattice constant,
and δ is used to shift the entire lattice.

The growth of quantum droplets in lattices was analyzed in
Ref. [25]. Since the density profiles at each occupied lattice
site are almost the same and we focus on excitation modes
of lattice quantum droplets, we consider the thermodynamic
limit that all lattice sites are occupied by droplets (i.e., the
system preserves translational symmetry) and control the par-
ticle number per lattice site (i.e., the filling of the system)

Ns =
∫∫

d2
|φ|2dxdy. (3)

The energy per site is

Es = 1

2

∫∫
d2

[
|∇φ|2 + 2V |φ|2 + |φ|4 ln

( |φ|2√
e

)]
dxdy. (4)

In the absence of the external potential V , the density dis-
tribution of a quantum droplet is flat everywhere except

FIG. 1. Density distribution of quantum droplets in one cell of
an optical lattice with filling Ns = 3.5. (a) The top view of the
density distribution for V0 = 10. (b) The cross sections of the density
distribution at y = 0 for V0 = 2, 6, 10, respectively.

at boundaries for a sufficiently large total particle num-
ber N . After neglecting the surface energy (i.e., taking
into account uniform distribution), minimizing the total en-
ergy E � (N/2)ρ ln(ρ/

√
e) gives the favored density ρ0 =

exp(−1/2) � 0.61 [5]. Note that the condition of minimizing
the total energy (at zero temperature) is equivalent to requiring
vanishing pressure p = −∂E/∂A|N = (ρ2/N )∂E/∂ρ|N = 0,
where A = N/ρ is the area of the droplet [5,49]. In an optical
lattice, the ground-state wave function φ0 can be obtained by
numerically solving Eq. (1) in the imaginary time evolution
using the Crank-Nicholson method [50]. We use an initial
state φ = √

Ns/d2 in each cell for simplicity, without affecting
the final results. We discretize the unit cell of the optical
lattice into 80 × 80 grids and use the imaginary time spacing
of 0.005. For wave functions ζ ∝ ξ

.= − 1
2∇2φ + V (x, y)φ +

|φ|2φ ln |φ|2 with ζ being normalized to Ns, we obtain the
final self-consistent ground-state wave function with good
precision: 〈ζ |φ〉/Ns � 1 − 10−6. The chemical potential μ is
determined by μ = √〈ξ |ξ 〉/Ns. We note that the low-energy
part of the Bogoliubov spectrum are highly sensitive to the
precision of the ground-state wave function, and thus high
accuracy is required.

In Fig. 1(a), we show the density profile of the ground-state
quantum droplet in a single unit cell for V0 = 10, d = 5, and
Ns = 3.5. The droplets at different sites are the same in both
size and shape. The existence of the optical lattice signifi-
cantly changes the flat-top structure of the density profile (the
near-flat-top structure can be recovered for shallow lattices
with a large value of d and a small value of V0 such that the
change of potential in the scale of the healing length ξ is small,
i.e., V0ξ/d � |ρ0 ln ρ0|). With increasing depth of the lattice,
the peak density increases accordingly, while the radius of the
droplet decreases, as shown in Fig. 1(b). The peak densities of
the droplets in the lattice are all higher than ρ0 to minimize the
energy of the system. From Eq. (1), we see that the effective
potential contributed by atom-atom interaction is negative for
ρ < 1 and positive for ρ > 1. Thus, with decreasing V0, the
system may undergo a transition from effectively repulsive
interactions to attractive interactions when the peak density
becomes smaller than 1. For cases with large V0, the central
part of the droplet is dominated by the repulsive interac-
tion, while the attractive interaction dominates the rim of the
droplet at each site.
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FIG. 2. Bogoliubov spectrum of collective excitations of lat-
tice quantum droplets for V0 = 10. (a) The synchronous excitation
modes. The dashed red line is the fitting function n = αω2 with a
parameter α. (b) The Bloch phononic spectra.

In the next section, we calculate the excitation spectra
of lattice droplets. Since the methods applied to detect the
spectra do not depend on the parameter set, in the following,
we set d = 5 as an example. Similar discussions can be ex-
tended to general cases. The sign of effective potential can be
tuned by changing the filling factor Ns and the lattice depth V0.

III. BOGOLIUBOV SPECTRA AND DYNAMICS STUDY

The collective excitation modes can be obtained by con-
sidering a small fluctuation around the ground-state wave
function φ0(x, y, t ) = ψ0(x, y)e−iμt , i.e., φ = (ψ0 + ψ1)e−iμt .
By expanding Eq. (1) with respect to ψ1 and ψ∗

1 , we obtain
the evolution equation of the fluctuation ψ1 under the linear
approximation

i∂tψ1 = − 1
2∇2ψ1 + V ψ1 + (

2ψ2
0 ψ1 + ψ2

0 ψ∗
1

)
ln ψ2

0

+ψ2
0 (ψ1 + ψ∗

1 ) − μψ1, (5)

and its conjugate equation. Now, we consider the excitation
mode ψ1 = ũe−iωt + ṽ∗eiωt , and assume that the wave func-
tion takes the form of the Bloch wave, i.e., ũ(r) = eik·ruk(r)
and ṽ(r) = eik·rvk(r), where both uk(r) and uk(r) are periodic
in space, similar to the ground state and the lattice potential.
As a result, we obtain

ωk

(
uk

vk

)
=

(
A B

−B −A

)(
uk

vk

)
, (6)

where

A = 1
2 k2 − ik · ∇ − 1

2∇2 + V + 2ψ2
0 ln ψ2

0 + ψ2
0 − μ, (7)

B = ψ2
0 ln ψ2

0 + ψ2
0 . (8)

By discretizing real space and using the obtained ground-
state wave function ψ0 and the chemical potential μ

from the previous calculation, we numerically calculate the
Bogoliubov spectrum of the collective excitations by per-
forming an exact diagonalization of the matrix ( A B

−B −A) for
the given kx, ky ∈ [−π/d, π/d]. In Fig. 2(a), we show the
excitation spectrum for the given k = 0. In this case, the wave
functions of the excited states possess translational invariance,
which can be named as synchronous excitation modes of the
quantum droplets in the lattice. For large V0, we can find
that the total number of states below energy ω approximately

satisfies n ∼ αω2 with α being a fitting parameter. This result
is similar to that of the number of states of a noninteracting
system in a harmonic trap. For a noninteracting bose gas in
a harmonic trap with ωh = √

2V0π/d , the spectra are ωnr l =
(2nr + |l|)ωh, and the total number of states below energy ω

is n ∼ ω2/2ω2
h, where nr is the radial quantum number and l

is the angular momentum quantum number. For a deep lattice,
each site can be approximated as a harmonic trap. Thus, the
fitting parameter α depends on the values of ωh and Ns, the
latter of which influences the properties of the interaction. For
Ns = 3.5 and V0 = 10, we note that this fitting is still valid for
the excitation spectrum up to n = 60. But for excitations with
higher energy or a shallow lattice, the ωn-n relation deviates
significantly from the fitting function.

From the energy spectrum Fig. 2(a), we can clearly see
that the first excitation is double degenerate, which is due to
the C4 symmetry of the optical lattice in the x-y plane. These
two excitations correspond to the excitation modes (nr, l ) =
(0,±1) of a harmonically trapped noninteracting system,
and the next three excitations correspond to the degenerate
excitation modes (nr, l ) = (1, 0), (0,±2). With repulsive in-
teraction, in a harmonic trap, the spectrum becomes ωnr l =
ωh

√
2nr + 2n2

r + 2nr |l| + |l| where the breathing mode (1,0)
and the other two are not degenerate [51]. In addition, the U(1)
rotational symmetry of a harmonic trap is broken for a lattice,
which will lead to further splitting of the rest two modes. In
Fig. 2(b), we plot the phononic spectra of the Bloch waves
in the first Brillouin zone. In experiments, it is convenient
to determine phononic excitation spectra by measuring the
Landau critical velocity of the superfluid [44,45]. This veloc-
ity (� 0.073) is the gradient of the dispersion relation along
different directions at k = 0. In contrast to the synchronous
excitation modes, the Bloch waves focus on the phase fluctua-
tion of the system: the density distributions in different lattices
remain the same but the phases vary. We also find that the
group velocities of phononic excitations along different direc-
tions are almost the same. All the spectra shown in Figs. 2(a)
and 2(b) are real and positive, indicating that the system is
stable under synchronous excitations or phase fluctuations.

The synchronous excitation spectrum can be obtained from
the dynamics of the droplets. In the following, we will
study the quench dynamics and Floquet dynamics of the
droplet in the lattice. By suddenly shifting the lattice for 5%
of the lattice constant along the x (y) direction, we identify
the oscillation mode of the droplets under quench dynamics.
As a result, the center of mass of the droplets x̄ = ∫

cell(x +
dδ)ρ(r)dr deviate from the minimum of each cell of the lattice
potential. The droplets start to oscillate in the x (y) direction.
The typical oscillating behavior of the center of mass (x̄) of the
droplet is cos(�1t ) as shown in Fig. 3(a). The magnitude of
�1 can be obtained by fitting the evolution of the oscillation.

By periodically modulating the potential depth with

V0 → V0 + δV sin(νt ), (9)

we can identify the breathing mode of the droplets under
Floquet dynamics. The density of particles ρc at the center of
each cell of the lattice varies with the potential depth, which
can be employed to characterize the breathing behavior. For
different initial potential depths V0, we set the modulation
amplitude to be δV = 5%V0 and tune the driving frequency
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FIG. 3. (a) The center of mass of the droplet changes over time
during quench dynamics when the lattice is suddenly shifted. The
dotted line is the numerical result. The red solid line is the fitting
result with the cosine function cos(�1t ). (b)–(d) The evolution of the
density (ρc) at the center of each site for different driving frequencies
ν. The dotted lines are numerical results. The red solid lines show
the fitting results of a0 + a1 sin(νt ) + a2 sin(ωt ), where ω equals
the breathing frequency (ωn = 5.235) for (b) and (d), but is shifted
to ω̃ � 5.06 for the resonant case (c). (e) The spectrum function
obtained from the Fourier transformation of ρc(t ) over the interval
t ∈ [0, 100] for different driving frequencies ν. Both the driving
frequency and intrinsic frequency are reflected in the corresponding
spectrum function.

ν. For V0 = 10 as shown in Figs. 3(b) to 3(d), the time evolu-
tions of ρc exhibit regular oscillating behaviors with different
amplitudes and periods by applying three typical driving fre-
quencies. When the amplitude is sufficiently large, it becomes
asymmetric [see Fig. 3(c)] due to nonlinear effects.

We further apply the Fourier transform to obtain the spec-
trum functions of the above oscillations with t ∈ [0, 100].
As shown in Fig. 3(e), we observe that when the driven
frequency is away from the spectrum of the “second” syn-
chronous excitation (the “first” synchronous excitation is the
oscillation excitation), there are two frequencies that dominate
the spectrum function. One frequency is nothing but the driven
frequency itself and the other one remains unchanged when
tuning ν. Therefore, we match this intrinsic frequency �2 (�
5.22, see the black dashed line) to the frequency of the breath-
ing mode (ωn = 5.235) of the droplets. Basically, the closer
the driving frequency is to �2, the greater the oscillation
amplitude and the longer the period [see Figs. 3(b) to 3(d)].
The fitting function a0 + a1 sin(νt ) + a2 sin(ωnt ) agrees very
well with the real-time evolution ρc(t ), as shown in Figs. 3(b)

FIG. 4. The Bogoliubov spectra (orange circles), the dynamical
dipole oscillation frequencies (black “+”), the intrinsic breathing fre-
quencies (black “×”), and the excitation spectra (dashed lines, E2 =
2E1 = 2ωh) in the harmonic trap with frequency ωh = √

2V0π/d .

and 3(d). However, in the near-resonant regime (ν − �2 �
�2), the spectrum function indicated by the green solid line
(ν = 5.235) in Fig. 3(e) gives more structures around �2,
and the obtained frequency (� 5.086, marked by a black
star) besides the driven frequency, deviates slightly from
the intrinsic frequency. Fitting ρc(t ) with a0 + a1 sin(νt ) +
a2 sin(ω̃t ) gives ω̃ � 5.06 and the resulting function is shown
in Fig. 3(c). Near the resonance region, we describe the dy-
namical system using a two-level model

H2−level =
(

�2 � sin(νt )

� sin(νt ) 0

)
. (10)

The rotating wave approximation gives the new spectrum with
the reference frequency ν,

�2 − ν

2
±

√
(�2 − ν)2

4
+ �2

4
, (11)

which introduces energy split ±�/2 when ν coincides with
�2. Therefore, we attribute the emergence of ω̃ to the hy-
bridization effect of the driving and resonating frequencies.

In Fig. 4, we plot the oscillating frequency �1 (marked
by black “+”), the intrinsic frequency �2 (marked by black
“×”), and the Bogoliubov spectrum of synchronous excita-
tions (marked by orange circles) with respect to the lattice
depth V0. We can see that �1 fits the Bogoliubov spectrum
very well and �2 is located in one of the three “second” syn-
chronous excitation modes that corresponds to the breathing
mode and is about twice that of �1 for V0 � 5 but significantly
less than twice of �1 in a shallow lattice where attractive
interaction dominates. The dashed solid lines refer to the os-
cillating excitation in a harmonic trap with frequency ωh. This
harmonic trap is the second-order approximation of the lattice
potential whose first excitation (dipole oscillation) is E1 = ωh

with two degenerate modes, while the breathing excitation
is E2 = 2ωh for cases with repulsive interaction or without
interaction. The Bogoliubov spectrum is generally smaller
than that in the harmonic trap, as the confinement effect from
the lattice potential is weaker.
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FIG. 5. (a) The energy per atom Es/Ns varying with the filling Ns.
(b) The critical filling as a function of lattice depth V0. The solid line
is the fitting result of b0 + b1/(V0 + b2) with b0 = 0.661, b1 = 5.59,
and b2 = 0.156. (c) The appearance of vacancies in lattice quantum
droplets for V0 = 3 with low fillings.

IV. SPONTANEOUS EMERGENCE OF VACANCIES

In our calculations above, we assumed that the density
distribution of the droplet at each lattice site remains the same.
Therefore, the population imbalance between different lattice
sites is completely ignored. For cases with a large filling,
the repulsive interaction dominates, and thus the imbalance
is strongly suppressed. The validity of the equal population
assumption at different sites is guaranteed. However, in cases
with low filling, the attractive interaction becomes stronger. In
this situation, small density fluctuations may induce the emer-
gence of self-binding, leading to the appearance of vacancies
in the lattice or even the formation of clusters of quantum
droplets from different sites.

Note that when vacancies start to appear in some sites of
the lattice, the filling of particles in other sites will increase to
keep the total number of particles constant. Here, we introduce
the single-atom energy, ε

.= Es/Ns [5]. If ε decreases with
increasing Ns, it means that the system with vacancies has
lower energy. Therefore, the translational symmetry of the
system will break down. Otherwise, the system with an even
population in all sites is stable. In Fig. 5(a), we plot the single-
atom energy ε as a function of the filling Ns for different
lattice depths V0. The figure shows that ε decreases first and
then increases as Ns increases. The turning point is the critical
filling for the phase transition. In Fig. 5(b), we plot the critical
filling as a function of lattice depth V0. With increasing V0, the
critical filling decreases approximately with b0 + b1/(V0 +
b2), where b0 = 0.661, b1 = 5.59, and b2 = 0.156. This is
because with the same filling, the density is smaller and the at-
tractive interaction is stronger in a shallow lattice potential. As

an example, we consider a 7 × 7 lattice (d = 5) with periodic
boundary conditions and introduce a small defect (a Gaussian
potential with �V = 0.01 exp[−(x2 + y2)/8], which is used
to fix the position of the vacancy when it appears) in the
potential at the center of the lattice. We use 560 × 560 grids in
the numerical simulation. As shown in Fig. 5(c), we observe
the appearance of vacancies with a decrease in the averaged Ns

per site. For Ns = 0.5, since the appearance of vacancy, the av-
erage filling for the filled sites becomes 0.5 × 49/12 � 2.04,
which is significantly greater than Ns.

V. CONCLUSION

In conclusion, optical lattices provide a powerful tool
for investigating model systems of quantum droplets in pe-
riodic potentials through probing excitation properties and
nonlinear dynamics. Here, we investigated the excitation
spectrum, quench dynamics, and Floquet dynamics, and the
stability of quantum droplets in an optical lattice in the
thermodynamic limit. We find different excitation modes,
including the synchronous excitations of droplets from dif-
ferent lattice sites, the Bloch phononic excitation from phase
fluctuations, and excitations from site-dependent density fluc-
tuations. Both dipole oscillations and breathing modes belong
to synchronous excitations. By directly fitting the center of
mass and the density variation of the droplets, or by spectrum
analysis through Fourier transformation, we show that the
dynamics faithfully record the frequencies of dipolar oscil-
lations and breathing modes. This provides reliable means
to detect the excitation spectra in experiments [46,47]. In
addition, the measurement of the Landau critical velocity of
the superfluid can be used to determine the group velocity
of the Bloch phonons [44,45]. These results are measurable
when the 2D lattice quantum droplets are prepared. Moreover,
when considering the site-dependent density fluctuations, the
system with low fillings may become unstable, leading to the
formation of vacancies in certain sites of the optical lattice.
This process breaks the translational symmetry and is the pre-
cursor to the formation of clusters of lattice quantum droplets,
which result from the combination of density fluctuations and
effective attractive interactions. With the possible emergence
of an array of vacancies, our system is a very good candidate
for probing a new supersolid phase [52,53].
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