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Rotating quantum droplets confined in a harmonic potential
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We investigate the rotational properties of a two-component, two-dimensional self-bound quantum droplet,
which is confined in a harmonic potential and compare them with the well-known problem of a single-component
atomic gas with contact interactions. For a fixed value of the trap frequency, choosing some representative values
of the atom number, we determine the lowest-energy state, as the angular momentum increases. For a sufficiently
small number of atoms, the angular momentum is carried via center-of-mass excitation. For larger values, when
the angular momentum is sufficiently small, we observe vortex excitation instead. Depending on the actual
atom number, one or more vortices enter the droplet. Beyond some critical value of the angular momentum,
however, the droplet does not accommodate more vortices and the additional angular momentum is carried via
center-of-mass excitation in a “mixed” state. Finally, the excitation spectrum is also briefly discussed.
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I. INTRODUCTION

The rotational properties of trapped atomic Bose-Einstein
condensates is a problem which has been studied very exten-
sively in the last decades. Most of these studies have been
performed in a harmonic potential, since this has been by far
the most common form of confining potential that is used
in experiments. We stress that the literature on this prob-
lem is very extensive, so we simply refer to some review
articles [1–5].

The interatomic interactions are modeled as an effective
hard-core potential. This potential is proportional to the so-
called scattering length, which describes the elastic, s-wave
atom-atom collisions. In the single-component condensates,
when this effective interaction is repulsive (i.e., the scatter-
ing length is positive), as the angular momentum increases,
vortices enter the cloud from its periphery and eventually a
vortex lattice forms. When the angular momentum increases
even more, the system reaches the so-called limit of “rapid
rotation,” where the mean-field approximation fails. The cloud
enters a highly correlated regime, and its many-body state
resembles a (bosonic) Laughlin-like state. On the other hand,
when the effective interaction is attractive (i.e., the scattering
length is negative), the cloud is unstable against collapse if
there is no trapping potential. Still, the system may be in a
metastable state due to the trap. In this case, the cloud carries
its angular momentum via center-of-mass excitation of the
ground (nonrotating) state.
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More recently Petrov [6] predicted in the case of a
two-component Bose-Einstein condensate the existence of
“quantum droplets.” This is a very interesting problem and has
attracted a lot of attention, see, e.g., the review articles [7,8],
and Refs. [9–34]. Interestingly enough, such droplets have
been observed experimentally not only in two-component
Bose-Einstein-condensed gases [35–39] but also in single-
component gases with strong dipolar interactions [40–45].

The basic idea in the case where droplets are formed from
binary mixtures is that, due to the fact that we have a two-
component system, by tuning the strength of the effective
interaction between the same and different components, the
mean-field interaction energy may become as small as we
wish. In this case the next-to-leading-order correction of the
energy (i.e., the so-called “Lee-Huang-Yang” term) [46], be-
comes comparable with the usual mean-field term and the
two terms may balance each other, giving rise to self-bound
droplets, even in the absence of any trapping potential.

Self-bound droplets belong to the class of systems which
are superfluid. It is thus natural to examine their rotational
properties. Compared with the problem of single-component
atomic Bose-Einstein condensates, there are two main dif-
ferences, which introduce novel effects in their superfluid
properties. First of all, as we saw earlier, while quantum
droplets are self-bound and do not require any trapping po-
tential, in the case of single-component atomic condensates,
the presence of a confining potential is absolutely necessary.
Second, in quantum droplets, the sign of the nonlinear term
depends on the density, being attractive for sufficiently low
densities and repulsive, for higher densities. On the other
hand, in single-component condensates the interaction is mod-
eled as a hard-core potential and is either (purely) repulsive or
(purely) attractive.

As we explain below, the question of how a quantum
droplet carries angular momentum is essentially trivial when
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there is no external confining potential. On the other hand, it
becomes novel and interesting when the droplet is confined
in a trapping potential [20,27]. This is precisely the problem
that we investigate below. More specifically, we consider a
harmonically trapped two-dimensional “symmetric” droplet.
This consists of two components, however, due to the sym-
metry between them, the problem reduces to a single order
parameter which is common to both of them. We minimize
the energy under a fixed expectation value of the total angular
momentum Lh̄, and a fixed value of the total atom number N
of the two components of the droplet.

According to the results of our study, the combination
of a (harmonic) trapping potential with the more “complex”
nonlinear term introduces a very serious difference in the
rotational response of a droplet, as compared with the case
of contact interactions. For a sufficiently small N the droplet
executes center-of-mass rotation. For larger N and small L the
droplet develops surface waves and eventually a single vortex
enters the droplet. With increasing L, depending on the value
of N more vortices may enter the cloud, up to some critical
value of L. Beyond this value, it is no longer energetically
favorable for the droplet to accommodate more vortices. The
additional angular momentum is then carried via center-of-
mass excitation, in a “mixed” state.

In Sec. II we present the model that we use. Then, in
Sec. III we present and analyze our results for some repre-
sentative values of N and various values of L. In Sec. IV we
present the general picture that results from our analysis. In
Sec. V we present some results from the excitation spectrum
that we have found. In Sec. VI we investigate the experimental
relevance of our results. Finally, in Sec. VII we summa-
rize the main results of our study and compare the present
problem with the “traditional” one, i.e., that of a single-
component with an (attractive, or repulsive) effective contact
interaction.

II. MODEL

In what follows below we work with dimensionless units.
In Sec. VI we restore the units in order to make contact
with experimentally relevant parameters. Assuming that there
is a very tight confining potential along the axis of rota-
tion, we consider motion of the atoms in the perpendicular
plane, i.e., two-dimensional motion. We also assume that the
quantum droplet is confined in a two-dimensional harmonic
potential

V (ρ) = 1
2ω2ρ2, (1)

where ω is the frequency of the harmonic potential and ρ is
the radial coordinate in cylindrical-polar coordinates.

As mentioned also above, we consider the “symmetric”
case, where the scattering lengths for the elastic atom-atom
collisions between the same species are assumed to be equal
for the two components. Also, both the masses of the two
species, as well as the densities of the two components are
equal. In this case the system is described by a single order
parameter �(ρ, θ ), where θ is the angle in cylindrical-polar
coordinates. Working with fixed L and N , we minimize
the following extended energy functional [47], which, in

dimensionless units, takes the form [9,29]

E (�,�∗) =
∫ (

1

2
|∇�|2 + 1

2
ω2ρ2|�|2 + 1

2
|�|4 ln

|�|2√
e

)
d2ρ

− μ

∫
�∗�d2ρ − �

∫
�∗L̂�d2ρ. (2)

In the above equation � is normalized to the number of
atoms,

∫ |�|2d2ρ = N . Also, L̂ is the operator of the angular
momentum, while μ and � are Lagrange multipliers, corre-
sponding to the conservation of the atom number and of the
angular momentum, respectively.

The corresponding nonlinear equation that �(ρ, θ )
satisfies is(− 1

2∇2 + 1
2ω2ρ2 + |�|2 ln |�|2 − �L̂

)
� = μ�. (3)

III. ROTATIONAL BEHAVIOR OF THE DROPLET
FOR VARIOUS VALUES OF ATOM NUMBER

A. Ground state of the droplet in the absence
and in the presence of a harmonic potential

To understand the rotational properties of a quantum
droplet in the presence of a harmonic confining potential, first
of all, let us recall that in the absence of any trapping potential
the droplet carries its angular momentum via center-of-mass
excitation of the ground (nonrotating) state, since this is a
self-bound state [27].

For the discussion that follows it is also useful to recall that
in the absence of a harmonic potential and in the Thomas-
Fermi limit, we have the so-called “flat-top” droplet. The
energy per particle of the droplet is, in this case,

E

N
= N

2πρ2
0

ln
N√

eπρ2
0

= n̄

2
ln

n̄√
e
, (4)

where we have introduced the “mean” (two-dimensional)
density n̄ = N/(πρ2

0 ). The value of the mean density of the
droplet that minimizes the energy (which is also equal to
the density of the “flat-top” droplet, assumed to be constant)
is n̄ = N/(πρ2

0 ) = 1/
√

e ≈ 0.607, while the corresponding
minimum energy per particle is equal to −1/(2

√
e) ≈ −0.303.

In the presence of a harmonic potential, in addition to
the size of the droplet ρ0 that we introduced above, we also
have the oscillator length aosc = 1/

√
ω. If the size of the

droplet is much smaller than the oscillator length, ρ0 � aosc

(i.e., for sufficiently small values of N , or ω), we still have
center-of-mass excitation. We stress at this point that a unique
feature of the harmonic potential is that the center-of-mass
coordinate decouples from the relative coordinates, which is
crucial for the results presented below [48–50]. In the opposite
limit, ρ0 � aosc (i.e., for sufficiently large values of N , or ω),
the rotational properties of the droplet are determined by the
harmonic potential, where singly quantized vortices carry the
angular momentum.

Let us get an estimate about how N and ω relate in the
crossover regime. From the expression ρ0 = [N/(π

√
e)]1/2

that we mentioned above, which is valid in the Thomas-Fermi
regime with no external potential, in order for ρ0 to be equal
to aosc, Nω ≈ π

√
e ≈ 5.18.
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We minimized numerically the functional of Eq. (2) using
the damped second-order in fictitious time method, described
in Ref. [47], which is a method of constrained minimization.
In the calculations that we performed, a square spatial grid
was used, with δx = δy = 0.1. We checked that the choice
of this grid step size gives results that are converged with
respect to the grid resolution. We stress that the actual size
of the domain in the calculations was larger than shown in
the figures, to avoid boundary effects. For each value of the
angular momentum, a variety of states was used as initial
conditions, to ensure that the calculation converged to the
lowest-energy state. First, the initial condition for each value
of angular momentum was chosen to be the converged solu-
tion for the previous value of the angular momentum, e.g.,
for L/N = 2.8 the initial condition was chosen to be the
converged solution for L/N = 2.6. In addition to that, we re-
peated the calculations with different initial conditions, using
states that represent center-of-mass excitation, surface-wave
excitation, vortex excitation and linear combinations of these.
The convergence of the calculation to the same solution for
the majority of the chosen initial conditions was a strong
indication that we reached the lowest-energy state for each
value of the angular momentum.

In what follows below we present the results for four
different values of N , for N = 50 (droplets of “small” size),
N = 100 and N = 200 (droplets of “intermediate” size), and
N = 270 (droplets of “larger” size). These values of N were
chosen as representative in the sense that they give the more
general picture of this problem, which has a rather rich struc-
ture.

B. Rotational properties of droplets of “small” size

Varying L/N between 0 and 110 we show in Fig. 1 the
result of such a calculation, for the density and the phase of
the order parameter, as well as for the energy E (L), with ω =
0.05 and N = 50, i.e., Nω = 2.5. Fitting the energy with a
quadratic polynomial, we find that

E (L) ≈ −10.6375 + 0.050002L + 6.378 × 10−8L2. (5)

Both from the density [Figs. 1(a) and 1(b)], as well as from
the dispersion relation [Fig. 1(c)], it is clear that we have
center-of-mass excitation of the droplet for these values of ω

and N . The constant term −10.6375 in Eq. (5) is the energy of
the nonrotating state. Equation (4) gives a total energy which
is ≈ − 15.1633. This, combined with the zero-point energy
of the harmonic potential in two dimensions, i.e., Nω, gives
−12.6633. This number deviates from the numerical result
−10.6375 and is lower due to the fact that for N = 50 the
system has not yet reached the Thomas-Fermi limit and the
(neglected) kinetic energy is not negligible. Turning to the
term which is linear in L in Eq. (5), this is due to the harmonic
potential, while the term, which is quadratic in L, is negligible.
In other words, the more general result for E (L) is, in this
regime,

E (L) = ECOM(L) = E (L = 0) + Lω. (6)

We stress that Eq. (6) provides an upper bound for the energy,
for any value of N and L, as we explain in more detail below.

FIG. 1. [(a), (b)] The density (left column, in units of �2
0 ) and

the phase (right column) of the droplet order parameter, in the
lowest-energy state, for N = 50, ω = 0.05, and L/N = 0.0 and 1.0.
The unit of length is x0. (c) The corresponding dispersion relation,
i.e., E = E (L/N ). The unit of energy is E0 and the unit of angular
momentum is h̄.

C. Rotational properties of droplets of “intermediate” size

For fixed ω and larger values of N the size of the droplet
becomes comparable with aosc, ρ0 ≈ aosc. In this case the
droplet starts to get “squeezed” due to the trapping potential.
Thus, the trapping potential tends to increase the mean value
of the density of the droplet, n̄. This, in turn, increases the
energy due to the nonlinear term, too [see Eq. (4)]. In the
presence of a vortex state n̄ drops and therefore a vortex state
may be energetically favorable. Indeed, as we have also seen
numerically, as N , or as ω, increase, we have vortex, rather
than center-of-mass excitation of the droplet.

Such an example is shown in Fig. 2, where N = 100 and
ω = 0.05, i.e., Nω = 5. Here we see that for small values of
L the axial symmetry of the droplet is distorted [Fig. 2(b)].
This is due to the fact that two vortices approach the droplet
from opposite sides, with one being further away from the trap
center than the other. Eventually, when L = N the vortex state
that is closer moves to the center of the trap and the density
of the droplet becomes axially symmetric [Fig. 2(c)]. For even
larger values of L, L > N , however, instead of more vortices

053309-3



NIKOLAOU, KAVOULAKIS, AND ÖGREN PHYSICAL REVIEW A 108, 053309 (2023)

FIG. 2. [(a)–(d)] The density (left column, in units of �2
0 ) and

the phase (right column) of the droplet order parameter, in the
lowest-energy state, for N = 100, ω = 0.05, and L/N = 0.0, 0.6,
1.0, and 3.0. The unit of length is x0. (e) Solid line, with data
points: The corresponding dispersion relation in the rotating frame,
i.e., Erot (L/N ) − E (L/N = 0) as function of L/N , with � = 0.051.
Dashed line: same as above for the center-of-mass excitation of the
nonrotating state. The unit of energy is E0 and the unit of angular
momentum is h̄.

entering the cloud, the extra angular momentum is carried via
center-of-mass excitation of the state with L = N , i.e., the
state with one vortex located at the center of the droplet, as
shown in Fig. 2(d). This is in sharp contrast with the case of
contact interactions. It is a generic result and is one of the
novel aspects of the present study.

The corresponding dispersion relation is also shown in
Fig. 2(e). Instead of plotting it in the laboratory frame, we
choose to plot it in the rotating frame (in this plot and in all
the other plots of the dispersion relation that follow below),
because its structure is more clearly visible. More specifi-
cally, we plot Erot (L/N ) − E (L/N = 0), where Erot (L/N ) =
E (L/N ) − L�, with � = 0.051 (i.e., we choose a slightly
larger value of � than ω = 0.05). When L > N , we see that
the dispersion relation becomes linear, as expected, since the
nonlinear term of the energy is unaffected by the angular
momentum in this range of L (simply because the shape of
the droplet does not depend on L in this range of L).

To get a more quantitative description of the transition
from center-of-mass to vortex excitation, let us consider the
eigenfunctions φm(ρ, θ ) of the two lowest-Landau levels as
trial order parameters for the ground, nonrotating state (where
L = 0), assuming that the oscillator length aosc is equal to ρ0,

φ0 =
√

N√
πρ0

e−ρ2/(2ρ2
0 ), (7)

and for the state with one singly quantized vortex (where
L = N),

φ1 =
√

N√
πρ2

0

ρeiθ e−ρ2/(2ρ2
0 ). (8)

Evaluating the energy due to the nonlinear term,

Eint,i = 1

2

∫
|φi|4 ln

|φi|2√
e

d2ρ. (9)

For the state φ0 we find

Eint,0

N
= N

4πρ2
0

(
ln

N

π
√

eρ2
0

− 1

2

)
= n̄

4

(
ln

n̄√
e

− 1

2

)
,

while for the state φ1,

Eint,1

N
≈ N

2πρ2
0

(
1

4
ln

N

π
√

eρ2
0

− 3

8
+ 0.057

)

= n̄

2

(
1

4
ln

n̄√
e

− 3

8
+ 0.057

)
. (10)

When we have center-of-mass excitation (of the state with
L = 0) from Eq. (6) it follows that

ECOM(L = N ) − E (L = 0) = Nω. (11)

When we have vortex excitation,

Evor (L = N ) − E (L = 0) = Nω + Eint,1 − Eint,0. (12)

From the last two equations, we see that it is the difference
Eint,1 − Eint,0 which determines whether we will have center-
of-mass or vortex excitation. It turns out that the critical value
of N/ρ2

0 which gives Eint,1 = Eint,0 is approximately equal to
four. If ρ2

0 = a2
osc = 1/ω = 20, then the critical value of N
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is approximately 80. We stress that the calculation presented
above compares the energy between the ground state and the
state with one vortex located at the center of the droplet. From
our numerical results it follows that, for ω = 0.05, the critical
number of N for the transition from center-of-mass excitation
to vortex excitation is between 98.6 and 98.7.

To examine what happens for even larger values of N , we
show in Fig. 3 the result of our calculations for N = 200
and ω = 0.05, i.e., Nω = 10. We observe that for 0 < L < N
the droplet is again distorted from axial symmetry due to the
approach of a vortex from infinity [Figs. 3(b) and 3(c)]. When
L = N this vortex ends up again at the center of the droplet
[Fig. 3(d)]. However, here that the atom number N is larger,
for L > N a second vortex enters the system, and eventually
a twofold symmetric state forms [Figs. 3(e) to 3(g)]. Here it
is only for L/N larger than ≈2.6 that the droplet carries its
additional angular momentum via center-of-mass excitation,
i.e., via a “mixed” state, as shown in Figs. 3(h) and 3(i). The
dispersion relation (in the rotating frame), which is also shown
in Fig. 3(j), becomes linear again, now for L/N exceeding
≈2.6.

D. Rotational properties of droplets of “larger” size

In Fig. 4 we have considered an even larger value of N =
270, with ω still being equal to 0.05 (Nω = 13.5). Clearly the
mean density of the nonrotating droplet also increases. As a
result, we observe up to four vortices which are energetically
favorable [Figs. 4(a) to 4(h)], before the “mixed” state, i.e.,
the center-of-mass excitation of this state with four vortices,
becomes the state of lowest energy, for L/N exceeding ≈3.4
[Fig. 4(i)]. As in the case of droplets of “intermediate” size,
the dispersion relation, which is shown in Fig. 4(j), becomes
linear beyond this L/N value.

E. Fixing � instead of L

Up to now all our results have been derived for fixed L.
From the dispersion relation, one may also evaluate the an-
gular momentum of the droplet if � is fixed, instead. More
specifically, having evaluated the dispersion relation [i.e., the
lowest energy E (L) as function of L], we consider the energy
in the rotating frame Erot (L) = E (L) − L�. For some fixed �

we find the value of L that minimizes Erot (L) and that is how
L/N (�), i.e., Fig. 5, is produced.

Figure 5 shows L/N = L/N (�/ω), for N = 100, 200, and
270, with ω = 0.05 (the steps in the angular momentum per
particle L/N that we used to produce this plot were equal to
0.2). In this plot we see the usual plateaus, also known in
the case of single-component condensates with an effectively
repulsive contact interaction. We stress that, for � → ω−,
this plot diverges, as we argue in the following section [see
Eq. (16) and the relevant discussion].

IV. GENERAL PICTURE AND LIMIT OF RAPID ROTATION

From the examples presented above, and other cases that
we have investigated, one may get the more general picture
that emerges in this system. For sufficiently small N (when
ρ0 � aosc) we have center-of-mass excitation of the nonro-
tating ground state for all values of L. For larger values of N ,

where ρ0 � aosc, with increasing L one, or more vortices enter
the cloud. However, there is a limit to this. As the number of
vortices increases, n̄ drops. Decreasing n̄ even further, is not
energetically favorable. As a result, if L increases further, the
additional angular momentum is carried via center-of-mass
excitation of some “mixed” state. The dispersion relation also
becomes a straight line beyond this specific value of L.

One estimate for the maximum number of vortices Nv that
the droplet accommodates before it turns to a center-of-mass
excitation is that the mean density is equal to the one that
minimizes the energy of Eq. (4), i.e., n̄ = 1/

√
e,

N

S − Nvσ
= 1√

e
. (13)

Here S and σ are the “surfaces” of the droplet and of each
vortex, respectively. An approximate expression for σ is σ ≈
πξ 2, where the coherence length ξ gives roughly the linear
size of the vortex.

According to the analysis presented above, one may also
make a general statement about the dispersion relation. For
any two states with angular momentum L1 and L2, with
L1 < L2, E (L2) has to be lower than E (L1) + (L2 − L1)ω,

E (L2) < E (L1) + (L2 − L1)ω. (14)

If this inequality is violated, one may always start with the
state of angular momentum L1 and excite it via center-of-mass
excitation to a state with angular momentum L2. In this case,
E (L2) will be equal to E (L1) + (L2 − L1)ω. From Eq. (14) it
also follows that, for L2 → L1,

dE (L)

dL
< ω, (15)

i.e., the slope of the dispersion relation cannot exceed ω.
Another consequence of Eq. (14) is that, if one works with

a fixed rotational frequency of the trap � and not with a fixed
angular momentum, � cannot exceed ω. Indeed, according to
Eq. (14),

Erot (L2) < Erot (L1) + (L2 − L1)(ω − �). (16)

Therefore, if � � ω, Erot (L2) < Erot (L1) and Erot (L) is a de-
creasing function of L. In other words, if � exceeds ω, then the
energy is unbounded. This result is a combined effect of the
“mixed” state that we have seen, with the centrifugal force,
which gives rise to the effective potential M(ω2 − �2)ρ2/2.
Last but not least, we stress that this result is also true in the
case of contact interactions, in a harmonic trapping potential.

V. EXCITATION SPECTRUM

All the states that we have presented so far are those of
lowest energy, for a fixed N and L. Although this is one of the
most important questions, a separate question is the excitation
spectrum. We should stress that the excitation spectrum is
not only interesting theoretically, but is also experimentally
relevant. While we have not made a complete study of the
excited states, we have managed to find at least part of them.
Interestingly enough, the arguments presented in Sec. IV al-
low us to get a rather easy understanding of this problem
and to even predict the existence of the states that we have
identified.
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FIG. 3. [(a)–(e)] The density (left column, in units of �2
0 ) and the phase (right column) of the droplet order parameter, in the lowest-energy

state, for N = 200, ω = 0.05, and L/N = 0.0, 0.2, 0.8, 1.0, and 1.2, respectively. The unit of length is x0. [(f)–(i)] Same as panels [(a)–(e)]
except for L/N = 1.6, 2.0, 2.6, and 3.0, respectively. (j) Solid line, with data points: the corresponding dispersion relation in the rotating
frame, i.e., Erot (L/N ) − E (L/N = 0) as a function of L/N , with � = 0.051. Dashed line: same as above for the center-of-mass excitation of
the nonrotating state. The unit of energy is E0 and the unit of angular momentum is h̄.
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FIG. 4. [(a)–(e)] The density (left column, in units of �2
0 ) and the phase (right column) of the droplet order parameter, in the lowest-energy

state, for N = 270, ω = 0.05, and L/N = 0.0, 0.8, 1.0, 1.6, and 2.0, respectively. The unit of length is x0. [(f)–(i)] Same as panels [(a)–(e)]
except for L/N = 2.4, 3.0, 3.4, and 5.0, respectively. (j) Solid line, with data points: the corresponding dispersion relation, in the rotating
frame, i.e., Erot (L/N ) − E (L/N = 0) as a function of L/N , with � = 0.051. Dashed line: same as above for the center-of-mass excitation of
the nonrotating state. The unit of energy is E0 and the unit of angular momentum is h̄.
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FIG. 5. The functions L/N = L/N (�/ω), derived from the
lowest-energy states, for N = 100 (black, dashed curve), 200 (black,
solid curve), and 270 (gray, dashed curve), with ω = 0.05. The unit
of angular momentum is h̄.

In the results which are presented below, we have focused
on the case N = 200 and ω = 0.05 and we have identified
two classes of states in the excitation spectrum. The first
class includes multiply quantized vortex states, of the form
�S (ρ, θ ) = f (ρ)eiSθ , where S is the winding number, which
have an axially symmetric density distribution. These are so-
lutions of the equation

−1

2

∂2 f

∂ρ2
− 1

2ρ

∂ f

∂ρ
+ S2

2ρ2
f + 1

2
ω2ρ2 f

+ | f |2 ln | f |2 f = μ f . (17)

Starting with L/N = S = 2, we have found that this doubly
quantized vortex state [Fig. 6(a)], �S=2, is very close in energy
with the actual state of lowest energy, as shown in Fig. 6(c).
This proximity is not a surprise, but rather is expected, i.e., it is
due to the fact that the mean densities of the two states are very
close to each other. For L/N > 2, we then have center-of-mass
excitation of the doubly quantized vortex state [Fig. 6(b)],
with an energy which increases linearly with the angular
momentum, as we saw earlier. Clearly what we described
for L/N � 2 is general. For example, the state �S=3 is also
present in the excitation spectrum for all values of L/N � 3,
etc.

The multiply quantized vortex states described above have
an axially symmetric density distribution with respect to their
center of mass. The second class of states that we have identi-
fied in the excitation spectrum, are states which break the axial
symmetry of the problem. In this case the centrifugal term
[i.e., the third term on the left in Eq. (17)] favors an axially
asymmetric density distribution. As a result, the cloud “lo-
calizes,” since this is energetically more favorable (in order,
again, for the droplet to achieve the optimal mean density).
Examples of such excited states are shown in Figs. 7(a) to
7(d), as well as the corresponding energy in Fig. 7(e).

VI. PHYSICAL UNITS AND EXPERIMENTAL
RELEVANCE OF OUR RESULTS

As mentioned above, up to now we have used dimension-
less units. Here we show how one may return to the physical

FIG. 6. [(a), (b)] The density (left column, in units of �2
0 ) and the

phase (right column) of the droplet order parameter, in the excited,
multiply quantized vortex state(s) �S=2, for N = 200, ω = 0.05, and
L/N = 2.0 and 3.0, respectively. The unit of length is x0. (c) Solid
line, with data points: the corresponding dispersion relation, in the
rotating frame, i.e., Erot (L/N ) − E (L/N = 0) as function of L/N ,
with � = 0.051. Dashed line: same as above for the lowest-energy
state. The unit of energy is E0 and the unit of angular momentum
is h̄.

units and then we give some estimates for the experimentally
relevant scales.

First of all, let us denote as �↑ and �↓ the order parameter
of each component. In the symmetric case that we consider
in the present problem, �↑ = �↓ and also

∫ |�↑|2d2ρ =∫ |�↑|2d2ρ = N/2, where N is the total number of atoms in
both components. Let us also introduce � = √

2�↑ = √
2�↓,

where obviously
∫ |�|2d2ρ = N .

The order parameter � satisfies the equation

ih̄
∂�

∂t
= − h̄2

2M
∇2� + 1

2
Mω2ρ2�

+ 4π h̄2

M ln2
(
a↑↓/a

) |�|2 ln
|�|2

2
√

en0
�. (18)

Here M is the atom mass, which is assumed to be the
same for the two components and ω is the frequency of the
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FIG. 7. [(a)–(d)] The density (left column, in units of �2
0 ) and the

phase (right column) of the droplet order parameter, in the excited
states with an axially asymmetric density distribution for N = 200,
ω = 0.05, and L/N = 3.8, 4.4, 5.0, and 5.6, respectively. The unit of
length is x0. (e) Solid line, with data points: the corresponding disper-
sion relation, in the rotating frame, i.e., Erot (L/N ) − E (L/N = 0) as
function of L/N , with � = 0.051. Dashed line: same as above for the
lowest-energy state. The unit of energy is E0 and the unit of angular
momentum is h̄.

(two-dimensional) trapping potential. Also, a and a↑↓ are
the two-dimensional scattering lengths for elastic atom-atom
collisions between the same species (assumed to be equal for
the two components) and for different species, respectively.
Furthermore,

n0 = e−2γ−3/2

2π

ln(a↑↓/a)

aa↑↓
. (19)

Here γ is Euler’s constant, γ ≈ 0.5772, while

ln
(
a↑↓/a

) =
√

π

2

(
az

a3D
− az

a3D
↑↓

)
. (20)

Here az is the “width” of the droplet along the axis of rotation,
and a3D, a3D

↑↓ are the three-dimensional scattering lengths for
elastic atom-atom collisions between the same and different
species, respectively. Introducing

�2
0 = 2

√
en0 = e−2γ−1

π

ln(a↑↓/a)

aa↑↓
(21)

and setting �̃ = �/�0, Eq. (18) becomes

i
∂�̃

∂ t̃
= −1

2
∇̃2�̃ + 1

2
ω̃2ρ̃2�̃ + |�̃|2 ln |�̃|2�̃. (22)

Here t̃ = t/t0, where

t0 = Maa↑↓ ln(a↑↓/a)

4h̄e−2γ−1
. (23)

Also, ρ̃ = ρ/x0 and ∇̃2 is the dimensionless Laplacian, with
the unit of length being x0, where

x0 =
√

aa↑↓ ln(a↑↓/a)

4e−2γ−1
. (24)

Furthermore, ω̃ = ω/ω0, where the units of the frequency ω0

and of the energy E0 are

E0 = h̄ω0 = h̄

t0
= h̄2

Mx2
0

= h̄2

Maa↑↓

4e−2γ−1

ln(a↑↓/a)
. (25)

The normalization condition takes the form∫
|�̃|2d2ρ̃ = N

N0
, (26)

where

N0 = �2
0 x2

0 = 1

4π
ln2(a↑↓/a), (27)

which is units of N .
Finally, the time-independent equation that corresponds

to Eq. (22) is derived after we set �(ρ̃, t̃ ) = �(ρ̃)e−iμ̃t̃ ,
where μ̃ is the dimensionless chemical potential, thus
getting

− 1
2 ∇̃2�̃ + 1

2 ω̃2ρ̃2�̃ + |�̃|2 ln |�̃|2�̃ = μ̃�̃. (28)

We stress that the “tilde” used in the symbols in the present
section, which represents dimensionless quantities, is dropped
in all the other sections for convenience.
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Equation (27) allows us to evaluate the actual (total) num-
ber of atoms in a droplet. For a typical value of az = 0.1 µm
and a3D = 10.1 nm, a3D

↑↓ = −10.0 nm, ln(a↑↓/a) ≈ 25. Then,
according to Eq. (27), N0 ≈ 50. Therefore, the range of N that
we have considered (50 up to 270) corresponds roughly to
≈2500, up to ≈14 000 atoms in an experiment.

Also, the unit of length x0 turns out to be on the order
of 1 µm. This implies that, e.g., 104 atoms, the size of a
(nonrotating) droplet in the Thomas-Fermi limit, which was
evaluated in Sec. III, is ≈10 µm. Finally, typical values of
the two-dimensional density are ≈109 cm−2, of the three-
dimensional density are 1013 cm−3, t0 is on the order of
milliseconds, and the typical value of the trapping potential
is hundreds of hertz.

VII. SUMMARY OF THE RESULTS WITH A COMPARISON
WITH THE PROBLEM OF CONTACT INTERACTIONS

In the present study we investigated the rotational behavior
of a quasi-two-dimensional quantum droplet, which consists
of a mixture of two distinguishable Bose-Einstein condensed
gases, assuming that the droplet is confined in a harmonic
trapping potential.

For a fixed trap frequency and sufficiently small atom
numbers, the droplet does not host any vortices, but rather it
carries its angular momentum via center-of-mass excitation of
its nonrotating, ground state. This is very much like the case of
a single-component Bose-Einstein condensed gas, which has
an effectively attractive interatomic interaction potential and
is confined in a harmonic trap. The only difference between
the two problems is that, while in the case of droplets we
have a stable system (as a consequence of quantum fluc-
tuations), in the case of a single component the system is
metastable.

For a larger atom number, and sufficiently small values of
the angular momentum, the droplet behaves in the usual way,
with vortices entering it as the angular momentum increases.
As more and more vortices enter the droplet, its average
density drops, which is energetically favorable. However, as
the number of vortices increases, eventually it is no longer
energetically favorable for even more vortices to enter the
droplet. As a result, beyond some critical value of the angular

momentum the droplet carries the additional angular momen-
tum via center-of-mass excitation of a vortex-carrying state.

For a single-component, harmonically trapped Bose-
Einstein condensate with an effectively attractive interaction
the angular momentum is carried via center-of-mass excita-
tion of the nonrotating state, for all values of the angular
momentum. On the contrary, for an effectively repulsive in-
teraction this never happens (in the lowest-energy state) [51].
Furthermore, for a contact potential with an effective repulsive
interaction, the interaction energy is a decreasing function of
the density.

In the case of a two-component system, i.e., in quan-
tum droplets, the situation is different due to a simple and
important difference between the two problems. Here, the
interaction energy is not a monotonic function of the density
[see Eq. (4)], but rather it has a minimum at some specific
value of the density.

As a result, as L increases, in the case of a contact potential
with an effective repulsive interaction, the cloud expands ra-
dially and this lowers its mean density and the corresponding
interaction energy. Eventually, the system enters the highly
correlated “Laughlin-like” regime that we mentioned in the
Introduction. On the other hand, for the case of droplets (i.e.,
two-component systems), the decrease of the mean density
due to the vortices—for a sufficiently large atom number—is
energetically favorable only until the density reaches some
finite value.

The important conclusion that follows from the above
discussion is the following: For increasing L, in a single-
component condensate the gas enters the highly correlated
Laughlin regime. On the other hand, when we have two com-
ponents, i.e., in the case of droplets, for a sufficiently large
angular momentum, a droplet is always in a “mixed” state,
i.e., in a state of center-of-mass excitation of a state which
includes vortices.

Our study demonstrates the richness of this problem, in
terms of the various physical states. In addition, it also demon-
strates that, despite the difference of the phases that we have
found, there is a universal behavior of the droplets in the limit
of rapid rotation, in a “mixed” state, which has never been
seen before in any other “traditional” superfluid, including
liquid helium and harmonically trapped condensed atoms in-
teracting with contact interactions.
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