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In spinor Bose Einstein condensates (BEC) gases, a fraction of its thermally excited atoms can still interact
with the condensate ground state, leading to spin-spin interactions that can modify the main features of its
spin-phase diagrams. In this work we study the spin-phase diagram of a BEC of general spin- f and fully
characterize its noncondensate thermal fraction. The latter provided that the condensate ground state lies within
a spin phase with rotational symmetry. The study is based in the Hartree-Fock approximation in conjunction
with the Majorana stellar representation approach for pure and mixed quantum states and the use of point-group
symmetry arguments. The method allows us to study the phase diagram of spinorial BECs with usual point-group
symmetries, including those with some exotic phases associated to the platonic solids ( f = 2, 3, 4, and 6), which
are known to lead to non-Abelian topological excitations. In addition, we explore the temperature effects on the
admissible spin-phase domains for general spin values, as well as its physical implications on their multipolar
magnetic moments.
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I. INTRODUCTION

Interacting many-body systems with internal spin degrees
of freedom, such as unconventional superconductors, helium-
3 superfluids, and ultracold atoms, constitute prototypical
examples of physical systems where exotic and fascinating
spin phases can be realized [1–4]. Owing to the astonishing
manipulation currently achievable in the laboratory, among
the variety of spin systems in nature, the spinor Bose-Einstein
condensates (BEC) of atomic cold gases confined through
optical trapping conforms an ideal platform to investigate
such spin phases [5–8]. The first spinor BEC was realized
experimentally in 1998 with 23Na atoms of f = 1 [9], since
then spinorial BECs have already been realized for spins
f = 2, 3, 4, 6, and 8 [5,10–14].

The spin phases of a BEC can vary not only with respect
to the atomic species of the condensate, but also with applied
external fields and temperature [4,6,15,16]. At temperatures
close to absolute zero, the atomic gas is very well described by
a single macroscopic quantum state, a description that remains
valid even in the presence of external fields. However, as the
temperature is increased, the cloud of thermally excited atoms
induces nontrivial spin-spin interactions [15,17,18], leading
to the appearance of a number of interesting phenomena,
ranging from the appearance of magnetic spin domains, shifts
in the phase boundaries, the rise of metastable phases, and
to quantum quench dynamics, just to mention a few [8,18–
23]. Theoretically, one of the simplest methods to study many-

*ed.ensastiga@uliege.be
†fmireles@ens.cnyn.unam.mx

body systems at finite temperatures, such as the BECs, is the
Hartree-Fock (HF) approximation [17,24]. The HF approach
starts by assuming that the whole condensate at finite tempera-
ture can be partitioned in two parts described by a condensate
fraction and a thermal cloud of noncondensate atoms. Both
fractions are then determined via coupled Gross-Pitaevskii
(GP) and HF equations, which are usually solved numeri-
cally in a self-consistent manner [15]. However, the analytical
derivations and numerical computations for the nonconden-
sate fraction become quickly challenging as one increases
the spin- f value, since its degrees of freedom increase as
(2 f + 1)2. An alternative way to overcome this problem is
to take advantage of the following two results: (i) most spin
phases of BEC predicted by mean-field theory have symme-
tries in common with the Hamiltonian [4,25–27], and (ii) the
HF theory keeps the symmetries self-consistent [24], i.e., the
noncondensate fraction inherits the symmetries in common
of the condensate fraction and the Hamiltonian. Hence, as
we show a posteriori, we are able to reduce significantly the
degrees of freedom describing the condensate, allowing us, in
turn, to gain further insight into its physical properties, such
as the magnetization and the atom populations at finite tem-
peratures. In addition, it allows us to inspect the admissible
regions of the spin phases that lead to metastable phases and
quench dynamics [18,22,28].

In this work we implement a method based in the Majorana
representation [29] to determine and fully characterize the
noncondensate fraction of atoms for a general spinor BEC
having a given point-group symmetry. We draw our attention
to families of spin phases of wide interest by the appearance of
Abelian and non-Abelian topological excitations [3,4,30,31].
In particular, we study the spin phases that include the
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ferromagnetic, polar, and nematic phases, as well as the more
exotic phases that are closely related to the platonic solids:
tetrahedron, octahedron, cube, and icosahedron.

The paper is organized as follows: In Sec. II we review
the Hamiltonian model used for a general spinor BEC, as
well as the mean-field and the Hartree-Fock approximations
employed to describe the system at zero and finite temper-
atures. The Majorana representation of pure states is also
introduced and applied to describe the ground spin phases of a
spin-2 BEC, as well as its phase diagram. The characterization
of several noncondensate fractions of spinor BECs, and the
physical implications on their multipolar magnetic moments,
are explained in Sec. III. Here we describe and make use of
the generalization of the Majorana representation for mixed
states. In Sec. IV we consider the HF equations at finite
temperatures for the spin-2 BEC case, where we focus in the
study of the admissible region of each spin phase. We end the
paper with some final comments and conclusions in Sec. V.

II. THEORY

A. Spinor BEC Hamiltonian

We consider a BEC of an atomic gas with total spin
f confined through an optical trap. The condensate is as-
sumed to be weakly interacting and sufficiently diluted such
that only two-body collisions by contact interaction are pre-
dominant and the s-wave approximation is still valid. The
spinor-quantum field associated to the spinor condensate is
denoted by �̂ = (ψ̂ f , ψ̂ f −1, . . . , ψ̂− f )T, where ψ̂m= ψ̂m(r)
are the field operators for a magnetic quantum number
m, and T denotes the transpose. The particle-particle (p-p)
interaction terms of the Hamiltonian should be given, in gen-
eral, by a product of field operators in different positions
Vp−p(r1, r2)ψ†

i (r1)ψ†
j (r2)ψk (r1)ψl (r2). However, since we are

considering only point-contact interactions Vp−p(r1, r2) ∝
δ(r1 − r2), the double integration carried over the r1 and r2

spatial variables is then reduced to just one [4,15]. Hence,
the full Hamiltonian in the second-quantization formalism
reduces to [3,4]

Ĥ =Ĥs + V̂ =
∫

dr

⎧⎨
⎩

∑
i, j

[ψ̂†
i (hs)i jψ̂ j] + v̂

⎫⎬
⎭, (1)

where hs is the spatial contribution

hs =
(

− h̄2∇2

2M
+ U (r)

)
12 f +1, (2)

with M the atomic mass, U (r) is the potential energy associ-
ated to the optical trap, and 12 f +1 is the (2 f + 1) × (2 f + 1)
unit matrix. The interparticle interactions, included in v̂, are
also described in the second-quantization formalism and are
usually written in terms of the interaction channels with cou-
pling factors cγ having γ = 0, 1, . . . f [3,4]. Explicitly, the
interaction terms are comprised by

v̂ =
f∑

γ=0

cγ

2
M(γ )

i jkl ψ̂
†
i ψ̂

†
j ψ̂kψ̂l , (3)

where M(γ ) are numerical complex tensors independent of
the atomic specie. For instance, in the case of spin-2 BEC,
there exists only three types of interacting terms [4]:

v̂ = c0

2
: n̂2 : +c1

2
: F̂

2
: +c2

2
Â†

00Â00,

= c0

2
:

(∑
i

ψ̂
†
i ψ̂i

)2

: +c1

2
:

⎛
⎝∑

α,i, j

(Fα )i jψ̂
†
i ψ̂ j

⎞
⎠

2

:

+ c2

10

(∑
i

(−1)iψ̂
†
i ψ̂

†
−i

)(∑
i

(−1)iψ̂iψ̂−i

)

= c0

2

∑
i, j

ψ̂
†
i ψ̂

†
j ψ̂ jψ̂i + c1

2

∑
α,i, j,k,l

(Fα )i j (Fα )kl ψ̂
†
i ψ̂

†
k ψ̂l ψ̂ j

+ c2

10

(∑
i

(−1)iψ̂
†
i ψ̂

†
−i

)(∑
i

(−1)iψ̂iψ̂−i

)
, (4)

where : : denotes the normal ordering of the field operators
and Fα the angular momentum matrices components of spin
f = 2 along the α = x, y or z axes, written in units of h̄. Hence
the entries of the tensors M(γ ) are

M(0)
i jkl = δilδ jk, M(1)

i jkl = (Fα )il (Fα ) jk,

M(2)
i jkl = (−1)i+k

5
δi,− jδk,−l . (5)

On the other hand, the coefficients cγ in (4) are linear com-
binations of the s-wave scattering lengths of the total spin-F
channel aF (F = 0, 2, 4), whose values will depend on the
atomic species of the condensate [3,4]. In particular, the cγ

coefficients for the spin-2 BEC case are given by [4]

c0 = 4g2 + 3g4

7
, c1 = g4 − g2

7
, c2 = 7g0 − 10g2 + 3g4

7
,

(6)
with

gF = 4π h̄2

M
aF . (7)

We plot in Table I the aF values for spin-2 condensates of 23Na
and two isotopes of Rb. The term associated to c0 is usually
called spin-independent interaction, since it is equivalent to
the square of the number operator. Clearly, the rest of the
interactions are spin dependent. The Hamiltonian (3) has a
symmetry group isomorphic to SO(3) × Z2 constituted by the
group of rotations and the time-reversal symmetry.

B. Mean-field theory

In mean-field (MF) theory one considers that all the atoms
in the spinor condensate are in the same quantum state
described by a spinor order parameter 〈�̂〉 = � [3,4]. We
assume for simplicity that the spatial and spinorial sectors of
the system are factorizable and, consequently, they are mutu-
ally independent. Additionally, we consider the box potential
with size L [3,33,34], U (r) = 0, where the ground state is
φ j (r) = φ jeik·r with k = 0 and the spinor order parameter
� = (φ f , φ f −1, . . . , φ− f )T. We consider that L tends to in-
finity, such that the index k has a three-dimensional domain
k ∈ R3. We will use this result in Sec. IV. As an illustration
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TABLE I. Scattering lengths aF , extracted from [32], and ratios of the coupling factors cγ (6) of the atomic species 23Na and two isotopes
of Rb.

Scattering length (aB) Spin-dependent coupling factors
Atom M(u) a4 a2 a0 c1/c0 c2/c0

23Na 22.99 64.5 ± 1.3 45.8 ± 1.1 34.9 ± 1.0 0.05 ± 0.005 −0.05 ± 0.04
87Rb 86.91 106.0 ± 4.0 94.5 ± 3.0 89.4 ± 3.0 0.017 ± 0.007 −0.002 ± 0.06a

83Rb 82.92 81.0 ± 3 82.0 ± 3 83.0 ± 3 −0.002 ± 0.007 0.0070 ± 0.07a

aHere, we decided to leave an extra decimal beyond to the uncertainty scale.

of the MF approximation, let us calculate the MF energy of
the spin-2 BEC. The application of MF theory in Eq. (4) leads
to the energy of the system,

E [�] = c0

2
(�†�)2 + c1

2

∑
α

(�†Fα�)2

+ c2

10
|�†T �|2 − μ(�†� − N ), (8)

where we constrained the system to a fixed number of par-
ticles N , with the Lagrange multiplier being the chemical
potential μ. The time-reversal operator T transforms the
spinor � as

T �k = (−1) f +k�∗
−k . (9)

For the following sections, we find it convenient to write the
expression (8) in terms of the density matrix of the condensate
gas in the MF solution, ρ = ��†, where Tr ρ = N . Hence,

E [�] = c0

2
Tr[ρ]2 + c1

2

∑
α

Tr[ρFα]2

+ c2

10
Tr[T ρT ρ] − μ(Tr[ρ] − N ). (10)

Note that the spin-independent interaction Tr[ρ]2 contributes
just as a constant term. On the other hand, the other two inter-
actions are spin dependent and, consequently, able to modify
the ground state of the system.

C. Symmetries and Majorana representation
for pure spin states

The condensate is thus constrained to a fixed density of
particles N = �†�, where the ground state � of the BEC
minimizes the functional MF energy E [�] = 〈Ĥ〉. It is known
that the majority of the ground states of the BEC, without
external fields, have rotational symmetries [4,25–27,35]. This
result was predicted by Michel’s theorem [36], which dic-
tates that, for a real function F with domain D, F : D → R,
the points p ∈ D with symmetries in common with F may
be critical. Consequently, one can find ground states of any
spinor BEC by making use of the symmetry subgroups of
rotations, as proposed in Ref. [27]. The symmetry point group
of a given order parameter � can be found through the Majo-
rana representation for pure states [29], which is defined via
a polynomial that involves the coefficients of �, that reads
explicitly

pψ (Z ) =
f∑

m=− f

(−1) f −m

√(
2 f

f − m

)
φmz f +m. (11)

The polynomial pψ (z) has degree at most 2 f , and by rule,
its set of roots {ζk}k is always increased to 2 f by adding the
sufficient number of roots at infinity. Now, we associate to
each root ζ = tan(θ/2)eiφ , via the stereographic projection
from the south pole, a point on the sphere S2 with spherical
angles (θ, φ). Hence, the constellation Cψ of |ψ〉 is thus
defined as the set of 2 f points on S2, called stars. When � is
transformed in the Hilbert space by the unitary representation
D(R) of a rotation R ∈ SO(3), the constellation rotates by
R on the physical space R3. In addition, the time-reversal
operator transforms the Majorana constellation of the spinor
� to the antipodal counterpart [37]. Therefore the quantum
state � shares the same point-group symmetry of the poly-
hedron associated to the constellation C�. More details about
the Majorana representation and their applications are found
in Refs. [37,38].

D. Spin-phase diagram of spin-2 BEC

To get familiar with the Majorana representation for pure
states, we now describe the spin-2 phases with higher point
groups. We then produce the phase diagram of the spin-2
BEC in the parameter space (c1, c2) (see Fig. 1) by using
the symmetry and magnetization properties of the phases. We
shall now describe four different ground states:

(1) Ferromagnetic (FM) phase: The spinor order pa-
rameter has only one nonzero coefficient, φ2 = √

N . It is
symmetric under rotations about the z axis, with the point
group isomorphic to the special orthogonal group SO(2). Its
constellation C� consists of four coincident points on the
north pole. Each atom is fully magnetized along the z axis,

FIG. 1. Diagram phase for spin-2 BECs obtained with MF the-
ory. The Majorana representation of some states of each phase are
shown. The adjacent number in some points correspond to its degen-
eracy. The (c1/c0, c2/c0 ) values and their respective uncertainties of
the atomic species of spin 2 (see Table I) are marked on the figure.
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FIG. 2. Majorana constellations of the nematic states of spin-2
BEC with η = π/3, 3π/8, π/2, shown in color black, blue, and red,
respectively.

Mz ≡ 〈Fz〉/N = 2 and Mx = My = 0. Hence, the FM phase
maximizes the c1 interaction term 〈F〉2 = 4N , whereas its c2

interaction vanishes |〈T 〉|2 = 0. The FM phase appears for
any spin- f condensate and corresponds to the | f , f 〉 phase of
the | f , m〉 family mentioned below.

(2) Nematic family: It consists of a family of
quantum states � = √

N (sin η/
√

2, 0, cos η, 0, sin η/
√

2)T

parametrized by η ∈ [π/3, π/2] [25] (see Fig. 2). Contrary to
the FM phase, this state minimizes the c1 interaction, while
maximizing the c2 interaction, 〈F〉2 = 0 and |〈T 〉|2 = N ,
respectively. There are two exceptional phases of the nematic
family:

(2a) Polar (P) phase: Here η = π/2, yielding that φ0 =√
N , and the other terms are equal to zero. Its symmetry

group, denoted by D∞, consists of the group generated by any
rotation about the z axis and a rotation by π about any axis on
the equator. The constellation of the P phase has two points on
each pole of the sphere. This phase exists for any spin- f BEC,
being the state m = 0 of the | f , m〉 phases (see Sec. III B).

(2b) Square (S) phase: It is obtained when η = 0, and
its nonzero order-parameter terms are φ2 = φ−2 = √

N/2. Its
Majorana constellation consists of a square. Hence, � has the
dihedral point group denoted by D4 [39]. This phase belongs
to the class of NOON spin states that we describe in Sec. III B.

(3) Tetrahedron (T) phase: This spin-2 phase has � =√
N/3(1, 0, 0,

√
2, 0)T. The order parameter has a constel-

lation forming a tetrahedron. Hence, its symmetry group is
the tetrahedron point group denoted by T in the Schönflies
notation [39]. It has null magnetization, and it is orthogonal to
its antipodal state, yielding both spin-dependent interactions
equal to zero, 〈F〉2 = |〈T 〉|2 = 0. This phase is also called
the cyclic phase C [32,40].

We remark that a generic nematic phase is a quantum
superposition of the polar and square phases. An analogous
degenerate family was found earlier by Mermin in the context
of d-wave pairing [41]. The phases mentioned above also
appear when we consider other terms in the Hamiltonian, such
as linear and quadratic Zeeman terms [4,32]. We plot in Fig. 1
the Majorana constellation associated to each phase discussed

above, including the square and polar constellations of the
nematic family. Given the symmetry and magnetization prop-
erties mentioned above, we can now deduce the ground spin
phases by analyzing each quadrant of the (c1, c2) parameter
space:

(1) Quadrant c1 > 0 and c2 > 0: The ground state is given
by the solution that minimizes both interactions. In this region
the spinor order parameter is the cyclic phase.

(2) Quadrant c1 > 0 and c2 < 0: The ground state is such
that minimizes 〈F〉2 and maximizes |〈T 〉|2. The state that
fulfills these conditions is the N phase.

(3) Quadrant c1 < 0 and c2 > 0: In this case we have the
opposite conditions from the ones mentioned in (2), which are
fulfilled by the FM phase.

(4) Quadrant c1 < 0 and c2 < 0: Here we need to com-
pare between the minimal values attained by both interaction
terms, taking into account that |�|2 = N . The minimums of
the c1 and c2 terms are 2c1N2 and c2N2/10, respectively.
Hence, the ground state is the FM phase when 20c1 � c2 and
the N phase otherwise.

We plot in Fig. 1 the ground-state spin-phase diagram of
spin-2 BEC. All the phase transitions are of first order, since
at least one of the order-parameter coefficients changes dras-
tically over each phase boundary.

E. Hartree-Fock approximation

In BECs, the simplest many-body theory that goes beyond
MF theory, and is capable of capturing the relevant physics
occurring in its spin-phase diagrams, as well as in its concomi-
tant boundary regions, is the Hartree-Fock approximation
[15,17,18,24]. HF theory is robust when describing spinor
condensates at finite but ultracold temperatures [15,17,42].
Formally, the field operator in the HF approximation is given
by the order parameter plus an inhomogeneous variational
perturbation, ψ̂ j (r) = φ j (r) + δ̂ j (r). The physical picture is
that the cold atomic gas is assumed to be formed by two por-
tions: the condensate (c) and the noncondensate (nc) atomic
fractions. Each fraction of the atomic gas is then represented
by a density matrix ρc

i j = φiφ
∗
j and ρnc

i j = 〈δ̂†
j δ̂i〉, composed

of pure and mixed quantum states, respectively. The atomic
fraction of each part is given by Na = Tr(ρa) for a = n, nc,
and satisfies Nc + Nnc = N . The noncondensate atoms ρnc

act as a cloud of excited atoms that interacts nontrivially
with the condensate fraction ρc. The full one-body density
matrix that represents the noncondensate fraction is given
by ρnc

i j (r1, r2) = 〈δ̂†
j (r1)δ̂i(r2)〉 with off-diagonal terms in the

spatial (r1 �= r2) and spinorial parts (i �= j). However, since
we are only considering point-contact interactions among the
atoms, the off-diagonal spatial terms are not relevant for the
formulation of the HF equations in the spinorial part [15].
As we observe a posteriori in Sec. IV, only the terms ρnc

i j =
ρnc

i j (r, r) are needed to determine the population fractions in
the spin eigenstates. Besides, since we are working in the
box confinement potential, the order parameter φ j (r) turns
spatially homogeneous, as we described in Sec. II B. The total
system is denoted by ρ = ρc + ρnc, with Trρ = N . There may
exist other contributions in the system due to other correla-
tions, such as the Popov anomalous density 〈δ̂iδ̂ j〉 and the
three-field correlations 〈δ̂iδ̂ j δ̂

†
k 〉 [43]. However, a reasonable
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approximation is to neglect them, which is valid for diluted
atomic gases at finite ultracold temperatures below the con-
densation temperature [18,43]. The maximum temperature,
where the HF theory with the previous approximations pre-
dicts a spin phase, can be estimated by the condensation
temperature T spin

c of an ideal spin- f BEC trapped in a box. It
is known that T spin

c is equal to the condensation temperature of
an ideal scalar gas T0 [34] rescaled by the internal spin states
T spin

c = (2 f + 1)−2/3T0 [15], where

T0 = 3.31h̄2N2/3/(kBM ), (12)

with kB the Boltzmann constant. As an example, for BEC
with Na23 atoms with a typical density achieved in experi-
ments N = 1014 cm−3 [44], T0 = 1.5 μK, and then T spin

c ≈
0.72 μK, 0.51 μK for f = 1 and 2, respectively. As we em-
phasize in the following sections, even in the scenario in
which the fraction associated to ρnc is small compared to
that associated to ρc, new interactions of the type ρc ↔
ρnc and ρnc ↔ ρnc emerge owing to the nontrivial collisions
among the atoms. Consequently, important modifications of
the physical properties of the BEC can take place, such as
strength changes of the magnetization, shifting of the phase-
transition boundaries, and variations of the allowed region for
the metastable phases [15,18]. Operationally, those new extra
two-body interaction terms, called direct and exchange inter-
actions, are calculated through the use of the Wick theorem
(see, e.g., p. 89 of Ref. [24]):

〈ψ̂†
i ψ̂

†
j ψ̂kψ̂l〉 = ρc

ikρ
c
jl + ρnc

ik ρnc
jl + ρnc

il ρnc
jk

+ ρc
ikρ

nc
jl + ρc

ilρ
nc
jk + ρc

jkρ
nc
il + ρc

jlρ
nc
ik . (13)

Note that ρc
ikρ

c
jl = ρc

jkρ
c
il , since the condensate fraction is

represented by a pure quantum state. As an example to the pre-
vious equation, we express the cγ spin interactions obtained in
the HF theory for γ = 0, 1, 2 (4), which reads

〈ψ̂†
i ψ̂

†
j ψ̂ jψ̂i〉 ≈ {Tr[ρc + ρnc]}2 + Tr[ρnc(2ρc + ρnc)]

= N2 + Tr[ρnc(2ρc + ρnc)], (14)∑
α

(Fα )il (Fα ) jk〈ψ̂†
i ψ̂

†
j ψ̂kψ̂l〉

≈
∑

α

{Tr[ρFα]2 + Tr[FαρncFα (2ρc + ρnc)]}, (15)

〈Â†
00Â00〉 ≈ 1

2 f + 1
Tr[T ρT ρ + T ρncT (2ρc + ρnc)], (16)

where we use the Einstein summation convention for the Latin
repeated indices. The time-reversal operator T acts in ρ as

(T ρT ) ji = (−1)2 f −i− jρ−i− j . (17)

III. CHARACTERIZATION OF THE NONCONDENSATE
FRACTION

A generic noncondensate fraction of a BEC of spin f has
(2 f + 1)2 degrees of freedom. However, for systems with a
self-consistent symmetry, i.e., for cases such that the non-
perturbed phase ρc and the Hamiltonian of the system Ĥ
have some symmetries in common, the noncondensate frac-
tion ρnc inherits such symmetries, and when solving the GP

equations of the BEC, its degrees of freedom are reduced
significantly (see [24] for further details). This leaves us now
to determine the mixed states ρnc that share the common
symmetries with the order parameter � and the full Hamil-
tonian (3). To that aim, we make use of a generalization of the
Majorana representation for mixed states [45] to exploit the
point-group symmetries of the phases. The following results
are valid at any temperature. Besides, they are not independent
to the analytical dependency of the noncondensate fraction
with the temperature. The finite-temperature effects will be
discussed in Sec. IV.

A. Majorana representation for mixed states

Let B f be the set of the density matrices of spin- f states.
Thus B f is equivalent to the set of (2 f + 1) × (2 f + 1) com-
plex matrices which satisfy the following properties [37]:

(1) ρ† = ρ, (Hermiticity)
(2) Tr(ρ) = 1, (Unit trace)
(3) ρ � 0, (Semipositive condition).
Observe that for a BEC, the total ρ, the condensate ρc,

and the noncondensate ρnc fractions of the atoms belong to
the set of mixed states with the exception that their traces are
different, where Tr(ρa) = Na, where a = n, nc, or are omitted
for the whole system. In B f exists an orthonormal basis given
by the set of the tensor operators Tσμ with σ = 0, . . . 2 f and
μ = −σ, . . . , σ [46–48], which are written in terms of the
Clebsch-Gordan coefficients C jm

j1m1 j2m2
and read

Tσμ =
f∑

m,m′=− f

(−1) f −m′
Cσμ

f m, f −m′ | f , m〉 〈 f , m′| , (18)

satisfying the following properties:

Tr(T †
σ1μ1

Tσ2μ2 ) = δσ1σ2δμ1μ2 , T †
σμ = (−1)μTσ−μ. (19)

The key property of this basis is that they transform block di-
agonally under a unitary transformation U (R), that represents
a rotation R ∈ SO(3), according to an irrep of SO(3) D(σ )(R),
such that

U (R)TσμU −1(R) =
σ∑

μ′=−σ

D(σ )
μ′μ(R)Tσμ′, (20)

where D(σ )
μ′μ(R) ≡ 〈σ, μ′|e−iαFz e−iβFy e−iγ Fz |σ, μ〉 is the

Wigner D matrix [48] of a rotation R with Euler angles
(α, β, γ ), and σ = 0, 1, 2, . . . labels the irrep. The
noncondensate fraction ρnc of a spinor BEC can thus be
written in terms of this basis,

ρnc = Nnc

⎛
⎝ 1 f

2 f + 1
+

2 f∑
σ=1

ρσ · T σ

⎞
⎠, (21)

where ρσ = (ρσσ , . . . , ρσ−σ ) ∈ C2σ+1, with ρσμ =
Tr(ρ T †

σμ), T σ = (Tσσ , . . . , Tσ,−σ ) is vector of matrices,
and the dot product is the short for

∑σ
μ=−σ ρσμTσμ. The

properties of the density matrices and the tensor operators
imply that each ρσ vector can be associated to a constellation
à la Majorana (11) consisting of 2σ points on S2. The
hermiticity condition of ρnc and Eq. (19) impy that the
constellation of every ρσ has antipodal symmetry [45]. As
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FIG. 3. Majorana representation of mixed states of the families
| f , m〉 and NOON spin states.

it is explained in Ref. [45], the norm and complex phase
factor of each ρσ are relevant to specify ρnc. The norm of
ρσ , denoted by rσ , can be associated to the radius of the
sphere. On the other hand, by the hermiticity of ρnc, there
are only two options, both differing by a minus sign [45].
We present in Appendix A a method, based on Ref. [45], to
associate the phase factor to a certain equivalence class of
points in the constellation. For our purposes to determine the
noncondensate fraction with a particular point group, it is
sufficient to add the choice of sign to the radius rσ , despite
that the sign is not considered to define the radius of the
spheres. Therefore a mixed state is associated to a set of 2 f
constellations, denoted by Cρnc , with antipodal symmetry over
spheres with radii rσ , respectively. In particular, ρnc has a
point group G if and only if all the constellations of the ρσ

vectors share the same symmetry:

D(σ )(g)ρσ = ρσ , for each g ∈ G. (22)

B. Applications: Spin phases and magnetic moments

Let us now analyze the set of mixed states with a spe-
cific point-group symmetries. We study three families of spin
phases: (A) | f , m〉 states, (B) NOON states, and (C) the spin
phases associated with a platonic solid. Their respective Ma-
jorana constellations of ρnc are summarized in Figs. 3 and
4. We also calculate its corresponding eigenspectrum for the
cases that it is possible to obtain analytical expressions, and
that will be helpful in the next section. In addition, we discuss
the multipolar magnetic moments of the spin phases which
are closely related, as we explain below, to the Majorana
representations of each state ρ.

The magnetic moment of kth- order, or (k + 1)th polar
magnetic moment, per atom, can be determined through the
rank-k spin nematic tensors Nν1ν2...νk as follows [4]:

Mν1ν2...νk ≡ Tr(ρaNν1ν2...νk )

Trρa
, (23)

FIG. 4. Majorana representation of mixed states with a point
group equal to a platonic solid: tetrahedron (T), octahedron (O), cube
(C), and icosahedron (I). The radii of the spheres of Cρnc are arbitrary
up to the semidefinite condition of ρnc.

with a = n, nc (or omitted for the total system), and where

Nν1ν2...νk ≡ 1

k!

∑
π∈Pk

Fπ (ν1 )Fπ (ν2 ) . . . Fπ (νk ). (24)

Here π represents the elements of the permutation group of k
objects Pk . For instance, the dipolar and quadrupolar magnetic
moments are simply defined by the operators

Nν = Fν, Nν1ν2 = Fν1 Fν2 + Fν2 Fν1

2
. (25)

Recall that the angular momentum operators Fν are propor-
tional to the tensor operators T1μ [48],

Fz = wT10, F± = ∓
√

2wT1,±1, (26)

with w = √
f ( f + 1)(2 f + 1)/3 and F± = Fx ± iFy. By ad-

dition of the angular momentum operator, and for k � 2 f , the
magnetic moment of kth order is a linear combination of the
tensor operators Tσμ with order at most σ � k and |μ| � �,

Nν1ν2...νk =
k∑

σ=0

�∑
μ=−�

bσμTσμ, (27)

where � is equal to the total number of x and y subindexes of
Nν1...νk , and bσμ are complex numbers. The explicit decompo-
sition can be obtained by using recursively the formula of the
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product of two tensor operators [48]

Tl1m1 Tl2m2 =
∑
l,m

χ (l1, l2, l; f )Clm
l1m1,l2m2

Tlm, (28)

with

χ (l1, l2, l; f ) ≡ (−1)2l2+l−2 f
√

(2l1 + 1)(2l2 + 1)

×
{

l1 l2 l
f f f

}
(29)

written in terms of the 6 j symbol [48]. As an example, we
calculate the terms of the second magnetic moment Nν1ν2 in
Appendix B.

The previous results restrict the possible magnetic mo-
ments of a condensate ρ with rotational symmetries because,
as we will show later, they have several vectors such as ρσ = 0
for σ � k. Consequently, some phases of spinor BEC will
have isotropic magnetic moments with respect to the physical
space, i.e., Mν1...νk ∝ Nnc1ν1...νk , where 1ν1...νk are the com-
ponents of the identity tensor of k indices. The results are
also extended to the different fractions n and nc, as well as
the total system, because all their respective density matrices
are represented in the general expression of ρnc with a given
point-group symmetry.

In the following we will describe the isotropic kth magnetic
moments for the spin-phase families of interest. It is also im-
portant to remark that states with vanishing expectation values
of the tensor operators Tσμ are of great relevance in quantum
information and quantum metrology, for instance, a property
called anticoherence [49,50], which in turn is connected to
multipartite entanglement [51,52] and the susceptibility to
detect rotations of quantum systems [53–55]. A useful result
that we are going to use later is that the anticoherence order of
a spin state is equal to its maximal order of homogeneous kth
magnetic moment [50], since, by definition, a spin state ρ is
anticoherent of order k if its ρσμ components are zero for any
0 < σ � t and |μ| � σ .

1. | f , m〉 phases

The simplest family we address in this work is the set of
Fz eigenvectors | f , m〉, with spinor order parameter φk ∝ δkm.
The family contains all the states with a continuous point
group SO(2), equivalent to rotations about the z axis. The
case m = 0 has the time-reversal operator as an additional
symmetry. Thus the corresponding ρnc of this family would
be diagonal over the {| f , m〉} basis:

ρnc =
f∑

m=− f

λm | f , m〉 〈 f , m| . (30)

In terms of the Majorana representation of mixed states, the
components of the ρσ vectors are

ρσμ = rσ δμ0, (31)

where the norms of the vectors are linear combinations of the
eigenvalues λm. The constellations of Cρnc have σ points on
each pole (see Fig. 3). The additional symmetry associated to
the | f , 0〉 spin phase yields that λm = λ−m; consequently, the
ρσ for σ odd are zero. Some examples of the | f , m〉 phases are

the FM and P phases of a spin-2 BEC, which are proportional
to the |2, 2〉 and |2, 0〉 spin states, respectively.

The eigenspectrum (30) of ρnc implies that the only nonva-
nishing terms in Mν1...νk are given by Tσ0 terms. For instance,
the first two magnetic moments are given by

Mν = δνz

f∑
m=− f

m�m = δνzwNncρ10, (32)

and

Mxy = Mxz = Myz = 0,

Mzz = f ( f + 1)Nnc

3
+ 1

6
√

5

√
(2 f + 3)!

(2 f − 2)!
ρ20,

Mxx = Myy = f ( f + 1)Nnc

3
− 1

12
√

5

√
(2 f + 3)!

(2 f − 2)!
ρ20, (33)

where we use the equations deduced in Appendix B, and the
fact that T00 = 1/

√
2 f + 1. In particular, let us notice that the

| f , 0〉 spin phase, equivalent to the polar phase, must have
Mν = 0.

2. NOON spin phases

The family consists of the spin phases � with components
of the form

φm ∝ (δ f ,m + δ− f ,m)/
√

2, (34)

that we define as the NOON spin phases, since they are the
equivalent of a quantum superposition of 2 f spin-1/2 states
pointing about orthogonal directions [56]. The square (S)
spin-2 phase is an example of the NOON spin phase. Its point
group is equal to D2 f in the Schönflies notation [39], which
is equivalent to the point group associated to the regular 2 f -
agon. The coefficients of ρσ of the noncondensate fraction are

ρσμ =

⎧⎪⎨
⎪⎩

rσ δμ0 if σ < 2 f , σ even

r2 f
(

sin x δμ0 + cos x√
2

δμ,±2 f
)

if σ = 2 f
0 otherwise

.

(35)
Thus the constellations are conformed by all the σ points
in each pole for σ < 2 f , and by a regular n-agon prism for
σ = 2 f , where its height is dependent on the variable x. Con-
sequently, the ρσ vectors of the NOON and | f , 0〉 spin phases
are equal except for σ = 2 f [see Eqs. (31)–(35)]. This implies
that the kth magnetic moments Mν1...νk [Eq. (27)] of ρnc of
the NOON and | f , 0〉 spin phases have the same expressions
for k < 2 f . Therefore, assuming that just the magnetization
of the condensate is being measured, the NOON and the | f , 0〉
spin phases can only be distinguished by its (2 f )th magnetic
moment. Favorably, the eigenspectrum (λν, vν ) of the NOON

phase can be diagonalized analytically for a general spin value
f . It includes ( f − 1) pairs of degenerate eigenvectors, v2k−1

and v2k , with λ2k−1 = λ2k and where k goes from 1 to ( f − 1).
The components of the eigenvectors vν,m are given by

v1,m = δm, f −1, v2,m = δm,− f +1,

v3,m = δm, f −2, v4,m = δm,− f +2,
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...
...

v2 f −3,m = δm,1, v2 f −2,m = δm,−1. (36)

There are also three eigenvectors not necessarily degenerate,

v2 f −1,m = δm0, v2 f ,m = 1√
2

(δm,− f − δm, f ),

v2 f +1,m = 1√
2

(δm,− f + δm, f ), (37)

where the last eigenvector is proportional to the order param-
eter � (34).

3. Platonic phases

Spin phases of BEC with point-group symmetry corre-
sponding to that of the platonic solids—tetrahedron (T),
octahedron (O), cube (C), and icosahedron (I)—appear for
condensates with spin f = 2, 3, 4, and 6, respectively [15,27].
Here, we shall not characterize the spin phase of ρnc having
the point-group symmetry of the dodecahedron, correspond-
ing to a BEC spin phase with f = 10. In any case, it is
noteworthy that a spin-10 BEC has yet to be developed
in laboratory. We now proceed to enlist the properties of
each platonic phase of interest, along with its corresponding
nonzero components of the ρσμ vectors:

(1) Tetrahedron (T) phase:

ρ 3∓3 = ±
√

2

3
, ρ4∓3 = ±

√
10

27
,

ρ 30 =
√

5

3
, ρ40 = −

√
7

27
. (38)

The constellations Cρnc form an octahedron and a pair of
antipodal tetrahedrons, respectively. It is easy to demonstrate
that such constellations have the symmetry T , since the point
group T belongs to the point group of the octahedron O. Due
to the vanishing ρσ vectors of σ = 1, 2 for the T phase, the
first two magnetic moments are isotropic, implying that

Mν = 0, Mν1ν2 = 2δν1ν2 Nnc. (39)

For a lower spin f = 1, a phase with this magnetization is
forbidden. Hence, it can be said that the T phase is the first
spin phase with its first two multipolar magnetic moments
isotropic. To obtain isotropic magnetic moments of higher
order, one must consider a spin BEC of higher spin.

Let us now show that the noncondensate fraction ρnc of the
T phase has only three degrees of freedom (Nnc, r3, r4). This
reduction allows us to easily calculate the eigenspectrum of
ρnc analytically, since its characteristic polynomial, of degree
5, leads to two nondegenerate roots and a set of threefold
degenerate roots. The exact eigenspectrum is given by

�1 = �2 = �5 = 1

5
−

√
2

15
r4,

�3,4 = 1

10
(2 ∓ 5

√
2r3 +

√
30r4),

v1 = (0, 0, 1, 0, 0)T,

v2 = (0, 1, 0, 0,
√

2)T/
√

3,

v3 = (0,−
√

2, 0, 0, 1)T/
√

3,

v4 = (1, 0, 0,
√

2, 0)T/
√

3,

v5 = (−
√

2, 0, 0, 1, 0)T/
√

3. (40)

The density matrix ρnc is a physical state (with non-
negative eigenvalues) if the variables (r3, r4) fulfill the
condition 5|r3| �

√
2 + √

15r4, with r3 ∈ [− 1√
2
, 1√

2
] and

r4 ∈ [−
√

2
15

√
3

10 ].
(2) Octahedron (O) phase:

ρ4±4 =
√

5

24
, ρ6±4 = −

√
7

16
,

ρ40 =
√

7

12
, ρ60 = 1√

8
, (41)

with constellations describing a cube for σ = 4, and an octa-
hedron for σ = 6 with all its stars having degeneracy equal
to 2. The cube and the octahedron belong to the same point-
group symmetry, the alternate group A4 [39], as they are dual
geometrical figures. The O phase is the first spin phase with
its first three magnetic moments isotropic:

Mν = Mν1ν2ν3 = 0, Mν1ν2 = 4Nncδν1ν2 , (42)

since ρσ = 0 for σ = 1, 2, 3. The proof that the nonexistence
of a spin phase with the same property for f � 2 comes from
the fact that there are no spin- f states with anticoherence of
order 2 for f < 2 [52].

(3) Cube (C) phase:

ρ8±8 =
√

65

384
,

ρ4±4 =
√

5

24
, ρ6±4 = −

√
7

16
, ρ8±4 =

√
7

96
,

ρ40 =
√

7

12
, ρ60 = 1√

8
, ρ80 =

√
33

8
. (43)

Then Cρnc has three constellations conformed by a cube for
σ = 4 and 8, and by an octahedron for σ = 6. The stars of
the constellations of σ = 6 and 8 are twofold degenerate.
Similarly as the O phase, the C phase has isotropic magnetic
moments of order σ = 1, 2, 3.

(4) Icosahedron (I) phase:

ρ10 ±10 =
√

187

1875
, ρ12 ±10 =

√
741

3125
,

ρ6±5 = ±
√

7

5
, ρ10±5 = ±

√
209

25
, ρ12±5 = ∓

√
286

3125
,

ρ60 = −
√

11

5
, ρ10 0 =

√
247

1875
, ρ12 0 = 3

√
119

3125
.

(44)

Here, as it is expected, the constellations are conformed by
icosahedrons and dodecahedrons, because they are dual poly-
hedra, with the point group isomorphic to the alternate group
A5. The stars of the constellation of σ = 12 are doubly de-
generated. The Majorana representation of the I phase tells us
that the first five multipolar magnetic moments are isotropic.
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The I phase is the first spin value with this property, since
there are no anticoherent spin states of order 5 for spin values
f < 6 [57].

IV. FINITE TEMPERATURES

Once we have characterized the possible noncondensate
fractions ρnc with a particular point-group symmetry, we
can use them to study a spinor BEC condensate in a model
with self-consistent symmetries. In this section we derive
within the HF approximation the equations that define the
temperature-dependent condensate and noncondensate frac-
tions, ρc and ρnc, of a spin-2 BEC. Next, we exploit the
results discussed in the previous section that will allow us to
reduce significantly the calculations and yields to analytical
expressions of some physical quantities of the spin phases. In
particular, we determine the eigenenergies of the atoms in the
thermal cloud, and the allowed regions of each spin at finite
temperatures.

A. HF equations for spin-2 BECs

We start by writing explicitly the HF energy of a spin-2
BEC by using the equations Eqs. (14)–(16) containing all the
spin interactions:

EHF = Es + c0

2
{N2 + Tr[ρnc(2ρc + ρnc)]}

+ c1

2

∑
α

{Tr[ρFα]2 + Tr[FαρncFα (2ρc + ρnc)]}

+ c2

10
{Tr[T ρT ρ + T ρncT (2ρc + ρnc)]}

− μ(Trρ − N ). (45)

The new two-body interactions with respect to the MF en-
ergy are the direct and exchange interactions, respectively.
Here, Es is the spatial energy associated to hs in Eq. (3).
In our case U (r) = 0, the spatial eigenstates are labeled by
the wave vector k, and their corresponding eigenenergies are
Es = h̄2k2/2M, i.e., just the kinetic energy. The effect of each
term over the spin coherence and the distribution of the atoms
in the magnetic sublevels are discussed in [15].

The condensate fraction of the system ρc = Nc��† is a
pure state with k = 0. Hence, the resulting GP equations that
results from minimizing EHF , δEHF /δφ∗

m = 0, are given by a
system of three (nonlinear) equations involving φm and ρnc.
On the other hand, ρnc is written as a sum of its eigenvec-
tors ξλ = (ξλ

f , ξ
λ
f −1, . . . , ξ

λ
− f )T weighted by its Bose-Einstein

distribution factor nλ,

ρnc
i j =

∑
λ

nλξ
λ
i ξλ∗

j , nλ = (eβελ − 1)−1. (46)

The global subindex λ includes the spatial and spinor-
quantum numbers, λ = (k, ν), with ν = 1, 2, . . . , 2 f + 1 and
β = 1/kBT , where kB is the Boltzmann constant. The eigen-
vectors ξλ and their associated energies ελ are obtained by the
noncondensate Hamiltonian A, given by Ai j = δEHF /δρnc

ji .
The decoupling of the spatial and spinor parts in the Hamilto-
nian A lead to ελ = −h̄2k2/2M + κν , with κν the eigenvalue of
the spinor part of A. In summary, ρnc is an statistical mixture

of thermal atoms with eigenstates labeled by the wave vector
k, and the index ν that specifies the spinor eigenstate of the
HF Hamiltonian A. The spatial part of ρnc can be integrated
using that

∑
k → (2π )−3

∫
dk [58],

ρnc
i j =

2 f +1∑
ν=1

ξν
i ξν∗

j �ν, �ν = Li3/2(e−βκν )

λ3
dB

, (47)

where Li3/2(z) is the polylogarithm function and λdB =
h/

√
2πMkBT is the thermal de Broglie wavelength. The

eigendecomposition of Ai j , which is now a (2 f + 1) × (2 f +
1) matrix, are called the HF equations. The atom fractions Nc

and Nnc can be written in terms of κν because Nc = N − Nnc

and Nnc = ∑
ν �ν . Moreover, the A matrix, dependent on ρc

and ρnc, can also be written in terms of the �ν and then
of the κν variables. Finally, we use the fact that A and ρnc

share the same eigenvectors, leading us to obtain a system
of algebraic-transcendental equations for the κμ eigenenergies
of A.

The equations to determine ρc are still called Gross-
Pitaevskii (GP) equations δEHF /δφ∗

m = 0, and they can be
written as μ� = L�, with

L = c0(N1 f + ρnc) + c1

∑
α

{Tr[Fαρ]Fα + FαρncFα}

+ c2

5
T (ρ + ρnc)T , (48)

where α = x, y, and z. On the other hand, the noncondensate
Hamiltonian A, with Ai j = δEHF /δρnc

ji , allows to determine
ρnc with the so-called the Hartree-Fock (HF) equations, and is
explicitly given by

A = L − μ15 + c0ρ
c + c1

∑
α

FαρcFα + c2

5
T ρcT

= −μ15 + c0(N15 + ρ)

+ c1

∑
α

{Tr[ρFα]Fα + FαρFα} + 2c2

5
T ρT . (49)

The standard procedure is to solve in a self-consistent fashion
the GP-HF equations, (48) and (49) [15,17,24]. However, as it
is shown below, the symmetries inherited by ρnc reduce con-
siderably its degrees of freedom and therefore the complexity
of the problem. Moreover, the case spin-2 BEC is amenable
for the calculation of the associated eigenvectors of each ρnc,
as well as for the derivation of closed equations for the κν

energies. In the next section we discuss the calculation of
the expressions of κν for low temperatures and analyze the
admissible regions of each allowed spin phase. Also, the phase
diagrams at finite temperatures can be calculated by finding
the ground states defined in terms of the thermodynamic HF
potential, �HF = EHF − T SHF , where SHF is the HF entropy
[18,24].

B. Applications: Admissible regions of the phases

Following the HF approximation, the κν energy is by defi-
nition the additional energy that an atom required to be added
in ρnc in the spin state ξν with order parameter � [18]. Hence,
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the energies must satisfy that

κν > 0, (50)

otherwise the � phase becomes forbidden and may promote
a drastic (quench) evolution to another phase. The condition
(50) gives us valuable insights about the regions in which spin
phase could exist. In particular, a scenario in which regions of
different spinor phases overlap (coexist) can also occur [18].
While the spin phase with the lowest thermodynamic potential
gives us the ground phase of the BEC, the others phases give
rise to metastable phases [18]. The characterizations of the
noncondensate fractions ρnc presented in the previous sec-
tions allow us to calculate the analytical expressions of all
the κν energies. In what follows, we discuss how we proceed
to calculate the allowed regions in the (c1, c2) space, as well
as on the physical nature of their boundaries for the case
of a spin-2 BEC. For simplicity, we write the equations in
a compact form, while the full expressions and details are
provided in Appendix C. The new admissible region of each
phase, appearing as we increase the temperature (see Fig. 5),
includes a region where the phase is metastable [18]. We also
obtained that, while for T = 0 the whole nematic family is
equally valid to be a ground phase, for T �= 0 only the square
and polar phases remain as ground states, which are in fact
the states with higher point group in the nematic family. This
is called in the literature order-by-disorder phenomenon, and
it has been predicted for the nematic family of spin-2 BEC in
Refs. [59,60].

1. FM case

Let us consider the FM phase of a spin- f BEC, oriented
along the z axis [61], and described in general by a state | f , f 〉.
The degrees of freedom of a generic noncondensate fraction
ρnc of spin f is (2 f + 1)2, being 25 in the particular case of
f = 2. However, exploiting its symmetries, they are reduced
to just five for the FM case, which are the �m variables
of ρnc = ∑2

m=−2 �m |2, m〉 〈2, m|. Moreover, since the atom
fractions Nc and Nnc can be written in terms of �m because
Nc = N − Nnc and Nnc = ∑

m �m, the whole problem has
only five unknown variables �m. These variables are functions
of the eigenenergies of A = δEHF /δρnc

ji , κm (47). In summary,
the eigenvalues of A lead us to a set of equations for the κν

energies in terms of a linear combination of the �ν , which
are written explicitly in Appendix C. At low temperatures and
with N ∼ 104 atoms per cm3, which is a typical value in the
experiments, the terms in the energies κν proportional to N
become the dominant terms, defining the physical boundaries
of the allowed regions. For the FM phase, such boundaries are
constrained by the conditions (see Fig. 5), where

κ
(FM )
−1 = −6c1N + O(�ν ) = 0,

(51)
κ

(FM )
−2 = 2N

(
−4c1 + c2

5

)
+ O(�ν ) = 0,

where we have added the spin-phase name of the eigenenergy
as a superindex. We can observe that when T = 0, and then
�ν = 0, the conditions (51) are identical to the phase transi-
tions in the MF approximation. Consequently, the FM phase
is only defined in the regions where is the ground state, i.e.,
it is not a metastable phase anywhere at T = 0. We plot the

(a) FM phase

(b) P phase

(c) S phase

(d) C phase

FIG. 5. (a) Allowed region of the FM spin-2 BEC phase in
the (c1, c2) parameter space at T/T0 = 0, 0.1, 0.2 colored in gray
scale (from dark to light), respectively, where T0 is the conden-
sation temperature of an ideal scalar gas (12). The boundaries
(red and blue lines) are defined by the conditions (51), where we
omit the superindex of the κν eigenenergies. The black solid lines
are the ground-phase boundaries of the other spin phases at T =
0 (see Fig. 1). Similar graphics are shown below for the (b) P,
(c) S, and (d) C phases, with boundaries defined by Eqs. (52),
(53), and (55), respectively. The dashed line in caption (d) corre-
sponds to the (c1, c2) values, where ρnc has a fourth-degenerated
eigenvalue.
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allowed regions of the FM phase, and the other phases, for
the finite temperatures T/T0 = 0, 0.1, 0.2 calculated numer-
ically in Fig. 5, which agrees with the previous discussion.
The phase transitions of the FM phase do not depend on the
temperature. On the other hand, its allowed region increases
with respect to the temperature, which would be the (c1, c2)
values where the FM phase could be metastable.

2. P phase

The P phase is equal to the |2, 0〉 phase, which has the same
symmetries as the FM phase plus the time-reversal symmetry.
Hence, besides to have the same density matrix as the FM
phase, ρnc = ∑2

m=−2 �m |2, m〉 〈2, m| , the additional symme-
try yields �2 = �−2 and �1 = �−1. The allowed region of P
at finite temperatures (see Fig. 5) is restricted by the condi-
tions

κ
(P)
2 = κ

(P)
−2 = −c2

5
N + O(�ν ) = 0,

κ
(P)
1 = κ

(P)
−1 =

(
3c1 − c2

5

)
N + O(�ν ) = 0. (52)

The left-lower bound does not coincide to the P − S transition
phase even at all temperatures, implying that the P phase is
metastable over the ground-phase region of the S phase even
at T = 0.

3. S phase

The allowed region of the S phase coincides to the zone
where the nematic family is the ground phase at T = 0. The
left-lower and upper boundaries are given as

κ
(S)
3 = −c2

5
N + O(�ν ) = 0,

κ
(S)
4 =

(
4c1 − c2

5

)
N + O(�ν ) = 0, (53)

with corresponding spin states given by Eqs. (36) and (37),

v3 = (0, 0, 1, 0, 0)T, v4 = (−1, 0, 0, 0, 1)T/
√

2. (54)

4. C case

We plot in Fig. 5 the allowed regions at finite temperatures
of the C phase. The left and lower boundaries are associated
to the κ

(C)
1 , κ

(C)
3 = 0 conditions, respectively, where

κ
(C)
1 = κ

(C)
2 = κ

(C)
5 = 2c1N + O(�ν ) = 0,

κ
(C)
3 = 2c2

5
N + O(�ν ) = 0. (55)

The numerical calculations show the predicted triple degener-
acy of ρnc over its allowed region. Moreover, the spectrum of
ρnc is fourth degenerated over the line c2 = 5c1. This result
can be explained by the previous equations, where κ1 and
κ3 are functionally equal when we substitute the conditions
c2 = 5c1 and �1 = �3.

V. CONCLUSIONS

We have studied the emergent physics occurring in the
spin phases of BECs with point-group symmetries. By ex-
ploiting the condition that HF theory preserves self-consistent
symmetries, we developed a method based in the Majorana

representation of mixed states to completely characterize the
noncondensate fraction of atoms through minimum degrees
of freedom required for the full characterization of a given
point-group symmetry. Such characterizations can be applied
to any model with self-consistent symmetries even at finite
temperatures. In particular, we use them to review the multi-
polar magnetic moments of two families of spin phases, called
the | f , m〉 and NOON phases, respectively. We also apply it
to study some exotic phases associated with certain platonic
solids and that are known to support non-Abelian topological
excitations. In addition, we presented a systematic study of
the behavior of the phase boundaries of spin-2 BECs as a
function of the temperature. This method can be generalized
to investigate spin BEC phases in more complex scenarios. As
such, the only prerequisite is the existence of phases charac-
terized with a high-symmetry group, and that the application
of perturbation theory still keeps self-consistent symmetries.
For instance, it can be straightforwardly implemented for any
confinement trap. The approach can be also be extended to
study the spin phases in BEC systems in which the spatial and
spinorial parts of its wave function are no longer separable, as
occurs when we consider dipolar interactions [62], synthetic
spin-orbit coupling [63], or the dynamics of BEC spin phases
via time-dependent variations [64].
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APPENDIX A: CHARACTERIZATION OF THE GLOBAL
PHASE FACTORS IN THE MAJORANA REPRESENTATION

FOR MIXED STATES

The constellations plotted in Fig. 4 on the sphere of differ-
ent radii characterize the density matrix of the noncondensate
fraction up to the global phase factor of the ρσ vectors.
However, one can associate the global phase factor of ρσ

to an equivalence class of the set of half the points in the
constellation. All the details about this characterization are
given in Ref. [45]. Here we explain the basic notions and
the schematic procedure. Let us consider a vector ρσ of the
Majorana representation of a mixed state ρ, which we write
as a ket |ρσ 〉 to simplify the discussion. The state |ρσ 〉 has a
Majorana constellation Cσ with 2σ stars denoted by the tuple
of unit vectors (v1, . . . , v2σ ). The constellation Cρσ

has antipo-
dal symmetry, which implies that there exist subconstellations
of σ stars c = (vα1 , . . . , vασ

) such that

{c} ∪ {−c} = Cρσ
, (A1)

with −c = (−vα1 , . . . ,−vασ
). In general, {c} is not unique,

and the other choices can be written with respect to c invert-
ing the direction of some of its stars γc ≡ (γ1v1, . . . , γσ vσ ),
with γα = 1 or −1. Now we can define a spin-σ/2 state |zc〉
for each c via the Majorana representation. Analogously, the
antipodal tuple −c has associated a spin-σ/2 state that we
denote by |zTc 〉 ≡ T |zc〉 and it is completely defined by the
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FIG. 6. The two equivalence classes [±c] of the constellations
associated to the Majorana stars of a hexagon. Each class is associ-
ated to the global sign of the vector ±ρ3.

components of |z〉:

T |zc〉 =
∑

m

(−1) f +mt∗
−m | f , m〉 , for |zc〉 =

∑
m

tm | f , m〉 .

(A2)
Both states define a σ -spin state, denoted by |Zc〉, by its tensor
product projected on the totally symmetric subspace

|Zc〉 = APσ

( |zc〉 ⊗ ∣∣zTc 〉 )
, with Pσ =

∑
m

|σ, m〉 〈σ, m| ,
(A3)

where A is a positive normalization factor. Surprisingly, |Zc〉 is
independent of the global phase factor of |zc〉 [45]. Moreover,
|Zc〉 is equal to one of the possible options ± |ρσ 〉. Hence,
we can associate to each choice of ± |ρσ 〉, all the tuples c of
σ stars that define the same spin state ± |ρσ 〉 with the latter
procedure. It turns out that the tuples c that define |Zc〉 = |ρσ 〉
differ among themselves only by an even number of stars
[45]. We then can define two equivalence classes between the
subconstellations that satisfy Eq. (A1):

{
γc ⊂ C (σ )|γk = 1 or − 1 and

σ∏
k=1

γk = +1

}
,

{
γc ⊂ C (σ )|γk = 1 or − 1 and

σ∏
k=1

γk = −1

}
. (A4)

FIG. 7. Majorana representation of the noncondensate fractions
ρnc associated to the platonic phases of the spinor BEC. The set of
black stars constitutes a representative element of the equivalence
class [c] of ρσ .

Any element of any class produces the same spin state |ρσ 〉
with Eq. (A3) up to a global sign. On the other hand, only
elements of the same class produce the same vector ρσ , i.e.,
the same state and the same phase factor of ρσ . To exemplify
the method mentioned above, let us calculate the equivalence
class associated to a vector ρ3 with

ρ3m = (δm,3 + δm,−3)/
√

2. (A5)

Its Majorana constellation consists of six points that conform
a regular hexagon on the equator (see Fig. 6). Now, a tuple
of stars c that satisfies Eq. (A1) consists of three points, let
us say the black points of the first image of Fig. 6, which is
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associated to a spin-3/2 state equal to

|zc〉 = eiβ

√
2

(∣∣∣∣3

2
,

3

2

〉
+

∣∣∣∣3

2
,−3

2

〉)
, (A6)

where eiβ is a general global phase factor. The antipodal state
is given by Eq. (A2),

|zTc 〉 = e−iβ

√
2

(∣∣∣∣3

2
,−3

2

〉
−

∣∣∣∣3

2
,

3

2

〉)
, (A7)

and the respective spin-3 state |Zc〉 associated to the tuple c is
calculated using Eq. (A3),

|zc〉 ⊗ ∣∣zTc 〉 = 1

2

(∣∣∣∣3

2
,−3

2

〉
⊗

∣∣∣∣3

2
,−3

2

〉
−

∣∣∣∣3

2
,

3

2

〉
⊗

∣∣∣∣3

2
,

3

2

〉

+
∣∣∣∣3

2
,

3

2

〉
⊗

∣∣∣∣3

2
,−3

2

〉
−

∣∣∣∣3

2
,

3

2

〉
⊗

∣∣∣∣3

2
,−3

2

〉)

|Zc〉 = 1√
2

(|3, 3〉 + |3,−3〉), (A8)

where we use the basis transformation between coupled and
decoupled angular momentum states of spin 3/2. Therefore
the tuple c gives the same ρ3 given in Eq. (A5), and then its
equivalence class is given by all the constellations of three
points that differ from c by an even numbers of stars. All the
possible cases are plotted in Fig. 6. We also include in the
figure the other equivalence class [−c] which, by a similar
calculation as in Eq. (A8), gives the vector −ρ3.

In summary, a complete characterization of a mixed state
is the collection of 2 f constellations, each one on a sphere of
radii rσ and with one of the two possible equivalence classes
[±c] (A4), with c a representative element. We plot in Fig. 7
the examples of the complete characterization of the general
mixed states with a symmetry associated to a platonic solid
shown in Fig. 4. We use the vectors ρσ mentioned in the
main text Eqs. (38), (41)–(44) and we assume that rσ � 0.
We indicate a representative element of each equivalence class
with the black stars.

APPENDIX B: QUADRUPOLAR MAGNETIC MOMENT IN TERMS OF THE TENSOR OPERATORS

In this Appendix we calculate the components Nν1ν2 by using Eqs. (26)–(29),

Nzz = w2T 2
10 = w2

∑
l,m

χ (1, 1, l, f )clm
10,10T1m = 1

30

⎛
⎝10 f ( f + 1)

√
2 f + 1T00 +

√
5

(2 f + 3)!

(2 f − 2)!
T20

⎞
⎠, (B1)

Nxx = w2

2

[
− 2√

3
χ (1, 1, 0, f )T00 + χ (1, 1, 2, f )

(
T22 + T2−2 −

√
2

3
T20

)]

= f ( f + 1)
√

2 f + 1

3
T00 + 1

4
√

30

√
(2 f + 3)!

(2 f − 2)!

(
T22 + T2−2 −

√
2

3
T20

)
, (B2)

Nyy = f ( f + 1)
√

2 f + 1

3
T00 − 1

4
√

30

√
(2 f + 3)!

(2 f − 2)!

(
T22 + T2−2 +

√
2

3
T20

)
, (B3)

Nxz = Nzx = w2

2
χ (1, 1, 2, f )(T2−1 − T21) = 4√

30

√
(2 f + 3)!

(2 f − 2)!
(T2−1 − T21), (B4)

Nyz = Nzy = iw2

2
χ (1, 1, 2, f )(T2−1 + T21) = 4i√

30

√
(2 f + 3)!

(2 f − 2)!
(T2−1 + T21), (B5)

Nxy = Nyx = iw2χ (1, 1, 2, f )

2
(T2−2 − T22) = i

4
√

30

√
(2 f + 3)!

(2 f − 2)!
(T2−2 − T22). (B6)

APPENDIX C: FULL EXPRESSION OF THE κν ENERGIES AND THE CHEMICAL
POTENTIAL OF THE PHASES OF SPIN-2 BEC

We enlist the chemical potential and the κν energies following the same notation as in the main text.

1. FM case

μ(FM ) = c0(N + �2) + 2c1(2N + 2�2 − 2�0 − 3�−1 − 4�−2) + 2c2�−2

5
,

κ
(FM )
2 = (c0 + 4c1)Nc,
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κ
(FM )
1 = c0(�1 − �2) + c1(−4�2 − 2�1 + 3�0 + �−1 + 2�−2) + 2c2

5
(�−1 − �−2),

κ
(FM )
0 = c0(�0 − �2) + c1(−4N − 4�2 + 3�1 + 4�0 + 9�−1 + 8�−2) + 2c2

5
(�0 − �−2),

κ
(FM )
−1 = c0(�−1 − �2) + c1(−6N − 4�2 + �1 + 9�0 + 10�−1 + 14�−2) + 2c2

5
(�1 − �−2),

κ
(FM )
−2 = c0(�−2 − �2) + 2c1(−4N − 2�2 + �1 + 4�0 + 7�−1 + 10�−2) + 2c2

5
(N − �1 − �0 − �−1 − 2�−2). (C1)

2. P phase

μ(P) = c0(N + �0) + 6c1�1 + c2

5
(N + �0 − 2�1 − 2�2),

κ
(P)
2 = κ

(P)
−2 = c0(�2 − �0) + 4c1(�2 − �1) − c2

5
(N + �0 − 2�1 − 4�2),

κ
(P)
1 = κ

(P)
−1 = c0(�1 − �0) + c1(3N − 11�1 − 4�2) − c2

5
(N + �0 − 4�1 − 2�2),

κ
(P)
0 =

(
c2 + 5c0

5

)
Nc. (C2)

3. S phase

μ(S) = c0(N + �5) + 2c1(�2 + 2�4) + c2

5
(N − 2�2 − �3 − �4 + �5),

κ
(S)
1 = κ

(S)
2 = +c0(�2 − �5) + c1(N − 3�2 + 2�3 − 4�4) + c2

5
(−N + 4�2 + �3 + �4 − �5),

κ
(S)
3 = c0(�3 − �5) + 4c1(�2 − �4) + c2

5
(−N + 2�2 + 3�3 + �4 − �5),

κ
(S)
4 = c0(�4 − �5) − 4c1(−N + 2�2 + �3 + 2�4) + c2

5
(−N + 2�2 + �3 + 3�4 − �5),

κ
(S)
5 = (5c0 + c2)

5
Nc. (C3)

4. C case

The chemical potential is equal to

μ(C) = c0(N + �4) + 6c1�1 + 2c2

5
�3. (C4)

After we write ρnc in terms of the �ν , we can now calculate the HF equations given by the eigenvalues and eigenvectors equal
to Eq. (49),

κ
(C)
1 = κ

(C)
2 = κ

(C)
5 = c0(�1 − �4) + 2c1(N − 5�1) + 2c2

5
(�1 − �3),

κ
(C)
3 = c0(�3 − �4) + 2c2

5
(N − 3�1 − 2�3),

κ
(C)
4 = c0Nc. (C5)
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