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Scattering of one-dimensional quantum droplets by a reflectionless potential well
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We investigate both analytically and numerically the scattering of one-dimensional quantum droplets by a
Pöschl-Teller reflectionless potential well, confirming that there is a sharp transition between full reflection and
full transmission at a certain critical incident speed for both small droplets and large flat-top droplets. We observe
sharp differences between small quantum droplet scattering and large quantum droplet scattering. The scattering
of small quantum droplets is similar to that of solitons, where a spatially symmetric trapped mode is formed at the
critical speed, whereas for large quantum droplets a spatially asymmetric trapped mode is formed. Additionally,
a nonmonotonic dependence of the critical speed on the atom number is identified: On the small-droplet side,
the critical speed increases with the atom number, while in the flat-top regime, the critical speed decreases with
increasing atom number. Strikingly, the scattering excites internal modes below the particle-emission threshold,
preventing the quantum droplets from emitting radiation upon interaction with the potential. Analysis of the
small-amplitude excitation spectrum shows that as the number of particles increases, it becomes increasingly
difficult to emit particles out of the droplet during scattering, while radiation from solitons cannot be completely
avoided. Finally, we study the collision of two quantum droplets at the reflectionless potential, revealing the role
of the π -phase difference generator played by the reflectionless potential.
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I. INTRODUCTION

van der Waals theory shows that at high densities the liquid
state is created by a balance of interatomic attraction and
short-range repulsion. However, quantum droplet generation
in ultracold and very dilute atomic gases does not follow this
classical liquid concept [1–12], and the generation of quantum
droplets is purely a manifestation of quantum nature, where
the competition between mean-field (MF) interactions and
beyond-mean-field (BMF) corrections leads to stabilization of
the system in self-bound droplet states [13]. The BMF contri-
bution accounts for the leading correction to the ground-state
energy for a weakly interacting Bose gas [14,15], pioneered
by Lee, Huang, and Yang [16], which stabilizes the gas to
prevent collapse due to MF effects, hence termed the Lee-
Huang-Yang (LHY) correction. The new type of self-bound
quantum liquid states has been realized experimentally in
short-range interacting homonuclear [1–3] and heteronuclear
[4,5] bosonic mixtures and in dipolar gases [6–12], manifest-
ing the crucial role played by the BMF quantum fluctuation
(see recent reviews in [17–19] and references therein). Fo-
cusing on short-range interacting droplets, theoretical and
experimental studies have been carried out on their dynamical
formation [2,20,21], the crossover from droplet to gaseous
Bose-Einstein condensate [3,22,23], higher-order quantum
and thermal fluctuations [24,25], and collision dynamics [26].

*Corresponding author: xiaobingluo2013@aliyun.com

The dimensional crossover for the BMF correction in Bose
gases has also been analyzed in detail [27–29]. The BMF con-
tribution comes from the zero-point energy of all Bogoliubov
modes, which is heavily dependent on the density of states
and thus on the dimensionality of the system. Correspond-
ingly, the sign and the structure of the BMF terms differ in
the different dimensional geometries [30]. One-dimensional
(1D) droplets, governed by attractive LHY corrections, differ
fundamentally from 3D and 2D droplets (with repulsive LHY
corrections) [30]. In particular, the stability of 1D quantum
droplets has significant advantages, as the three-body loss in a
1D droplet is greatly reduced compared to its 3D counterpart
[27,31]. To date, within the framework of the modified Gross-
Pitaevskii equation [30,32,33], the behaviors of 1D quantum
droplets, such as collective excitations and dynamics [34–37],
confinement [38,39], the effects of Rabi [40] or spin-orbit
couplings [41,42], and nonequilibrium properties [43], have
been extensively studied. Interestingly, however, scattering
of one-dimensional quantum droplets remains largely unex-
plored [44].

One of the most fascinating phenomena of bright solitons
that occurs in nonautonomous nonlinear systems is quan-
tum reflection, which portrays the wave nature of solitons
when scattered by surfaces or steps [45–48], potential barri-
ers [49–55], potential wells [56–61], and impurities [62–67].
Experimentally, potential wells (barriers) can be created by
illuminating a condensate with a red (blue)-detuned laser
beam. So far, experiments have reported reflections of solitons
from potential wells [68], reflections from barriers [69], and
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the use of narrow barrier-splitting solitons for the design of
soliton interferometers [70]. The wave-particle duality of the
soliton makes it possible for the soliton to undergo a quan-
tum reflection from an attractive potential well and yet still
retain its particlelike integrity to a large extent [58]. In such a
phenomenon, even without classical turning points, quantum
reflection may occur as the soliton approaches the poten-
tial, which can be understood by the formation of a trapped
mode at the center of potential [59,61,65]. A well-known
example is the bright soliton of the nonlinear Schrödinger
equation (NLSE) scattering from the Pöschl-Teller reflection-
less potential well [58,60,61]. In the case of solitons scattering
from the reflectionless potential, quantum reflection occurs
only below a critical initial speed, with a sharp transition
between quantum reflection and transmission. An accurate
calculation of the critical speed has been proposed by deter-
mining the profile and energy of the trapped mode using a
variational method with an ansatz of a soliton whose density
profile is spatially symmetric with respect to the potential cen-
ter. Such studies enabled the understanding of the mechanism
of soliton energy exchange during scattering and will help
in the implementation of future all-optical technologies such
as soliton diodes and logic gates [71–73]. One-dimensional
quantum droplets, as macroscopic manifestations of quantum
fluctuations, are predicted to exhibit a number of appealing
properties, such as collisional features, collective excitations,
and shapes (e.g., a liquidlike incompressible phase with a
flat-top density profile, highlighted by a uniform bulk density,
appears at large particle numbers), which are fundamen-
tally different from those of one-dimensional bright solitons.
Given the striking differences in the properties of solitons and
droplets, it is natural to ask the following questions of general
interest regarding the scattering of quantum droplets from the
reflectionless potential: Does the sharp transition from quan-
tum reflection to full transmission also occur in the scattering
of quantum droplets, as it does in the scattering of bright
solitons of the NLSE? If yes, what are the unconventional
features in quantum droplet scattering?

In the present work, we comprehensively study the scat-
tering of quantum droplets by the Pöschl-Teller reflectionless
potential well. We confirm that quantum reflection occurs,
with a sharp transition between full reflection and full trans-
mission at a critical initial speed, both for small droplets with
a sech2 shape and for large droplets with a broad flat-top
plateau. Our study shows that quantum droplets can be either
completely reflected or completely transmitted off the reflec-
tionless potential without any splitting or particle emission.
The 100% reflectivity or 100% transmittance without any
radiation when interacting with the reflectionless potential is
a peculiar feature of quantum droplets, which is not really
accessible to the scattering of solitons (especially large soli-
tons). Our numerical simulations show that the trapped mode
(i.e., full trapping by the potential at the critical speed) of
the quantum droplets turns out to be spatially asymmetric
at large particle numbers, which differs from the counterpart
of small quantum droplets and solitons and can be captured
by a variational method with a position-dependent trial wave
function. We also precisely determine the critical speeds for
the quantum reflection of the droplet, showing a different
dependence of the critical speed on the atom number for

small and large droplets, and explain why the quantum droplet
experiences no radiation or particle loss during scattering by
analyzing the collective excitations of the quantum droplet.

The rest of the paper is organized as follows. In Sec. II we
give the exact solution of quantum droplets in free space and
discuss the properties of quantum droplets in the two limits
of large and small atom numbers. In Sec. III we define the
reflection and transmission coefficients and study the scatter-
ing of quantum droplets numerically. In Sec. IV we use three
methods to calculate the critical speed below which quantum
reflection occurs and analyze the formation of the unbalanced
trapped modes (the nonlinear single-node stationary states)
of the large quantum droplets with a flat-top density pro-
file. In Sec. V we analyze the collective excitations during
the scattering of quantum droplets. In Sec. VI we study the
collisions between two quantum droplets at the Pöschl-Teller
reflectionless potential well. We summarize and discuss our
main findings in Sec. VII.

II. SOLUTIONS OF QUANTUM DROPLETS

We consider a two-component Bose-Bose mixture with
equal mass symmetry, with mutual repulsion between atoms
of the same component g↑↑ = g↓↓ = g0 > 0, with mutual at-
traction between atoms of different components g↑↓ < 0 and
an equal number of particles of both components N↑ = N↓ =
Ñ/2. Near the MF collapse point (δg= g↑↓ + √

g↑↑g↓↓ � g0),
the energy of the homogeneous mixture can be found and the
Gross-Pitaevskii equation (GPE) is derived as [30,34,36]

ih̄
∂�(x, t )

∂t
= − h̄2

2m

∂2�(x, t )

∂x2
+ δg

2
|�(x, t )|2�(x, t )

−
√

m

π h̄
g3/2

0 |�(x, t )|�(x, t ), (1)

with total atom number Ñ = ∫ ∞
−∞ |�(x)|2dx, where the last

term on the right-hand side of Eq. (1) corresponds to the LHY
term, which is the first-order BMF correction term accounting
for the quantum many-body effect in the weakly interacting
regime (g0/n � 1, where n is the total density of the compo-
nent). In experiments, it is possible tune δg to positive and
negative values. Here we define the relative change of the
mean-field intensity g = δg/δg0 (where δg0 > 0 is a constant)
to discuss a more general solution of Eq. (1). By defining

the length ξ0 = π h̄2δg1/2
0

2mg3/2
0

, the time t0 = π2 h̄3δg0

4mg3
0

, and the energy

E0 = 4mg3
0

π2 h̄2δg0
as the characteristic units, Eq. (1) can be written

in a dimensionless form

iψt = − 1
2ψxx + g|ψ |2ψ − |ψ |ψ, (2)

with the norm defined by N = ∫ ∞
−∞ |ψ (x)|2dx =

πÑ
2 (δg0/g0)3/2. Regardless of the sign of g, the attractive

BMF term allows the system to admit a self-bound ground
state [30,36] in the form of ψ (x, t ) = ψ0(x)e−iμt , with

ψ0(x) = −3μ

1 +
√

1 + 9μg
2 cosh(

√
−2μx2)

. (3)
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The relation between the chemical potential μ and norm N of
the droplet depends on the sign of g and is given by

Ng=0 = 3
√

2(−μ)3/2, (4)

Ng<0 = n0

√
2

μ0

(√
− μ

μ0
− arctan

√
− μ

μ0

)
, (5)

Ng>0 = n0

√
− 2

μ0

(
ln

1 + √
μ/μ0√

1 − μ/μ0
−

√
μ

μ0

)
. (6)

In Eqs. (5) and (6), μ0 = −2/9g and n0 = 4/9g2 are the
chemical potential and the saturation density of a spatially
uniform liquid at g > 0, respectively. When g = 0, Eq. (3)
represents the known Korteweg–de Vries (KdV)-type droplet
solution

ψ0(x) = −3μ

2
sech2

(√−μ

2
x

)
. (7)

In our work, we focus on the g > 0 case. The first thing
we need to understand is the nature of the free quantum
droplet solution when g > 0. It is worth noting that for g > 0,
0 �

√
1 + 9μg

2 < 1 in Eq. (3), the characteristics of quantum
droplets can be analyzed using the formula tanh(a + X ) +
tanh(a − X ) = 2 tanh(2a)

1+sech(2a) cosh(2X ) , by which the ground-state
solution of the droplet can be written as

ψ0(x) =
√

A[tanh(a +
√

Agx) + tanh(a −
√

Agx)], (8)

where

A = −μ

2g
, (9)

a = 1
2 arctanh

[(− 9
2μg

)1/2]
. (10)

From Eqs. (6) and (10) we have μ(N → ∞) = − 2
9g ,

μ(N → 0) = 0, − 2
9 < μg < 0, and a ∈ (0,∞), which

increases with N . For a large quantum droplet, which corre-
sponds to a large value of a, Eq. (8) gives rise to the wave
function of large-size droplets characterized by the kink struc-
tures at the edges as well as a uniform flat-top structure in the
middle,

ψmiddle = 2
√

A, (11)

ψkink =
√

A

[
tanh

(
a ∓

√−μ

2
x

)
+ 1

]
. (12)

For quantum droplets with a small value of a (a � 1), the
solution (8) can be approximated by Taylor expansion as

ψ0(x) ≈ 2a
√

A sech2

(√−μ

2
x

)
, (13)

which is found to feature a similar density profile to the KdV-
type droplets.

We show analytically that, upon variation of a (which
vanishes when g = 0), two physically distinct regimes, small
droplets of sech2 shape and large droplets with a flat-top
plateau, can be identified. From the analytical expressions
(11)–(13), we observe sharp differences between the sech2-
shaped and flat-top droplets. It can be seen that for small

droplets with a � 1, as
√−μ/2 grows with N , the width of

the sech2-shaped droplets becomes narrower and they behave
like bright solitons. In contrast, for large quantum droplets
with a � 1, the MF term repulsion effect becomes significant,
leading to the separation of kink and antikink pairs and thus to
the formation of kink structures at the edges and flat-top struc-
tures in the center. In this case, the width of flat-top droplets
will instead increase with the norm N , which is similar to the
classical liquid, where a plateau in the density profile expands
with the growth of the mass of the droplet.

III. SCATTERING OF QUANTUM DROPLETS

In the preceding section we explored analytically the
ground states of a one-dimensional free-space quantum
droplet system, and in this section we consider the scattering
of strictly one-dimensional quantum droplets by a reflection-
less Pöschl-Teller attractive potential V (x) = −U0 sech2(αx)
(α = √

U0 is necessary for reflectionless scattering of linear
matter waves), whose dynamics is governed by the GPE con-
taining the external potential

iψt = − 1
2ψxx + g|ψ |2ψ − |ψ |ψ − U0 sech2(αx)ψ, (14)

where U0 is expressed in units of E0. Note that δg0 is an
arbitrary constant used as a measure. In this paper we choose
g = 0 (corresponding to δg = 0) and g = ±1 by assuming
δg0 = |δg| so that the droplet properties can only be controlled
by the rescaled norm N together with the sign of g. Due to the
invariance of the system under Galilean transformations, the
exact movable quantum droplet solution of the dimensionless
GPE (2) can be obtained from the stationary solution as

ψ (x, t ) = −3μ ei[(x−x̃0 )v+(v2/2)t−μt )]

1 +
√

1 + 9μg
2 cosh[

√
−2μ(x − x̃0)2]

, (15)

where v and x̃0 are the initial speed and initial position of
the quantum droplet, respectively. We study the scattering
of quantum droplets by numerically solving Eq. (14) with
ψ (x, 0) in Eq. (15) as the initial profile, based on the split-step
Fourier (SSF) method. To get started, we define the corre-
sponding reflection (R) and transmission (T ) coefficients as

R = (1/N )
∫ −l

−∞
|ψ (x, t f )|2dx, (16)

T = (1/N )
∫ ∞

l
|ψ (x, t f )|2dx, (17)

where l is the length greater than the width of the potential
well and t f is the evolution time needed to make the scattered
quantum droplets sufficiently distant from the potential well.

Figure 1 shows the numerical results of reflection (red
dashed lines) and transmission (blue solid lines) coefficients
versus the initial speed of a quantum droplet scattered by the
reflectionless attractive potential. It can be seen that there is a
sharp transition between full transmission and full reflection
with a well-defined critical speed for both large and small
quantum droplets. This is directly demonstrated by the spa-
tiotemporal density plots of quantum droplets for two different
norms N = 1 [Figs. 2(a)–2(c)] and N = 10 [Figs. 2(d)–2(f)],
where two main outcomes of the scattering are distinguished,
depending on the incident speeds. When the incident speed
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FIG. 1. Reflectance (red dashed line) and transmittance (blue
solid line) versus the initial speed of a quantum droplet scattering by
a reflectionless potential for (a) a small quantum droplet with N = 1
and (b) a large quantum droplet with N = 10. The other parameters
are U0 = 4, α = √

U0, g = 1, and x̃0 = −30. Quantities plotted in all
the figures are dimensionless.

is below the critical speed, the quantum droplet experiences
nonclassical full reflection. The critical speed is then found
numerically by increasing the incident speed until the duration
of the quantum droplet trapped by the potential reaches the
maximum length. When the incident speed exceeds the critical
speed, the quantum droplet gets fully transmitted. Importantly,
there is a striking difference in the trapped modes between the
small and large droplets. The trapped modes of large droplets
are found to be spatially asymmetric with respect to the center
of the potential, which contrasts with the counterparts of small
droplets. Another exotic property is that although the large
flat-top droplet can be very wide, it scatters from the potential
well without any splitting or radiation, so reflectance and
transmittance can reach 100%.

In Fig. 3 we present the phase evolution of the small droplet
[Fig. 3(a)] and the large droplet [Fig. 3(b)], corresponding to
the density evolution in Figs. 2(b) and 2(e) at the incident
speed close to the critical speed, where the quantum droplets
are fully trapped by the potential for a long time period during
the scattering process. In both the small- and large-droplet
cases, the phase evolution shows that a significant phase step
close to π appears at density dips, as the quantum droplets
develop a single-node density distribution during the scatter-
ing process. As we will see later, the phase jump of π across
the density dip plays an important role in the analysis of the
quantum droplet scattering.

IV. CRITICAL MODES IN THE QUANTUM DROPLET
SCATTERING PROCESS

The occurrence of quantum reflections indicates the exis-
tence of a zero-speed state during scattering, which represents
the instantaneous state of the turning point of quantum reflec-
tion. Here we define the state of v(x = x0) = 0 (the velocity
turning point) during the quantum reflection as the zero-speed
state φ(x − x0) (where x0 is the position of droplet peak at the
velocity turning point). The energy Ez of the zero-speed state
can be calculated from the energy functional

Ez(x0) =
∫ +∞

−∞

[
1
2 |φx|2 + g

2 |φ|4 − 2
3 |φ|3 + V (x)|φ|2]dx.

(18)

As the quantum droplet is initially far away from the po-
tential well, the potential energy is very small and negligible.
Thus, the initial energy of the quantum droplet, calculated
from Eq. (14) with the initial profile ψ (x, 0), can be given
by

Ed =
∫ +∞

−∞

(
1

2
|ψx|2 + g

2
|ψ |4 − 2

3
|ψ |3

)
dx

= 1

2
Nv2 +

∫ +∞

−∞

(
1

2
|(ψ0)x|2 + g

2
|ψ0|4 − 2

3
|ψ0|3

)
dx

= 1

2
Nv2 + Esd, (19)

where Esd is the energy of the stationary droplet in the form of
Eq. (3). Given a droplet in free space with an initial speed v,
its quantum reflection occurs at the position where the droplet
energy in the reflectionless potential equals the initial energy.
Energy conservation relates these energies as

Ez(x0) = 1
2 Nv2 + Esd. (20)

The energy of the zero-speed state is increased with the
initial speed of the droplet. It reaches a maximum value at the
critical speed, above which the droplet gets transmitted. Thus,
the critical speed can be computed numerically by increasing
the initial droplet speed such that the zero-speed state of max-
imum energy can be reached. Analytically, the critical speed
can be derived from Eq. (20) as

vc =
√

2[(Ez )max − Esd]

N
, (21)

where (Ez )max stands for the maximum value of Ez(x0). Quan-
tum droplets with different initial speeds produce different
zero-speed states at different locations during quantum reflec-
tion. To describe the zero-speed state at different positions, we
propose the position-dependent trial function

φ(x) = Aψ0[γ (x − x0)] tanh(βx), (22)

where γ and β are the variational parameters, with β account-
ing for the central slope and γ the overall width of the mode,
and x0 denotes the position of the zero-speed state. Here the
choice of the trial wave function (22) with a node given by
tanh(x) is justified by this phase jump of π as illustrated in
the phase plot of Fig. 3. We normalize the trial function to N ,
yielding

A(γ , β, x0) =
(

N∫ +∞
−∞ |ψ0[γ (x − x0)] tanh(βx)|2dx

)1/2

.

(23)
The energy functional for the zero-speed state can be

calculated by substituting the normalized trial function (22)
into Eq. (18). However, the integration cannot be obtained in
analytical form. Thus, we make the integral in Eq. (23) and
the similar integral in the energy functional (18) be computed
numerically in terms of γ and β. By plotting Ez[γ , β] for
specific values of N , g, x0, and U0, the results show that
Ez[γ , β] has a local minimum at γ = γ ∗ and β = β∗. The
minimum energy Ez[γ ∗, β∗] obtained in this way is supposed
to be the energy of the zero-speed state at x0. Substituting
Ez = Ez[γ ∗, β∗] into Eq. (20), we can get the initial speed
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FIG. 2. Scattering of quantum droplets at different speeds by a reflectionless potential centered at x = 0 for (a)–(c) small quantum droplets
(N = 1) and (d)–(f) large quantum droplets (N = 10). The initial speeds of the quantum droplets are (a) v = 0.08, (b) v = vc ≈ 0.0928757,
(c) v = 0.095, (d) v = 0.03, (e) v = vc ≈ 0.03532, and (f) v = 0.04. The other parameters are U0 = 4, α = √

U0, g = 1, and x̃0 = −30.

that produces a zero-speed state at the given position x0 in
the quantum reflection process. According to Eq. (21), the
energy Ez[γ ∗, β∗] maximum in terms of x0 gives the crit-
ical speed above which transmission occurs. A similar but
position-independent variational solution has been used to
accurately predict the critical speed between reflection and
transmission of bright solitons in the reflectionless potential
[61].

FIG. 3. Phase evolution of (a) the small droplet and (b) the
large droplet at v ≈ vc, corresponding to the density evolution as in
Figs. 2(b) and 2(e), respectively.

In Fig. 4 we plot the energy of zero-speed state versus
x0 using the variational method with the trial function (22).
Figure 4 shows that the energy of the zero-speed state does
indeed have a maximum at certain values of x0. Substituting
these maximum energy values into Eq. (21) yields the criti-
cal speed. The energy of zero-speed states exhibits left-right
symmetry, because the quantum droplet can be launched from
either the left or the right. The zero-speed states with maxi-
mum energy with respect to x0 are also called trapped modes,
because at the critical speed the quantum droplet remains
inside the potential indefinitely during scattering. Since these
trapped modes have an energy functional corresponding to
a maximum rather than a minimum with respect to x0, they
are unstable against small perturbations in their position. If
the speed of the incident droplet is slightly shifted from the
critical speed, a trapped mode is temporarily formed during
the scattering process and a quantum droplet is then ejected
from the potential and gets fully transmitted or reflected. This
instability explains the sharpness of the transition between full
transmission and full reflection. The duration of the trapped
mode increases as the initial speed gets closer to the criti-
cal speed. As observed in Figs. 2(b) and 2(e), when v ≈ vc,
the droplet can be completely trapped by the potential for a
considerably long time. If initially prepared with precision,
the trapped mode can exist for an indefinitely long period
of time in the absence of any external and computational
perturbations, thus representing an exact nonlinear eigenstate
of the system.

As can be seen from Figs. 4(a) and 4(b), for small
quantum droplets, the energy maximum is at the center of
the potential x0 = 0, while for large quantum droplets the
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FIG. 4. Dependence of the energy of zero-speed states on
position x0 derived from the variational method using the position-
dependent trial function (22) for (a) a small quantum droplet (N = 1)
and (b) a large quantum droplet (N = 10). The other parameters are
U0 = 4 and g = 1. The energy maxima with respect to x0, marked by
red dots, represent the trapped modes corresponding to the nonlinear
single-node stationary states of the governing GPE (14). Also shown
are the profiles of the trapped modes: (c) the unstable symmetric
trapped mode corresponding to the point (0, −0.1374), as shown in
(a), and (d) the unstable asymmetric trapped mode corresponding to
the point (−8,−2.1179), as shown in (b).

maximum-energy point is displaced from the center of the
potential. The trapped mode, corresponding to an energy
maximum in terms of x0, can be obtained for the small and
large quantum droplets by using three numerical methods, as
shown in Figs. 4(c) and 4(d). Our first numerical procedure to
calculate the trapped mode starts by solving Eq. (14) using the
SSF method, where the incident droplet speed is adjusted until
the droplet is trapped in the potential for a substantial amount
of time. The variational method (VM) is the second method of
calculating the trapped mode based on the trial wave function
(22) as described in detail at the beginning of this section, and
the third method involves calculating the nonlinear stationary
state of Eq. (14) using a square operator method (SOM) [74].
As can be seen in Figs. 4(c) and 4(d), the trapped mode
profiles obtained by the three methods are basically identical.
For the small solitonlike droplet, the trapped mode has a
symmetric shape as shown in Fig. 4(c), whereas the trapped
mode of the large quantum droplet has an asymmetric density
profile as shown in Fig. 4(d). Inspections also show that the
profile of the asymmetric trapped mode for the large droplet
obtained by VM is not as accurate as that obtained by the SSF
method and the SOM.

Once the trapped mode and its energy have been de-
termined, we can calculate the critical speed by means of
Eq. (21). In Table I we list the numerical values of the critical
droplet speed calculated by these three numerical methods. A
good match can clearly be seen in the table.

In Fig. 4(b) we are surprised to find that there is a lo-
cal energy minimum at x0 = 0 for a large quantum droplet,
corresponding to a stable spatially symmetric eigenstate of

TABLE I. Three methods to solve the critical speed.

Critical speed vc

N SSF VM SOM

0.1 0.0568 0.059008912 0.0567048776
0.3 0.0811 0.075073377 0.0811317970
0.5 0.0900 0.089720945 0.0899700200
0.6 0.0921 0.095240699 0.0920241325
0.8 0.0935 0.096590948 0.0935224949
1 0.0928 0.095695377 0.0928252791
2 0.078 0.080108024 0.0784391394
4 0.055 0.053647658 0.0555275841
6 0.045 0.043133578 0.0453212798
8 0.039 0.037331779 0.0390179123
10 0.035 0.033341549 0.0351731171
12 0.031 0.030435107 0.0312519825
14 0.029 0.028031223 0.0290528706
16 0.027 0.026326940 0.0273519847

the governing GPE (14). However, its energy is lower than
the energy of the unstable trapped mode. This suggests that
when a large quantum droplet is scattered by the reflectionless
potential at the critical speed, an unstable asymmetric trapped
mode is excited instead of the stable symmetric nonlinear
eigenmode. For initial speeds above the critical speed, the
energy of the incoming droplet is large enough to pass through
the potential and thus the large droplet is not trapped in the
symmetric eigenmode of the nonlinear system. To confirm
the stable spatially symmetric eigenmode of the large droplet
predicted by the variational method, we first numerically ob-
tain the symmetric stationary mode of Eq. (14) by the square
operator iteration method using the variational solution as the
initial seed and then give the propagation of the symmetric
stationary mode, which is invariant with time as expected, as
illustrated in Fig. 5(a). By imposing the symmetric stationary
mode with a low initial speed, as seen in Fig. 5(b), the prop-
agation simulation shows that this state oscillates back and
forth around the equilibrium point x = 0 and neither reflection
nor transmission occurs, as its energy is lower than the two
peaks marked by red dots in Fig. 4(b). This further validates
the stability of such a symmetric eigenmode for large flat-top

FIG. 5. (a) Top view of the spatiotemporal density evolution of
the stable symmetric nonlinear stationary state of Eq. (14) obtained
by the square operator method, corresponding to the marked point
(0, −2.11829) for the large quantum droplet, as shown in Fig. 4(b),
obtained by the variational method. (b) Density evolution of the
symmetric nonlinear stationary state as shown in (a), with an initial
speed v = 0.01. The other parameters are U0 = 4 and g = 1.
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FIG. 6. Critical speed vc versus (a) potential well depth U0 and
(b) norm N . The black lines with triangles represent the results
obtained from the numerical simulation of Eq. (14) using the SSF
method and the red lines with asterisks represent the results obtained
by the variational method.

quantum droplets. The results of the variational approach also
show the existence of zero-speed states with energies lower
than the energy of the stationary quantum droplets, as shown
by the dips in Figs. 4(a) and 4(b). However, these low-energy
states are not excited during the scattering process because
the incoming quantum droplets far from the potential have
higher energy than these low-energy zero-speed states. The
physics of these low-energy states will be discussed in detail
elsewhere.

In Fig. 6(a) we report the value of the critical speed as a
function of the potential well depth U0, comparing the results
for small and large N derived from both the VM solution
and the exact numerical solution using the SSF method. As
expected, the critical speed is well captured by the VM for a
wide range of relatively small U0 (roughly U0 < 10). As the
potential well depth increases progressively, the VM becomes
inapplicable. Figure 6(b) shows the dependence of the critical
speed on the size of the droplet. There is a nonmonotonic
dependence, with the largest critical speed reached at N ≈ 1.
For small N , the critical speed increases with the increase
of N , which is the same as in the case of bright solitons.
However, the dependence of the critical speed of the droplet
on the atomic number is reversed when the droplet is in the
flat-top regime. It can be seen that for larger N , the critical
speed of the droplet decreases with increasing N . This is a
unique feature in comparison to the 1D soliton, where the crit-
ical speed is only found to increase with N . This peculiarity
occurs because of a transition from small droplets with a sech2

shape to large droplets with a flat-top plateau. A small droplet
has an approximately sech2 shape with decreasing width as
N increases, while in the opposite limit, unlike its 1D soliton
counterpart, the size of large droplets grows with N . As can
be seen in Fig. 6(b), the VM is able to accurately predict
the critical speed even for large droplets with flat-top density
profiles.

V. COLLECTIVE EXCITATION OF QUANTUM DROPLETS
IN THE SCATTERING PROCESS

As is well known, internal modes are linear eigenmodes
inherent to stable localized nonlinear states in nonintegrable
systems, which are responsible for the internal oscillations
of the nonlinear states. Further careful examination of the
scattering dynamics shows that the quantum droplet size ex-
hibits extremely small (invisible to the naked eye) internal

FIG. 7. (a) Initial speed v versus breathing mode frequency ωb

with different norms N = 1 (orange dashed line) and N = 10 (blue
solid line). The red closed circles mark the breathing mode frequen-
cies at the critical speeds for the quantum reflection of the quantum
droplets for the cases N = 1 and 10. (b) Frequency ωb versus norm
N . The red open circles show the numerically calculated excitation
frequency [i.e., the oscillation frequency of X (t )] after scattering
and the blue solid line is the breathing mode frequency obtained
by solving the BdG equation. The other parameters are U0 = 4 and
g = 1.

oscillations after scattering, which should be responsible for
internal mode excitation. The breathing mode is the lowest
internal mode which manifests as a periodic oscillation of
the quantum droplet size. Deeper insight into the differences
between the scattering states of the small and large quantum
droplets can be gained by examining the collective excitation
frequencies. To determine the frequency ωb of the breathing
mode, we numerically compute the time evolution of the stan-
dard deviation X =

√
〈(x − x)2〉, which measures the size of

the quantum droplet, and then use frequency spectrum analy-
sis to obtain the oscillation frequency of X (t ). In Fig. 7(a) ωb
is plotted as a function of the initial speed for fixed values of
N = 1 and 10. We observe that the frequency of the breathing
mode excited during scattering is independent of the initial
speed and that the same breathing mode is excited whether the
droplet is fully reflected or transmitted. Figure 7(b) presents
the dependence of the resultant breathing mode on the size
of droplet. It can be seen that on the small-droplet side the
breathing mode frequency increases with N , whereas on the
flat-top-droplet side the breathing mode frequency decreases
with increasing N .

To further demonstrate that the oscillatory behavior of a
quantum droplet scattered from a localized potential is as-
sociated with the existence of internal mode, which can be
treated as a localized linear excitation connected to the self-
bound ground state of Eq. (2), we linearize the GPE (2)
around the ground state given by Eq. (3). Writing ψ (x, t ) =
e−iμt {ψ0(x) + ∑

η[uη(x)e−iωηt + v∗
η (x)eiω∗

ηt ]} and substituting
it into Eq. (2), the Bogoliubov-de Gennes (BdG) equation is
obtained by linearization,[

T M
−M −T

][
uη(x)
vη(x)

]
= ωη

[
uη(x)
vη(x)

]
, (24)

where

T = −∂2
x /2 − μ + 2gψ2

0 − 3
2ψ0,

M = gψ2
0 − 1

2ψ0. (25)

We solve Eq. (24) numerically and find that there can be
discrete eigenfrequencies ωη, denoted by the integer η, which
are associated with the internal dynamics of the matter wave.
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FIG. 8. (a) Ratio of the discrete Bogoliubov frequency ωη to the
particle emission threshold −μ as a function of sgn(g)N [where
sgn(g) is the sign of g]. (b) Ratio of the discrete Bogoliubov fre-
quency ω2 to the particle emission threshold −μ as a function of N
at g = 0.

The localized eigenfunctions [uη(x), vη(x)]T , corresponding
to real values of ωη, are known as internal modes of the non-
linear system. The breathing mode with η = 2 is the lowest
nontrivial collective mode in our setup.

The ratio of the discrete Bogoliubov frequencies ωη to the
particle emission threshold −μ as a function of sgn(g)N is
shown in Fig. 8(a). Here the sgn(δg)N is introduced because
the properties of the droplet are governed by the combina-
tion of the rescaled atom number N and the sign of δg. The
main results of the excitation spectrum are (i) the breathing
mode of the quantum droplet (g > 0) is always below the
particle emission threshold, (ii) there are more internal modes
below the particle emission threshold with increasing N for
positive g and thus higher internal modes are easily excited

for large quantum droplets, and (iii) the ratio ωη/|μ| tends to
+1 for large negative sgn(g)N where the droplet crosses over
to soliton, indicating that 1D solitons do not sustain small-
amplitude collective (internal) modes, but only the continuum
spectrum. When g = 0, we arrive at a GPE with a rather
unusual quadratic-only nonlinearity, where the ratio of the
breathing mode frequency to the particle emission threshold
is equal to 0.8904, independent of N , as shown in Fig. 8(b).
These results have been reported in Ref. [36]. In Fig. 7(b)
we compare the breathing mode frequency ω2 with the os-
cillation frequency extracted from the periodic oscillation of
the droplet width quantified by X (t ) and find good agreement
between them. This agreement confirms that the scatter-
ing of the quantum droplets results in the excitation of the
internal mode.

As shown in Fig. 6, when the quantum droplet scatters
off a sufficiently deep reflectionless potential, the variational
method no longer works. However, even for large potential
depth U0 = 25, there is still a sharp transition between full
transmission and full (quantum) reflection for both small
(N = 1) and large (N = 10) quantum droplets, as illustrated
in Figs. 9(a) and 9(d), respectively. We also examine the spa-
tiotemporal evolution of the density of quantum droplets for
the initial speed slightly below [Figs. 9(b) and 9(e)] and above
[Figs. 9(c) and 9(f)] the respective critical speeds for small
droplets [Figs. 9(b) and 9(c)] and large droplets [Figs. 9(e)
and 9(f)]. We observe that the droplets are more excited when
the potential well depth is large. Nevertheless, the droplets
almost maintain their integrity after scattering. In this case,

FIG. 9. Scattering of quantum droplets by a reflectionless potential well with a large potential depth for (a)–(c) the small (N = 1) and
(d)–(f) the large (N = 10) quantum droplets: (a) reflectance (red dashed line) and transmittance (blue solid line) versus the initial speed of
quantum droplet with N = 1, (b) quantum reflection of the small droplet with the initial speed v = 0.17, (c) transmission with v = 0.171,
(d) reflectance (red dashed line) and transmittance (blue solid line) versus the initial speed of quantum droplet with N = 10, (e) quantum
reflection of the large droplet with the initial speed v = 0.0853, and (f) transmission with v = 0.086. The other parameters are U0 = 25,
α = √

U0, g = 1, and x̃0 = −35. Here the potential depth U0 is very large in comparison to Fig. 2.
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FIG. 10. (a)–(c) Collisions between two quantum droplets (N1 = N2 = 1) in free space, launched as Eq. (26), for U0 = 0 and (a) ϕ = π ,
(b) ϕ = 3π/2 and (c) ϕ = 0. (d)–(f) Collisions between two quantum droplets (N1 = N2 = 1) in the presence of reflectionless potential well
centered at x = 0 for U0 = 4 and (d) ϕ = 0, (e) ϕ = π/2, and (f) ϕ = π . In these figures, v = 0.1 is fixed.

the trapped mode cannot be correctly captured by the trial
function used in the variational method. For small quantum
droplets, the condition ωη < −μ is marginally satisfied, i.e.,
only the breathing mode exists below the particle emission
threshold. In general, when the droplet scatters from the re-
flectionless potential, the radiation is completely absent. This
is due to the fact that the internal mode always occurs for
quantum droplets. Only when the potential depth is suffi-
ciently large can the small quantum droplets be excited to
the continuum spectrum, resulting in vanishingly small emis-
sion of particles out of the droplet, as shown in the inset of
Fig. 9(a). For large quantum droplets, however, more internal
modes will stay below the particle emission threshold. The
excitation of higher internal modes inhibits the loss of particle
number, allowing the droplet to traverse the scattering re-
gion with probability one even for sufficiently large potential
depths. This property of complete transmission and complete
reflection is quite different from the scattering of solitons with
a large number of particles, where such a large object may
become radiated and be partially trapped by the potential due
to the fact that the soliton width shrinks as N increases. As a
matter of fact, for soliton scattering, it is impossible to com-
pletely avoid the radiation, because the 1D soliton supports no
small-amplitude collective (internal) modes.

VI. COLLISIONS BETWEEN TWO DROPLETS
AT THE REFLECTIONLESS POTENTIAL

Low-energy collisions of two interacting quantum droplets
can cause them to merge, repel, or evaporate by manipulat-
ing the quantum phases [75]. The dynamics of interacting
quantum droplets is closely related to the relative phases of

the two droplets. The scattering of quantum droplets at the
reflectionless potential induces a phase change, which is ex-
pected to play an important role in the collision dynamics
when the quantum droplets collide at the reflectionless po-
tential. To probe the effect of the reflectionless potential on
quantum droplet collisions, we simulated Eq. (14) using the
SSF method, selecting two oppositely moving droplets as the
initial condition,

ψ (x, 0) = eivx+ϕψ1(x + x̃0) + e−ivxψ2(x − x̃0), (26)

where ψ1(x) and ψ2(x) are the stationary profiles of the quan-
tum droplets normalized to N1 and N2, respectively, taken
from Eq. (3). This ansatz (26) sets two initial droplets, sep-
arated by distance 2x̃0, with speeds of ±v and an initial phase
difference ϕ between them.

Figure 10 shows the density profiles of the collisions be-
tween a pair of slowly moving small droplets with equal
norm (N1 = N2 = 1) and equal and opposite speed (v = 0.1)
in free space [Figs. 10(a)–10(c)] and at the reflectionless po-
tential centered at x = 0 [Figs. 10(d)–10(f)]. As illustrated
in Figs. 10(a)–10(c), two small droplets colliding in the free
space repel each other at ϕ = π [Fig. 10(a)], experience mass
transfer between the two droplets at ϕ = 3π/2 [Fig. 10(b)],
and merge (small-amplitude repeated coalescence) at a rel-
atively small value of v [Fig. 10(c)] or pass through each
other at large v (not shown) when the initial relative phase
is ϕ = 0. For comparison, we also explore the two small
droplets colliding in the presence of a reflectionless potential,
as shown in Figs. 10(d)–10(f). The comparison shows that
when the initial relative phase is changed by π , the picture of
the collision between two droplets with and without potential
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FIG. 11. (a)–(c) Collisions between two quantum droplets (N1 = N2 = 10) in free space, launched as Eq. (26), for U0 = 0 and (a) ϕ = π ,
(b) ϕ = 3π/2, and (c) ϕ = 0. (d)–(f) Collisions between two quantum droplets (N1 = N2 = 10) in the presence of reflectionless potential well
centered at x = 0 for U0 = 4 and (d) ϕ = 0, (e) ϕ = π/2, and (f) ϕ = π . In these figures, v = 0.1 is fixed.

is basically the same, indicating that the phase jump acquired
by the scattering plays a key role in the collisions. The only
exception is that, as can be seen by comparing Figs. 10(f)
and 10(c), when the speed is v = 0.1, the collision outcome
of two small droplets of ϕ = π with reflectionless potential
is different from that of two small droplets of ϕ = 0 without
reflectionless potential: The former pass through each other
and the latter merge. However, if we vary the speed, two small
out-of-phase droplets colliding in the presence of the reflec-
tionless potential will undergo a transition from merging to
passing through each other, which is the same as the collision
of two small in-phase droplets in free space. These results
imply that the reflectionless potential in quantum droplet col-
lisions corresponds to a π phase difference generator.

Now we turn our attention to the case of collisions between
two large quantum droplets with equal norm N1 = N2 = 10.
The outcomes of the collision between two large droplets
have been elaborated in Ref. [34], the distinctive features of
which are this collision of such extended droplets leads to
fragmentation and merger, accompanied by visible excitation
of a single droplet as long as the initial phase difference is not
equal to π . Comparing the results without external potential
[Figs. 11(a)–11(c)] and with external potential [Figs. 11(d)–
11(f)], we also observe that if we assign a π shift to the
initial relative phase, the outcomes of the collisions between
the two slowly moving large droplets with external potential
are basically the same as those without external potential.
The only difference between the cases of without potential
(ϕ = 0) and with potential (ϕ = π ) is that the presence of the
reflectionless potential results in a central node in the newly
formed central quiescent droplet. So far, we have dealt only
with the collision of two droplets moving at a relatively low

speed. Our numerical simulations (not shown) reveal that the
conclusion about the role of the phase difference generated by
the reflectionless potential in the quantum droplet collisions
is unaffected when we consider two fast-moving droplets. Fi-
nally, we emphasize that the effect of the initial relative phase
on the collision smears out when the reflectionless potential is
deep, naturally because the droplet-potential interaction rather
than the droplet-droplet interaction dominates in this case.

VII. CONCLUSION

In this paper we have studied the scattering of one-
dimensional binary Bose gases forming self-bound quantum
droplets from a reflectionless Pöschl-Teller potential well, by
solving the modified GPE with cubic (MF) and attractive
quadratic (BMF) nonlinearities. Using direct numerical cal-
culations and variational methods with a position-dependent
wave function, the critical speed between quantum reflection
and transmission and the corresponding trapped modes were
accurately accounted for and two types of physically distinct
scattering of quantum droplets were identified. The scattering
of the small droplet exhibited solitonlike behavior, where a
spatially symmetric trapped mode formed at the critical speed.
However, the situation was quite different for large flat-top
droplets: The trapped mode formed at the critical speed turned
out to be the nonlinear stationary state of the system with
a density profile asymmetric with respect to the center of
the potential. Furthermore, we observed a nonmonotonic de-
pendence of the critical speed on the droplet size: For small
droplets, the critical speed increased with the atom number,
as in the case of bright solitons, whereas for large droplets
the critical speed decreased with increasing atom number.
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We also investigated the collective excitations provoked by
the scattering and the dynamics of the collisions between
two quantum droplets in the reflectionless potential. Analysis
of the small-amplitude excitation spectra showed that as the
number of particles increased, the droplets supported more
internal modes below the particle emission threshold, and
thus excitation of higher internal modes prevented particle
loss and made it easier for the droplets to pass through the
scattering region without radiation. This property contrasts
sharply with the scattering of solitons with a large number
of particles, where such a large object may be radiated and
partially trapped by the potential because the width of the
solitons, unlike the large flat-top droplets, decreases with the
increasing number of particles.

Before concluding, we briefly discuss the feasibility
and challenges of experimental implementation of one-
dimensional quantum droplet scattering. Although the dynam-
ics of 1D droplets has been the subject of several papers
[34–37,44], 1D droplets have not yet been observed exper-
imentally. Experimentally, droplets in Bose-Bose mixtures
have been observed not only in free space [2] but also in
elongated cigar potentials [3], corresponding to quasi-1D sit-
uations with a 3D LYH term where the motion of particles
is frozen in the tight confinement direction. In order to reach
the true 1D regime, it has been theoretically suggested that
ξ , which is related to the ratio of the mean-field energy
to the transverse confinement energy, should be less than
or equal to 0.03 [29]. Here we consider a mixture of two
spin states of 39K, confined in a 1D configuration with a
strong radial harmonic confinement ω⊥/2π = 899 Hz. The
harmonic-oscillator length is aHO = √

h̄/mω⊥ ≈ 0.53 µm
and the relevant scattering lengths of intracomponents and
intercomponents are a↑↑ > 0 and a↓↓ > 0, and a↑↓ < 0, re-
spectively, associated with the 1D coupling constant gσ σ̃ =
2h̄ω⊥aσ σ̃ . Following Ref. [27], we define λ = a/aHO and
δã = 4δa/[λ(a1/2

↑↑ + a1/2
↓↓ )2], where δa = a↑↓ + √

a↑↑a↓↓ and
a = √

a↑↑a↓↓. For δã ≈ 1, the pure 1D LHY term dominates
in the 1D-3D crossover [27]. Considering the symmetric case
a↑↑ = a↓↓, the condition ξ � 0.03 requires −a/L < δa/a
[29], where L ≈ aHO is length scale of the tight confinement.
For realistic experimental parameters, δã ≈ 1, correspond-
ing to δa/a = a/aHO, would satisfy the condition ξ � 0.03,
where the pure 1D model of Ref. [30] can be applied. As
an example, we take a = 50a0, where a0 is the Bohr radius,
and the MF parameter δa needs to be modulated to 0.25a0.
In our numerical simulations, the dimensionless parameter
g = δg/δg0 is chosen as g = 1 and the actual number of par-
ticles in the system is given by Ñ = 2N

π
(δg/g0)−3/2 ≈ 1.8N ×

103. Thus, N = 1 corresponds to 1800 atoms. However, the
experimental implementation of droplets is usually the asym-
metric case where N↑/N↓ = √

g↓↓/g↑↑, but the system can
still be described by a single wave function �(x), which

is related to the individual component wave functions by
�σ (x) = g1/4

σ̄ σ̄ �(x)/
√√

gσσ + √
gσ̄ σ̄ , where ↑̄ =↓ and ↓̄ =↑,

and the evolution equation for the dimensionless ψ (x) [ob-
tained by normalizing �(x)] has the same form as Eq. (2)
[36]. In experiment, the scattering lengths as a function of
the magnetic field have been explored with 39K atoms and
the condition δa = 0 can be satisfied at B ≈ 56.77 G, where
a↑↑ ≈ 33.5a0, a↓↓ ≈ 84.3a0, and a↑↓ ≈ −53.1a0 [3]. The MF
parameters δg = 0 can be varied around zero by slightly ad-
justing the magnetic field, which may allow the unit for the
norm N to be much more adjustable than in the case of the
symmetric quantum droplet. It is worth noting that as one
moves towards the 1D regime, the energy scale (the energy per
particle) rapidly decreases to very low values, which demands
extreme precision in the control of the trap parameters, such
as its longitudinal flatness, and may pose a challenge for the
observation of 1D quantum droplets with a purely 1D BMF
effect. In addition, potential wells (barriers) can be generated
by illuminating the condensate with a red (blue)-detuned laser
beam, and the quantum reflection of one-dimensional bright
solitons through an attractive potential was experimentally
probed (see Ref. [68]), which provides the basis for our
experimental investigation of the quantum reflection of 1D
quantum droplets through an attractive potential. As exper-
imental techniques continue to improve, we expect that our
results will be realistically observable in future experiments
on low-dimensional quantum droplets.

Finally, it should be mentioned that the steplike transition
between full reflection and full transmission is a unique fea-
ture of the reflectionless potential regardless of the potential
depths, as any other form of potential well with similar width
and depth would generate splitting and a significant amount of
radiation. An interesting direction for future work is to inves-
tigate the quantum droplet moving in a Gaussian potential or
other shapes, which may exhibit a great deal of complexity in
transmission-reflection properties such as partial trapping, full
trapping, high-speed ejection, and so on. It is envisaged that
the flat-top density profile and collective excitation would also
impart some exceptional scattering properties to the quantum
droplet moving in the Gaussian and other shaped potential
wells.
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