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Recent experiments have realized a twisted-bilayer-like optical potential for ultracold atoms, which in contrast
to solid-state setups may allow for an arbitrary ratio between the inter- and intralayer couplings. For commen-
surate moiré twistings, a large-enough interlayer coupling results in particle transport dominated by channel
formation. For incommensurate twistings, the interlayer coupling acts as an effective disorder strength. Whereas
for weak couplings the whole spectrum remains ergodic, at a critical value part of the eigenspectrum transitions
into multifractal states. A similar transition may be observed as well as a function of an energy bias between
the two layers. Our theoretical study reveals atoms in a twisted-bilayer system of square optical lattices as an
interesting platform for the study of ergodicity breaking and multifractality.
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I. INTRODUCTION

Twisted-bilayer graphene [1–5] has attracted broad atten-
tion owing to the observation of unconventional supercon-
ducting [6–8] and correlated insulating behavior [9–12]. A
small rotation of one of the layers leads to the vanishing
of Fermi velocity around the Dirac point, giving rise to an
almost flat band [1,2,13,14]. These quasi-flat bands, ideal to
observe strongly correlated phenomena, are obtained only
for very small twist angles � 1◦ in solid state systems, as
the interlayer coupling is much smaller than the intralayer
one [14–16].

Ultracold gases in optical potentials may provide an inter-
esting highly controllable platform for the study of the physics
of twisted-bilayer lattices. These systems allow for a basically
arbitrary ratio between interlayer and intralayer couplings.
In addition, ultracold gases are, in principle, defect-free, al-
though suitable impurities can be added in a controllable
way, making this platform ideal for understanding the ef-
fects of disorder. Different proposals have been recently put
forward [17–20] to simulate twisted-bilayer-like potentials
using ultracold atoms. In particular, Ref. [17] has proposed
the use of two internal states that (in a synthetic dimen-
sion) play the role of the two layers. The twisted lattices
result from a state-dependent optical potential, such that one
state experiences an optical lattice tilted at an angle from
the lattice experienced by the other state. A microwave or
two-photon Raman coupling induces an effective interlayer
hopping. An alternative proposal was introduced in Ref. [18],
also using a synthetic dimension for the bilayer geometry,
with lattices without twisting but with a spatially dependent
interlayer hopping. Very recently, ideas similar to those of
Ref. [17] have been employed to realize experimentally for the
first time a twisted-bilayer optical potential [21], in which a
Bose-Einstein condensate was loaded, opening an interesting
novel platform for the study of superfluids in twisted-bilayer
lattices.

In recent years, atoms in optical lattices have been shown
to provide a suitable platform to study experimentally both
single- and many-body localization. In particular, the use
of bichromatic lattices has allowed for the realization of
the one-dimensional quasi-disordered (Aubry-André) model
[22–24], characterized by a phase transition at a critical
quasi-disorder strength between a fully localized and a fully
ergodic eigenstate spectrum. Recent experiments have also
realized two-dimensional optical quasi-crystals [25]. An al-
ternative, also highly controllable setup for the study of
localization, is provided by photonic lattices, in which a spa-
tial direction plays the role of an effective time dimension.
Interestingly, in addition to one-dimensional geometries [26],
very recent experiments have analyzed the wave dynamics
in two-dimensional (monolayer) photonic moiré-like lattices
[27], revealing a localization-to-delocalization transition [28].

The abovementioned realization of twisted-bilayer-like op-
tical lattices opens intriguing questions concerning particle
dynamics and ergodicity breaking in these potentials, which
we theoretically address in this paper for the case of coupled
square lattices. Whereas in solid-state setups the interlayer
coupling is very small compared to the intralayer one (typi-
cally 5 to 10 times smaller), it may be potentially dominant in
optical lattice platforms, resulting for commensurate twistings
in particle transport dominated by the formation of channels.
Moreover, for incommensurate twistings and due to the finite
spatial range of the interlayer coupling, this coupling acts as
an effective quasi-disorder strength. Whereas below a given
coupling threshold the whole eigenspectrum remains ergodic,
at a critical coupling part of the spectrum experiences a transi-
tion into nonergodic extended (multifractal) states. A similar
transition may be observed, alternatively, by employing an
energy bias between the two layers. Our results show, hence,
that the combination of moderately strong interlayer coupling
and incommensurate twist angles makes twisted-bilayer op-
tical lattices an alternative suitable platform for the study of
multifractality.
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FIG. 1. (a) Twisted-bilayer structure for a twisting angle θ =
θ (2, 1). Red (blue) sites correspond to layer 1 (2). The elementary
cell is indicated by a black square. (b) Band structure along the
high-symmetry line �-X -M-� for the same lattice with t⊥/t = 10,
l0/a = 0.15, and � = 0. The quasi-flat bands are indicated in blue.

The remainder of the paper is organized as follows. In
Sec. II, we describe the twisted-bilayer model. Section III is
devoted to the particle dynamics in the case of commensurate
twistings, while the dynamics in incommensurately twisted
bilayers is presented in Sec. IV. The impact of interlayer bias
is discussed in Sec. V. Finally, we summarize our results in
Sec. VI.

II. OPTICAL TWISTED BILAYERS

In the following, we consider two layers of square optical
lattices [see Fig. 1(a)], where one layer is twisted by an angle
θ with respect to the other. A possible way of implement-
ing such an optical potential, recently proposed in Ref. [17]
and realized experimentally in Ref. [21], employs an atom
in two different internal states. In this scenario, which we
assume below, the bilayer structure is provided by the syn-
thetic dimension given by the two internal states, whereas
a state-dependent potential results in the twisted-bilayer

geometry. For a square lattice, a moiré pattern is achieved for
θ = θ (m, n), where θ (m, n) = arccos( 2mn

m2+n2 ) (n, m ∈ Z).
We are interested in the dynamics of a single particle, and

hence we do not account for interaction terms. The results
should remain, however, valid as long as the lattice filling is
sparse enough. The system is characterized by the Hamilto-
nian:

H = −�
∑

α, j

(−1)α|α, j〉〈α, j| − t
∑

α=1,2

∑

〈 j, j′〉
|α, j〉〈α, j′|

−
∑

j j′
t⊥( j, j′)[|1, j〉〈2, j′| + H.c.], (1)

where |α, j〉 is the state in which the particle is in layer α

in site j = ( jx, jy). The site in layer 1 (2) is located at the
position �R1, j = jx�ex + jy�ey ( �R2, j = jx�ex′ + jy�ey′ ), with �ex′ =
cos θ �ex + sin θ �ey and �ey′ = − sin θ �ex + cos θ �ey. The first term
of Eq. (1) denotes an uniform bias between the layers, char-
acterized by the bias strength �, which in the synthetic
dimension scenario amounts for a level-dependent shift (e.g.,
using a magnetic field or an optically imposed Stark-shift).
The intralayer hopping, given by the rate t , occurs only to
nearest neighbors, denoted by 〈 j, j′〉.

The rate t⊥( j, j′) characterizes the hopping between a site
j in layer 1 and site j′ in layer 2. In the considered scenario,
such a coupling occurs between different internal states, and it
is given either by a microwave or two-photon optical Raman
coupling. In stark contrast to regular cubic lattices, the sites
in both layers are generally not on top of each other. For
a sufficiently strong lattice, we may approximate the on-site
Wannier functions in each layer as a Gaussian of l0 = a

πs1/4 ,
with a being the lattice spacing characterizing the square lat-
tice in both layers and s being the lattice depth in recoil units.
As a result, the interlayer hopping acquires the following form
[17]:

t⊥( j, j′) = t⊥e−| �R1, j− �R2, j′ |2/(4l2
0 ). (2)

Reference [17] considered for simplicity the case of l0 = 0,
in which only sites exactly on top of each other may undergo
interlayer coupling with a rate t⊥. We show below that the
finite Gaussian width l0 plays a crucial role in the actual
particle dynamics in the bilayer-like optical potential. Note as
well, that in contrast to solid-state scenarios where typically
t⊥/t 	 1 and is hardly tunable, in the optical lattice platform
t⊥ is easily tunable and may be much larger than the intralayer
hopping t . As shown below, this opens interesting possibilities
for the dynamics for both commensurate and incommensurate
twisting angles.

In the following, we consider for simplicity, unless other-
wise indicated, a twist angle θ in the vicinity of the magic
angle θ (2, 1) = 36.87◦, although our conclusions are general
for the dynamics in the vicinity of any commensurate twist
angle. The choice of θ (2, 1) is justified by the small number
of sites (five in each layer) per moiré unit cell, which greatly
simplifies the analysis of the system, compared to solid-state
platforms, where due to the very small twisting angle, a
moiré cell may contain tens of thousands of sites [13]. For
θ = θ (2, 1), only two of the ten sites are on top of each other
(directly connected sites) [see Fig. 1(a)].
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(a) (b) (c) (d)

FIG. 2. Commensurate twisting. Panels (a) and (b) show the probability density at time τ = 2/t for θ = θ (2, 1), t⊥/t = 100, and l0 = 0
and l0/a = 0.15, respectively, for a particle initially at site j = (1, 0) of layer 1. In panel (a), green lines indicate the effective lattice with
out-projected sites mentioned in the text. Panel (c) depicts the probability density at τ = 6/t for θ = θ (4, 3) for l0/a = 0.15, and at t⊥ = 50t
for a particle initially at site j = (2, 2) of layer 1. Panel (d) shows, at τ = 10/t , the particle distribution for an initial Gaussian wave packet
in layer 1, 1√

2πσ 2 e−| �R1, j− �R1, j0
|2/2σ 2

, of width σ/a = 1, centered at site j0 = (0, 0), in a lattice with t⊥ = 10t and θ (4, 3). In all the figures, the x
and y axes are in units of the lattice spacing a.

III. PARTICLE DYNAMICS IN MOIRÉ LATTICES

Figure 1(b) shows the corresponding band structure for
θ = θ (2, 1), � = 0, and t⊥ = 10t , along the symmetry line �-
X -M-�, with � = (0, 0), X = 2π

5a ( 1
2 , 1), and M = 2π

5a (− 1
2 , 3

2 ).
As shown in Fig. 1(b), when t⊥/t � 1, the spectrum presents
an uppermost and a lowest band (in blue), with an energy
� ±t⊥, which originate from directly connected sites. The
large interlayer coupling projects out those sites, which build a
separate grid. Since directly connected sites are far apart, hop-
ping between them only occurs in high order in perturbation
theory, resulting in almost flat bands. Particles initially placed
in those sites remain, hence, basically localized.

The rest of the not directly connected sites form sep-
arated bands around zero energy. For l0 = 0, they cannot
participate directly in the interlayer hopping. For t⊥ → ∞,
a particle starting in one of those sites in the upper (lower)
layer would be disconnected from the lower (upper) layer.
The particle would experience an effective square lattice with
out-projected sites (the directly connected ones), character-
ized by four sites in the elementary cell [see Fig. 2(a)]. As
a result, the band spectrum would present two degenerate sets
of four bands. This degeneracy is lifted, even for l0 = 0, at
finite t⊥/t � 1 due to processes of order O(t2/t⊥) induced by
virtual couplings between directly and nondirectly connected
sites.

A single particle in the twisted optical lattice is described
by the state

∑
α, j cα j (t ) |α, j〉, with the probability amplitudes

given by the Schrödinger equations:

ih̄
∂cα, j

∂τ
= −t

∑

〈 j j′〉
cα, j′ −

∑

j′
t⊥( j, j′)cᾱ, j′ , (3)

with ᾱ = 2 (1) for α = 1 (2). We solved these equations by
standard Runge-Kutta methods, using absorptive boundary
conditions, which allow for the analysis of the particle expan-
sion and eventual localization without the need of very large
lattices.

We consider the evolution of a particle initially placed in a
not directly connected site. As mentioned above, if l0 = 0, a
sufficiently large t⊥/t results in the motion of the particle in an
effective square lattice with out-projected sites [see Fig. 2(a)
for t⊥/t = 50]. The situation is radically different for a finite

l0 = 0.15a, corresponding to a lattice depth of s = 20. For
θ = θ (2, 1), due to the particularly simple elementary cell,
particles move amongst all the nondirectly connected sites
of both layers [see Fig. 2(b)], and the expansion dynamics
is independent of the chosen initial not directly connected
site. For smaller moiré angles, the dynamics for t⊥/t � 1
strongly depends on the initial site, because the central bands
break into separate subbands characterized by very different
transport properties. Whereas some sites form quasi-isolated
islands, other sites connect efficiently to a net of sites building
transport channels [see Fig. 2(c)]. Hence, for finite times,
of practical relevance in typical experiments, the formation
of channels dominates particle transport in the moiré lattice.
As a result, a particle initially distributed amongst various
sites generally undergoes a bimodal expansion dynamics,
characterized by partial channel-like expansion and partial
quasi-localization in poorly connected sites [see Fig. 2(d)].

IV. DYNAMICS IN INCOMMENSURATE BILAYERS

As shown above, for general θ = θ (m, n), the particle dy-
namics is characterized by the splitting of the spectrum into
separate bands and the corresponding formation for large t⊥/t
of quasi-isolated regions and effective lattice channels that
dominate the (partial) particle expansion. This picture is dis-
torted when the tilting angle departs from commensurability.
We introduce at this point the departure angle φ, such that
θ = θ (m, n) + φ. This incommensurability, together with the
finite Gaussian range l0, results in a spatial quasi-disorder of
the interlayer coupling, which may severely affect the particle
dynamics, resulting in ergodicity breaking and eventually lo-
calization. In this section, we analyze in detail the role played
by the interlayer coupling, whereas Sec. V is devoted to the
effect of the bias �.

A. Eigenstates

We first focus on the localization properties of the lattice
eigenstates, |ψ〉 = ∑

α, j cα, j (ψ )|α, j〉, which are well char-
acterized by the moments

Iq(ψ ) =
∑

α, j

|cα, j (ψ )|2q ∝ N−Dq (ψ )(q−1), (4)
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FIG. 3. Eigenstate properties for incommensurate twisting angles. (a) Averaged fractal dimension D(N ) for N = 80 × 80 sites, as a
function of t⊥/t and φ. (b) D(N ) for φ = 3◦, and a lattice with N = 50 × 50 (red dashed) and 80 × 80 (blue dotted) sites. The black solid curve
depicts D∞ (see text). (c–e) Histogram of the distribution of D2(ψ ) values for t⊥/t = 3 (c), 12 (d) and 100 (e). In all the figures we consider
θ = θ (2, 1) + φ, l0/a = 0.15, and � = 0.

where N is the total number of sites in each layer, and Dq(ψ )
are the fractal dimensions. In particular, the inverse partici-
pation ratio (IPR) [29–31] I2(ψ ) is given by the inverse of
the number of sites in which the eigenstate |ψ〉 has signifi-
cant support. Localized (ergodic) states are characterized by
Dq(ψ ) = 0 (Dq(ψ ) = 1), whereas intermediate q-dependent
0 < Dq(ψ ) < 1 implies an extended but nonergodic character,
and a multifractal geometry [32–40].

In the following, we focus our analysis on the IPR, deter-
mining for a lattice with N sites, up to 80 × 80, and open
boundary conditions, the fractal dimension of each eigen-
state D2(N ; ψ ) = log I2(ψ )/ log(N ). In order to provide a
global characterization of the system, we evaluate the av-
eraged value of the fractal dimension over all eigenstates
D(N ) = 1

N

∑
ψ D2(N ; ψ ).

Figure 3(a) shows D(N ) for N = 80 × 80 sites, as a func-
tion of the interlayer hopping t⊥/t and the departure angle φ

(note that we limit to 0 < φ < 4◦ in order to avoid nearby
commensurate tilting angles; the results for φ < 0 are very
similar). For t⊥ = 0, each layer constitutes an independent
disorder-free square lattice, characterized by ergodic eigen-
states, and correspondingly band expansion. The eigenstates
are also strictly speaking ergodic for a moiré lattice (φ = 0) ir-
respective of the value of t⊥/t . However, as mentioned above,
the corresponding bands may be significantly flat, leading
to potentially very long timescales for the band-expansion
dynamics. Note as well that the formation of separated bands
characteristic of large-enough t⊥/t values reduces the lattice
support of the eigenstates, resulting for large t⊥/t in a finite-
size-induced deviation from the expected value D = 1. We
discuss this finite-size effect below.

For a nonzero tilting deviation φ, a finite t⊥ results in
an effective two-dimensional quasi-disordered spatial depen-
dence of the interlayer hopping amplitude. Note that this is
so, crucially, because l0 > 0. A vanishing l0/a would result
for a finite φ in the almost complete decoupling of the lay-
ers, and hence in ergodic, basically monolayer, dynamics.
As a result, t⊥/t would not play the role of quasi-disordered
strength discussed below. Note as well that the quasi-disorder
is, in principle, established even for very small angle devia-
tions. However, a lattice with a very small φ < 1◦ is barely

distinguishable from a moiré lattice for the system sizes con-
sidered in our numerics (and for typical experimental sizes),
resulting in the enhancement of the value of D observed in
Fig. 3(a). For large φ > 1◦ values, the results are approx-
imately φ independent. As seen in Fig. 3(a), the ergodic
character of the whole eigenspectrum is maintained at low-
enough interlayer couplings, with D(N ) > 0.85 for t⊥/t <

4. Beyond that value, D decays markedly, reaching values
D(N ) � 0.3 already for t⊥/t � 25.

Finite-size effects pose a major difficulty when studying
the localization properties and, in particular, the fractal di-
mension. These effects may be to a large extent mitigated
using the following argument. Note that, for a given eigen-
state |ψ〉 in a system with N sites, I2(ψ ) = γ (ψ )/ND2(ψ ).
Hence the evaluated fractal dimension D2(N ; ψ ) = D2(ψ ) +
log γ (ψ )

log N . Assuming that the deviation averaged over all eigen-

states 1
N

∑
ψ log γ (ψ ) is approximately N independent, we

may then employ the following ansatz for the relation between
the averaged fractal dimension D(N ) for the case of N sites
and the value D∞ expected for an infinitely large system:

D(N ) = D∞ + α/ log(N ), (5)

where D∞ and α are determined by fitting our results for
different system sizes, up to 80 × 80 sites. Figure 3(b) shows
our results for D∞ for t⊥/t = 10, l0/a = 0.15, and a deviation
φ = 3◦ from the moiré angle θ (2, 1).

The extrapolated results confirm the qualitative picture ob-
served in Fig. 3(a). The spectrum shows a clear change of
character at t⊥/t � 3. For weaker interlayer coupling D∞ �
1, and hence the whole spectrum is ergodic. Figure 3(c) shows
the distribution of D2(N ; ψ ) for N = 80 × 80 sites, with the
expected peak at large D values (only limited by finite-size
effects). At t⊥/t � 3, whereas part of the spectrum remains
ergodic, the rest undergoes an ergodic-to-nonergodic transi-
tion, resulting in intermediate D∞ values. These intermediate
values are not a finite-size effect. Note in this sense, that for
t⊥/t � 6, the D(N ) curves with different N cross, indicating
that around that value the spectrum is N independent (α � 0
in the expression above). Note as well that the nonergodic
eigenstates do not have a localized nature, but rather an
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FIG. 4. Expansion dynamics for incommensurate twist angles.
Expansion radius R(τ = 16/t ) as a function of φ and t⊥/t for the
same case as in Fig. 3(a).

extended nature. This is evident from Fig. 3(d), where we
depict the distribution of D2(N ; ψ ) for t⊥/t = 12. This dis-
tribution shows, in addition to basically ergodic states, a large
number of states well within the intermediate regime of D2

values. Further increasing t⊥/t [see Fig. 3(e) for t⊥/t = 100]
results in a the displacement of the bulk of the spectrum to
low D2, indicating localization (although part of the states
remain with a clear nonergodic extended character even for
such a strong interlayer coupling). While the behavior of D
around the twist angle θ (2, 1) is presented in Fig. 3(a), we
have verified that the physics is very similar for other twist
angles.

B. Expansion dynamics

The change in the nature of the eigenstates when increasing
t⊥/t and φ translates into a marked modification of the expan-
sion dynamics of an initially localized wave packet (at τ = 0).
We characterize the particle expansion at a given time τ > 0
by means of the average distance r, from the initial central
position �Rin of the particle wave packet:

r(τ )2 =
∑

α=1,2

∑

j

| �Rα, j − �Rin|2 |cα, j (τ )|2. (6)

In order to assess the effect of twisting incommensurability we
compare this radius with the one, r0(τ ), expected for φ = 0,
defining R(τ ) = r(τ )/r0(τ ). This normalization is necessary,
since, as mentioned above, the dynamics in a moiré lattice
may slow down very significantly with t⊥/t due to the appear-
ance of quasi-flat bands. Figure 4 shows, for different values
of φ and t⊥/t , the normalized radius R(τ = 16/t ), for an
initial wave packet centered at (0,0) with width σ/a = 1. The
qualitative behavior of R mirrors that of the fractal dimension
D in Fig. 3(a). For t⊥/t < 4 the expansion dynamics is basi-
cally identical to that of the commensurate case. In the vicinity
of φ = 0, we observe again that, due to finite-size (and also
finite-time) limitations, a small φ is almost indistinguishable
from a moiré bilayer. In contrast, the results are only weakly
dependent on φ for φ > 1◦. In that regime, R(τ ) decreases
very markedly with growing t⊥/t , indicating the onset of
nonergodic dynamics and eventually localization.

V. INTERLAYER BIAS

The previous section has shown that the interlayer coupling
acts as an effective quasi-disorder strength that controls the
degree of ergodicity breaking in the system. As discussed
in this section, a similar role may be played as well by the
bias �, i.e., by the energy offset between the two layers in
Eq. (1). Figure 5(a) depicts the averaged fractal dimension
D as a function of φ and �/t⊥, for an 80 × 80 lattice, with
θ = θ (2, 1) + φ, l0/a = 0.15, and t⊥/t = 10.

As in the previous section, the region of small φ

presents an anomalously large D due to the finite-size quasi-
indistinguishability from the moiré bilayer case. Increasing
the bias � renders the interlayer hopping off-resonant, even-
tually resulting for a large-enough �/t⊥ in an effective
decoupling of the layers. Since a decoupled layer is a regular
square lattice, a large-enough bias leads to the retrieval of
ergodicity irrespective of φ. The extrapolated value D∞ [see
Fig. 5(b)] shows that the whole spectrum remains ergodic for
�/t⊥ > 1.5. Below that value, part of the spectrum becomes
multifractal. Note that also in this curve we may identify a
point, at �/t⊥ � 0.5, at which the curves D(N ) for different
N cross.

As in the previous section, the time dependence of the nor-
malized averaged distance R mirrors the spectral properties.
Similar to the previous section, we normalize R to the value
expected for φ = 0. Figure 5(c) depicts R(τ = 20/t ) as a
function of φ and �/t , showing a good qualitative agreement
with Fig. 5(a). The average distance is almost independent
of φ for large bias, implying an extended phase in the effec-
tive single-layer regime. A smaller bias leads to a markedly
nonergodic dynamics. Interestingly, the largest deviation from
ergodicity occurs for φ > 1◦ not at � = 0, but rather at a finite
�/t � 2.

VI. CONCLUSIONS

Particle dynamics in a twisted-bilayer optical lattice
presents a nontrivial dependence on the lattice depth (which
controls the hopping t and the width l0 of the interlayer
Gaussian coupling), the interlayer coupling strength t⊥/t , the
interlayer bias �/t , and the tilting angle θ . Crucially, in
contrast to solid-state twisted-bilayer setups, the interlayer
coupling can be controlled basically at will and may be much
larger than the intralayer one. As a result, the interlayer cou-
pling may play a crucial role in the particle dynamics. For
commensurate moiré-like lattices, the eigenstates are in any
case ergodic, but due to the flatness of the moiré bands,
for relevant experimental timescales transport for t⊥/t �
1 is dominated by channel formation. For incommensurate
lattices, and due to the finite range of the interlayer cou-
pling, the coupling rate t⊥ acts as an effective quasi-disorder
strength. Whereas the spectrum remains fully ergodic for
small t⊥/t � 3 (for � = 0), a larger interlayer coupling in-
duces the transition of part of the spectrum into nonergodic
(but still extended) states. Similarly, ergodicity is recovered
for a sufficiently large interlayer bias, whereas reducing the
bias induces again a partial ergodic-to-nonergodic transition.
The spectral properties may be revealed from the analysis of
the expansion dynamics of an initially localized wave packet.
Our results hence show that twisted-bilayer optical lattice
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FIG. 5. Effect of the interlayer bias. (a) Averaged fractal dimension D(N ) for N = 80 × 80 sites as a function of �/t⊥ and φ. (b) D(N ) for
φ = 3◦, and a lattice with N = 50 × 50 (red dashed) and 80 × 80 (blue dotted) sites. The black solid curve depicts D∞ (see text). (c) Expansion
radius R(τ = 20/t ) as a function of φ and t⊥/t for the same case as in panel (a). In all the figures, t⊥/t = 10, l0 = 0.15a, and θ (2, 1) + φ.

setups provide an interesting controllable platform for the
study of multifractality. Furthermore, multilayer setups may
allow for the study of particle transport in the two-
dimensional-to-three-dimensional cross-dimensional regime,
an intriguing possibility for future studies.
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