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The derivation of determinant representations for the space-, time-, and temperature-dependent correlation
functions of the impenetrable Gaudin-Yang model in the presence of a trapping potential is presented. These
representations are valid in both equilibrium and nonequilibrium scenarios like the ones initiated by a sudden
change of the confinement potential. In the equal-time case our results are shown to be equivalent to a multicom-
ponent generalization of Lenard’s formula from which Painlevé transcendent representations for the correlators
can be obtained in the case of harmonic trapping and Dirichlet and Neumann boundary conditions. For a system
in the quantum Newton’s cradle setup the determinant representations allow for an exact numerical investigation
of the dynamics and even hydrodynamization, which is outside the reach of generalized hydrodynamics or other
approximate methods. In the case of a sudden change in the trap’s frequency, we predict a many-body bounce
effect, not present in the evolution of the density profile, which causes a nontrivial periodic narrowing of the
momentum distribution with amplitude depending on the statistics of the particles.
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I. INTRODUCTION

The study of nonequilibrium phenomena represents one of
the most active areas of research in modern physics. Due to
the unprecedented degree of control over interactions, dimen-
sionality and statistics the field of ultracold gases represents
the ideal testing ground for various nonequilibrium scenar-
ios in which isolated many-body systems can be accurately
observed [1–3]. One-dimensional (1D) systems are of partic-
ular interest as they can realize integrable systems, which are
experimentally accessible and in which analytical results can
verify and complement more general approximate methods.
The realization that integrable and near-integrable models in
one dimension do not thermalize [4,5], as it was shown in the
pioneering quantum Newton’s cradle (QNC) experiment [4],
reignited interest in the study of such systems resulting in the
introduction of powerful techniques such as the quench ac-
tion [6,7] and generalized hydrodynamics [8,9] (GHD). While
initial investigations focused on single-component systems
in recent years several studies on multicomponent systems,
which present a richer phenomenology such as spin-charge
separation and the spin-incoherent regime, have also appeared
in the literature [10–20].

In 1D continuum systems with infinitely repulsive contact
interactions (also known as the Tonks-Girardeau regime) the
correlation functions can be computed as determinants open-
ing the way for the exact investigation of the dynamics [21].
For periodic boundary conditions and no external potential
determinant representations were obtained in Refs. [22–24]
for the single-component Lieb-Liniger (LL) model and in
Refs. [25–27] for the two-component Gaudin-Yang (GY)
model. The general case of systems in external trapping po-
tentials has been addressed only recently for the bosonic LL
model in Ref. [28] and generalized for arbitrary statistics
(anyons) in Refs. [28–30] (for equal-time correlators simi-
lar representations results were derived earlier in the case

of harmonic trapping in Refs. [31–34] and in rather general
nonequilibrium scenarios in Refs. [35–38]). In this paper we
derive determinant representations for the space-, time-, and
temperature-dependent correlation functions of the arbitrary
statistics Gaudin-Yang model in the presence of a trapping
potential, which can also depend on time. Our results are
valid in both equilibrium and nonequilibrium scenarios, which
can be realized in current experiments. In the equal-time case
we show the equivalence of the determinant representation
with a multicomponent generalization of Lenard’s formula
[22]. Lenard’s formula makes transparent the connection be-
tween the correlation functions of the GY model and the gap
probabilities in certain random matrix ensembles, which were
previously calculated [39]. In this way Painlevé transcendent
representations for the correlators of finite-size systems at
zero temperature can be easily derived. We also employ our
results for the investigation of the dynamics in two experimen-
tally relevant nonequilibrium scenarios: the sudden change
in the trap’s frequency and the quantum Newton’s cradle
setup. In the first scenario we discover a collective many-body
bounce effect similar with the one described and investigated
by Atas et al. [40] in the case of single-component systems
(see also Ref. [38]). The effect can be seen in the periodic
narrowing of the momentum distribution function (MDF)
when the gas is maximally compressed and is not present
in noninteracting systems subjected to the same quench. The
amplitude of the narrowing is dependent on the statistics. Very
recently, the phenomenon of hydrodynamization [41], which
describes the rapid onset of hydrodynamics on the fastest
available scale in a system quenched with an energy much
larger than its ground-state energy, has been observed in the
LL model [42]. The main feature of hydrodynamization in
the QNC setup, the rapid change of energy in the momen-
tum modes between the Bragg peaks, cannot be captured by
GHD but it can be accurately monitored using our determi-
nant representation. We perform a detailed investigation of
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hydrodynamization in the GY model highlighting the dif-
ferences between the two-component and single-component
systems.

The plan of the paper is as follows. In Sec. II we introduce
the Gaudin-Yang model, the eigenstates, wave functions and
the correlators. In Sec. III we present results for the form
factors and in Sec. IV the determinant representations for
the correlators. The particular case of equal-time correlators
and the equivalence with Lenard’s formula is described in
Secs. V and VI. The dynamics in the case of variable fre-
quency can be found in Sec. VII and the investigation of
hydrodynamization is presented in Sec. VIII. We conclude
in Sec. IX. Technical details regarding the derivation of the
determinant representations, the equivalence with Lenard’s
formula and the thermodynamics of the trapped GY model
can be found in several Appendixes.

II. ANYONIC GAUDIN-YANG MODEL IN THE PRESENCE
OF AN EXTERNAL POTENTIAL

We consider a one-dimensional system of particles with
two internal states and infinite repulsive contact interactions
in the presence of an external confining potential, which can
also depend on time. In second quantization the Hamiltonian
can be written as

H =
∫

dx
h̄2

2m
∂x�

†∂x� + g : (�†�)2 : +[V (x, t ) − μ]�†�

+ B(�†σz�), (1)

where m is the mass of the particles, g = ∞ characterizes
the strength of the interaction, � = [�↑(x), �↓(x)]T , �† =
[�†

↑(x), �†
↓(x)], and : : denotes normal ordering. In (1) μ is

the chemical potential, B the magnetic field, σz the third Pauli
matrix and �↑,↓(x) are anyonic fields satisfying the following
commutation relations (α, β ∈ {↑,↓}) :

�α (x)�†
β (y) = −e−iπκ sign(x−y)�

†
β (y)�α (x) + δα,βδ(x − y),

(2a)

�α (x)�β (y) = −eiπκ sign(x−y)�β (y)�α (x), (2b)

�†
α (x)�†

β (y) = −eiπκ sign(x−y)�β (y)�α (x), (2c)

with sign(x) = x/|x|, sign(0) = 0, and κ ∈ [0, 1] is the statis-
tics parameter (note that an equally valid choice for the
statistics parameter could have been κ ∈ [−1, 0]). For x �=
y, as we vary the statistical parameter the commutation re-
lations (2) interpolate continuously between the ones for
two-component fermions at κ = 0 and two-component bosons
at κ = 1. At coinciding points x = y the commutation re-
lations (2) are fermionic in nature and, therefore, double
occupancy, even of particles of opposite spin, is excluded.
We will call (1) the anyonic Gaudin-Yang model as it rep-
resents the natural generalization to fractional statistics of the
fermionic and bosonic models introduced and studied first by
Gaudin [43] and Yang [44]. The study of anyonic systems in
one dimension is now a mature field with important results de-
rived both in single-component (like the anyonic Lieb-Liniger
model) [45–64] and multicomponent systems [27,65–70].

We will consider both static and time-dependent exter-
nal potentials. In the static case we will consider trapping

potentials of the type V (x) = aν |x|ν , ν � 1 (the usual har-
monic trapping is obtained for ν = 2 and aν = mω2

0/2) but
our results are also valid in the case of more general trapping
potentials or systems with Dirichlet or Neumann boundary
conditions in a box of dimension L (in the Dirichlet case
the potential can be thought as V (x) = 0 for x ∈ [0, L] and
V (x) = ∞ for x /∈ [0, L]). The case without external potential
V (x) = 0 and periodic boundary conditions was investigated
in Refs. [26,27]. In the time-dependent case we will consider
potentials, which present a sudden change at t = 0 resulting
in quantum quenches but as we will see our results are valid
also in other nonequilibrium scenarios such as the quantum
Newton’s cradle setup [4]. Prototypical examples are the
change of the trap’s frequency of a harmonic trapping
potential

V (x, t ) =
{

mω2
0x2/2, t � 0,

mω2
1x2/2, t > 0,

ω0 �= ω1, (3)

(the free expansion after the release from a trap is a particular
case with ω1 = 0) and the change of the shape of the trap

V (x, t ) =
{

aν |x|ν, t � 0,

aν ′ |x|ν ′
, t > 0,

ν �= ν ′. (4)

In the time-dependent case we have an initial Hamiltonian
denoted by HI and a final Hamiltonian denoted by HF . In
order to compute the time evolution of the correlators we will
consider either the equilibrium ground state or a thermal state
of the initial Hamiltonian HI but the subsequent evolution will
be given by the final Hamiltonian HF . Of course, in the static
case we have HI = HF .

In order to highlight the differences between the two-
component and single-component systems we will make fre-
quent comparisons with results for the anyonic Lieb-Liniger
(LL) model [45,47,49,50] described by the Hamiltonian

HLL =
∫

dx
h̄2

2m
∂x�

†∂x� + g�†�†��

+ (V (x, t ) − μ)�†�, (5)

where now �†(x) and �(x) are single-component anyonic
fields satisfying similar commutation relations like (2). For
κ = 1 the Hamiltonian (5) reduces to the usual bosonic LL
model while for κ = 0 it describes free fermions (single-
component fermions do not feel the contact interaction). From
now on we will consider h̄ = kB = 1 with kB the Boltzmann
constant.

A. Eigenstates at t = 0

While the homogeneous fermionic and bosonic GY mod-
els are integrable for any value of the repulsive interaction
(the proof of the integrability in the anyonic case is an open
problem) the addition of an external potential breaks this
integrability with the exception of zero and infinite repulsion.
In the impenetrable case, which is the focus of this paper,
we will introduce in a constructive fashion a complete set of
eigenstates of the initial Hamiltonian, which solve the many-
body Schrödinger equation, satisfy the hard-core condition
and have the proper symmetry when exchanging two particles
of the same type.
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At t = 0 the eigenstates of the initial Hamiltonian for a
system of N particles of which M have spin down are given
by

|�N,M ( j,λ)〉 =
∫ N∏

k=1

dxk

[N,M]∑
α1,··· ,αN ={↑,↓}

χ
α1···αN
N,M (x| j,λ)

× �†
αN

(xN ) · · · �†
α1

(x1)|0〉, (6)

where x = (x1, . . . , xN ), the [N, M] over the sum sign means
that we sum over combinations of α’s such that M of them
are spin down and N − M are spin up and |0〉 is the Fock vac-
uum satisfying �α (x)|0〉 = 〈0|�†

α (x) = 0 for all α and x. The
eigenstates (6) are indexed by two sets of unequal numbers
j = ( j1, . . . , jN ) and λ = (λ1, . . . , λM ) (their meaning will
be made clear below) and the normalized wave functions are
[α = (α1 · · ·αN )]

χα
N,M (x| j,λ) = 1

N!NM/2

[∑
P∈SN

θ (xP(1) < · · · < xP(N ) )

× ei πκ
2

∑
1�a<b�N sign(xa−xb)η

(α,Pα)
N,M (λ)

]

× det
N

[
φ ja (xb)

]
, (7)

with the sum being taken over all the permutations of N ele-
ments denoted by SN , θ (x1 < · · · < xN ) =∏N

l=2 θ (xl − xl−1)
with θ (x) the Heaviside function and Pα = (αP(1) · · ·αP(N ) ).
In the right-hand side of (7) the Slater determinant is con-
structed from the eigenfunctions of the initial single-particle
Hamiltonian defined by

HSP
I (x)φ j (x) = ε( j)φ j (x),

HSP
I (x) = − 1

2m

∂2

∂x2
+ V (x, t � 0). (8)

For example, if V (x, t � 0) = mω2
0x2/2 then φ j (x) is the jth

Hermite function of frequency ω0 and ε( j) = ω0( j + 1/2).
The spin sector is described by η

(α,Pα)
N,M (λ), which are the wave

functions of the XX spin chain on a lattice with N sites and M
spins down. Explicitly, we have [71]

η
(α,Pα)
N,M (λ) =

∏
1�a<b�M

sign(nb − na) det
M

[einaλb], (9)

where λ = (λ1, . . . , λM ) are solutions of the Bethe ansatz
equations for the spin problem

eiλaN = (−1)M−1, a = 1, . . . , M, (10)

and n = (n1, . . . , nM ) are a set of integers, which are the po-
sitions of the spin-down particles in the set (αP(1), . . . , αP(N ) ).
For example, if α = (↓↓↑↑) and P = (3214) then the set
of n’s for α is n = (1, 2) while for Pα = (↑↓↓↑) we have
n = (2, 3).

The wave functions (7) are the natural generalization of
the Bethe ansatz solution for the impenetrable Gaudin-Yang
model [26] in the presence of an external potential. They
exhibit factorization of the spin and charge degrees of free-
dom characteristic of impenetrable multicomponent systems
[72–80], solve the many-body Schrödinger equation, vanish
when two coordinates coincide (hard-core condition), have the

appropriate symmetry when exchanging two particles of the
same type

χ
α1···αi,αi+1···αN
N,M (x1, . . . , xi, xi+1, . . . , xN )

= −eiπκ sign(xi−xi+1 )χ
α1···αi+1,αi ···αN
N,M

× (x1, . . . , xi+1, xi, . . . , xN ), (11)

and form a complete set. We should point out that while we
chose for the description of the spin sector the XX spin chain
wave functions an equally valid alternative, but not as com-
putationally efficient, is represented by the XXX spin chain
wave functions.

The eigenstates (6) are normalized 〈�N,M ( j,λ)|
�N ′,M ′ ( j′,λ′)〉 = δN,N ′δM,M ′δ j, j′δλ,λ′ and satisfy HI |�N,M ( j,
λ)〉 = EN,M ( j)|�N,M ( j,λ)〉 with

EN,M ( j) =
N∑

l=1

(ε( jl ) − μ + B) − 2MB. (12)

The spectrum of the impenetrable anyonic Gaudin-Yang
model is independent on the spin state and statistics resulting
in large degeneracies of the ground state and excited states.
At zero temperature even an infinitesimal magnetic field to-
tally polarizes the system, which is then equivalent to the LL
model.

B. Time evolution of the eigenstates

The time evolution of the eigenstates (6) can be easily de-
termined by taking into account that due to the impenetrability
of the particles the spin degrees of freedom are effectively
frozen, which means that the dynamics is encoded in the
charge degrees of freedom (the proof is almost identical with
the one presented in Ref. [20] for the Bose-Fermi mixture).
This means that the time-evolved eigenstates are

e−itHF |�N,M ( j,λ)〉 = e−it[(−μ+B)N−2BM]|�N,M (t | j,λ)〉,
(13)

where |�N,M (t | j,λ)〉 is described by (6) with the time-
dependent wave function given by

χα
N,M (x, t | j,λ) = 1

N!NM/2

[∑
P∈SN

θ (xP(1) < · · · < xP(N ) )

× ei πκ
2

∑
1�a<b�N sign(xa−xb)η

(α,Pα)
N,M (λ)

]

× det
N

[φ ja (xb, t )]. (14)

In the time-independent case (HI = HF ) the time-evolved
single-particle orbitals appearing in the Slater determinant on
the right-hand side of (14) are given by

φ j (x, t ) = e−iε( j)tφ j (x, 0), (15)

with φ j (x, 0) and ε( j) the eigenfunctions and eigenenergies
of the single-particle Hamiltonian (8). In the time-dependent
case (HI �= HF ) φ j (x, t ) is the unique solution of the
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Schrödinger equation

i
∂φ j (x, t )

∂t
= HSP

F (x)φ j (x, t ),

HSP
F (x) = − 1

2m

∂2

∂x2
+ V (x, t > 0), (16)

satisfying the initial boundary condition φ j (x, 0) = φ j (x)
where φ j (x) is an eigenfunction of the initial single-particle
Hamiltonian (8).

C. Correlators

We are interested in deriving efficient numerical repre-
sentations for the space-, time-, and temperature-dependent
correlation functions of the Gaudin-Yang model for a system
prepared in a grand canonical thermal state of the initial
Hamiltonian HI described by the chemical potential μ, mag-
netic field B and temperature T . We will investigate two
correlators (σ ∈ {↑,↓}):

g(−)
σ (x, t ; y, t ′) = 〈�†

σ (x, t )�σ (y, t ′)〉μ,B,T ,

= Tr[e−HI /T �†
σ (x, t )�σ (y, t ′)]/Tr[e−HI /T ],

=
∞∑

N=0

N+1∑
M=0

∑
j1<···< jN+1

∑
λ1<···<λM

e−EN+1,M ( j)/T

Z

× 〈�N+1,M ( j,λ)|�†
σ (x, t )�σ (y, t ′)|

× �N+1,M ( j,λ)〉, (17)

and

g(+)
σ (x, t ; y, t ′) = 〈�σ (x, t )�†

σ (y, t ′)〉μ,B,T ,

= Tr[e−HI /T �σ (x, t )�†
σ (y, t ′)]/Tr[e−HI /T ],

=
∞∑

N=0

N∑
M=0

∑
q1<···<qN

∑
μ1<···<μM

e−EN,M (q)/T

Z

× 〈�N,M (q,μ)|�σ (x, t )�†
σ (y, t ′)|

× �N,M (q,μ)〉, (18)

where

Z = Tr[e−HI /T ] =
∞∑

N=0

N∑
M=0

∑
q1<···<qN

∑
μ1<···<μM

e−EN,M (q)/T

(19)

is the partition function of the initial Hamiltonian in the grand
canonical ensemble described by μ and B at temperature T .
In (17) and (18) the time evolution is dictated by the final
Hamiltonian HF and the evolved operators are given by

�σ (x, t ) = eiHF t�σ (x)e−iHF t , �†
σ (x, t ) = eiHF t�†

σ (x)e−iHF t .

(20)

The real-space densities ρσ (x, t ) and momentum distribution
functions (MDFs) nσ (k, t ) can be obtained from the equal-
time correlator g(−)

σ (x, t ; y, t ) using

ρσ (x, t ) = g(−)
σ (x, t ; x, t ),

nσ (k, t ) = 1

2π

∫∫
e−ik(x−y)g(−)

σ (x, t ; y, t ) dxdy. (21)

III. FORM FACTORS

The derivation of the determinant representations for the
correlators (17) and (18) is relatively involved requiring sev-
eral steps. In the first step we are going to compute the form
factors, which appear in the decomposition of the mean values
of bilocal operators present in the definition of the correlators.
Then, the form factors can be summed using a method, which
can be understood as a modification of the Cauchy-Binet for-
mula [21,23,26] resulting in a determinant representation for
the mean values. In the third step we take the thermodynamic
limit and use the von Koch’s determinant formula to obtain
the desired result. Before we present the derivation we make
an important observation. Due to the SU (2) symmetry of
the Hamiltonian (1) it is sufficient to study only one type of
correlators, the other type can be easily obtained using the
relation g(±)

↑ (x, t ; y, t ′|B) = g(±)
↓ (x, t ; y, t ′| − B).

We will start by computing the form factors. The mean
values of bilocal operators appearing in the right-hand side
of (17) and (18) can be written as sums over form factors
as follows. Using the completeness of the eigenstates 1 =∑∞

N=0

∑N
M=0

∑
q1<···<qN
μ1<···<μM

|�N,M (q,μ)〉〈�N,M (q,μ)|, we ob-

tain (the bar denotes complex conjugation)

〈�N+1,M ( j,λ)|�†
σ (x, t )�σ (y, t ′)|�N+1,M ( j,λ)〉

=
∑

q1<···<qN
μ1<···<μM̄

F (σ )
N,M ( j,λ; q,μ|x, t )F (σ )

N,M ( j,λ; q,μ|y, t ′),

(22)

and

〈�N,M̄ (q,μ)|�σ (x, t )�†
σ (y, t ′)|�N,M̄ (q,μ)〉

=
∑

j1<···< jN+1
λ1<···<λM

F (σ )
N,M ( j,λ; q,μ|x, t )F (σ )

N,M ( j,λ; q,μ|y, t ′),

(23)

where

F (σ )
N,M ( j,λ; q,μ|x, t ) = 〈�N,M̄ (q,μ)|�σ (x, t )|�N+1,M ( j,λ)〉,

(24)

is a general form factor of the �σ (x, t ) operator on arbitrary
states ( j,λ) in the (N + 1, M )-sector and (q,μ) in the (N, M̄ )
sector (|�N,−1( j,λ)〉 = 0 by convention) and

M̄ =
{

M if σ =↑,

M − 1 if σ =↓ .
(25)

The form factor of the �†
σ (x, t ) operator is given by the

complex conjugate of (24), i.e., F (σ )
N,M ( j,λ; q,μ|x, t ). In the

following we will not write explicitly the dependence of the
form factors on the state parameters when there is no risk of
confusion.
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The derivation of the determinant representation for the form factors is presented in Appendix A. It reads

F (σ )
N,M ( j,λ; q,μ|x, t ) = eitμσ e−i πκN

2

NM̄/2(N + 1)M/2
(−1)δσ,↓(M−1) det

M
Bσ (λ,μ) det

N+1
D( j, q|x, t ), (26)

where μ↑ = μ − B, μ↓ = μ + B. This representation is factorized with the charge degrees of freedom being described by
D( j, q|x, t ) a square matrix of dimension N + 1 and elements

[D( j, q|x, t )]ab =
{

f ( ja, qb|x, t ) for a = 1, . . . , N + 1 ; b = 1, . . . , N,

φ ja (x, t ) for a = 1, . . . , N + 1 ; b = N + 1.
(27)

with (L+ is the right boundary of the system)

f ( j, q|x, t ) = δ j,q − (1 − eiπκων)
∫ L+

x
φq(v, t )φ j (v, t ) dv. (28)

where ω = ei�, ν = ei� with � =∑M
a=1 λa, � =∑M̄

b=1 μb. The spin degrees of freedom are described by determinants of
matrices with dimension M and elements [B↑(λ,μ)]ab =∑N

n=1 ein(λa−μb), a, b = 1, . . . , M in the spin-up case and

[B↓(λ,μ)]ab =
{∑N

n=1 ein(λa−μb) for a = 1, . . . , M ; b = 1, . . . , M − 1,

1 for a = 1, . . . , M ; b = M,
(29)

for the spin-down case.

IV. DETERMINANT REPRESENTATIONS FOR
THE CORRELATION FUNCTIONS

Using the formulas for the form factors from the previous
section the mean values (22) and (23) can be summed obtain-
ing rather cumbersome expressions. The situation becomes
simpler in the thermodynamic limit, or, more precisely in the
large N limit. The necessary calculations are presented in Ap-
pendix B. Before we present our results we need to introduce
certain relevant functions and parameters. First we introduce
the parameter γ = (1 + e2B/T ) and the building block of our
representations the function

f ( j, q|η, x, t ) = δ j,q − [1 − ei(πκ−η)]
∫ ∞

x
φq(v, t )φ j (v, t ) dv.

(30)
We will also need

F (γ , η) = 1 +
∞∑

p=1

γ −p(eiηp + e−iηp),

(31)

ϑ (a) = e−B/T

2 cosh(B/T ) + e(ε(a)−μ)/T
,

and we note that F (γ = 1, η) = 2πδ(η) and that θ (a) can be
understood as the Fermi function for the spin-up particles of
the two-component system (see Appendix C). Now we can
state on the main results of our paper. The space-, time-, and
temperature-dependent correlation functions of the anyonic
GY model in a trapping potential have the following deter-
minant representations:

g(−)
↑ (x, t ; y, t ′) = e−i(t−t ′ )μ↑

2π

∫ π

−π

F (γ , η)

× [det(1 + γV (T,−)(η) + R(T,−) )

− det(1 + γV (T,−)(η))] dη, (32)

with [V (T,−)]ab = √
ϑ (a)(U (−)

ab − δa,b)
√

ϑ (b) and [R(T,−)]ab

= √
ϑ (a)R(−)

ab

√
ϑ (b) where U (−) and R(−) are infinite matri-

ces with elements

U (−)
ab (x, t ; y, t ′|η) =

∞∑
q=1

f (a, q|η, x, t ) f (b, q|η, y, t ′),

a, b = 1, . . . , (33a)

R(−)
ab (x, t ; y, t ′) = φa(x, t )φb(y, t ′), a, b = 1, . . . . (33b)

For the second type of correlators the following representation
is valid

g(+)
↑ (x, t ; y, t ′) = ei(t−t ′ )μ↑

2π

∫ π

−π

F (γ , η)[det(1 + γV (T,+)(η)

− γ R(T,+)(η)) + (g − 1)

× det(1 + γV (T,+)(η))] dη, (34)

with [V (T,+)]ab = √
ϑ (a)(U (+)

ab − δa,b)
√

ϑ (b) and [R(T,+)]ab

= √
ϑ (a)R(+)

ab

√
ϑ (b) where U (+) and R(+) are infinite matri-

ces with elements

U (+)
ab (x, t ; y, t ′|η) =

∞∑
j=1

f ( j, b|η, x, t ) f ( j, a|η, y, t ′),

a, b, = 1, . . . , (35)

R(+)
ab (x, t ; y, t ′|η) = ēa(x, t ; y, t ′|η)eb(x, t ; y, t ′|η),

a, b, = 1, . . . , (36)

ea(x, t ; y, t ′|η) =
∞∑
j=1

f ( j, a|η, x, t )φ j (y, t ′), a = 1, . . . ,

(37)

ēa(x, t ; y, t ′|η) =
∞∑
j=1

f ( j, a|η, y, t ′)φ j (x, t ), a = 1, . . . ,

(38)
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and

g(x, t ; y, t ′) =
∞∑
j=1

φ j (x, t )φ j (y, t ′). (39)

We make an observation. The terms in the square brackets
of (32) and (32) represent the single-component equivalent
field-field correlators of LL anyons (see Refs. [29,30]) with
statistics parameter κ − η/π and Fermi function defined in
(31). A similar proposal was made in Ref. [81] in the case
of spin- 1

2 fermions on the lattice. Our results show that the
transformation introduced in Ref. [81] it is valid also in the
continuum case and can be extended for arbitrary statistics.

V. EQUAL-TIME CORRELATORS

In order to study the nonequilibrium dynamics of the
GY model in several scenarios of interest, such as harmonic
trapping with variable frequency or the quantum Newton’s
cradle setup, it is sufficient to consider the g(−)

↑ (x, t ; y, t )
correlator from which the dynamics of the real-space den-
sities and momentum distributions can be computed using
(21). In the equal-time case t = t ′ the representation for
the g(−)

↑ (x, t ; y, t ) ≡ g(−)
↑ (x, y| t ) correlator simplifies consid-

erably. Using the fact that the time-evolved eigenfunctions are
orthonormal∫ L+

L−
φq(v, t )φ j (v, t ) dv = δ j,q,

(40)∞∑
j=1

φ j (w, t )φ j (v, t ) = δ(w − v),

in Appendix D we show that in the equal-time case the ele-
ments of the V (T,−) matrix simplify to

[V (T,−)]ab

= −(1 − e−i sign(y−x)[πκ−η] )sign(y − x)
√

ϑ (a)ϑ (b)

×
∫ y

x
φa(v, t )φb(v, t ) dv. (41)

The dependence on η is now simple enough that we can
integrate in (32). We will denote the difference of determi-
nants appearing in (32) by �. In the case x � y we have
� =∑∞

n=0 γ n(e−iπκeiη − 1)nA(n) where A(n) are coefficients
that do not depend on η. We find

g(−)
↑ (x, y| t ) =

∫ π

−π

dη

2π

⎡
⎣1 +

∞∑
p=1

γ −p(eiηp + e−iηp)

⎤
⎦

×
∞∑

n=0

γ n(e−iπκeiη − 1)nA(n),

=
∞∑

n=0

(e−iπκ − γ )nA(n), (42)

where we have used (e−iπκeiη − 1)n =∑n
k=0 Cn

k
(−1)n−keiηke−iπκk and

∫ π

−π
eiηke−iηp/(2π ) = δk,p. In the y < x

case we obtain g(−)
↑ (x, t ; y, t ) =∑∞

n=0(γ − eiπκ )nA(n). This
means that in the equal-time case the following representation

is valid:

g(−)
↑ (x, y| t ) = det(1 + v(T,−) + r (T,−) ) − det(1 + v(T,−) ),

(43)

with
[v(T,−)]ab = −[γ − e−i πκsign(y−x)]sign(y − x)

√
ϑ (a)ϑ (b)

×
∫ y

x
φa(v, t )φb(v, t ) dv, (44a)

[r (T,−)]ab =
√

ϑ (a) φa(x, t )φb(y, t )
√

ϑ (b). (44b)

At zero magnetic field and zero temperature the parameter
γ = 2 and ϑ (a) = 1

2θ (μ − ε(a)). The infinite matrices ap-
pearing in (44) are replaced with finite matrices of dimension
N with N being the number of energy levels smaller than μ

and elements

[v(0,−)]ab = −1

2
(2 − e−i πκsign(y−x) )sign(y − x)

×
∫ y

x
φa(v, t )φb(v, t ) dv, a, b = 1, . . . , N,

(45a)

[r (0,−)]ab = 1

2
φa(x, t )φb(y, t ), a, b = 1, . . . , N. (45b)

We make an important observation. The zero-temperature de-
terminant representation (43) with matrices (45) describes the
correlators in the spin-incoherent regime [25,82–88], which
is obtained by taking first the limit of infinite repulsion and
then T → 0. Finding a determinant representation for the
impenetrable GY model in the Tomonaga-Luttinger regime,
which is obtained by taking first the limit T → 0 and then the
limit of infinite repulsion, is an open problem [83,85].

We should point out that the representation (43) is ex-
tremely efficient from the numerical point of view (the main
computational effort comes from the evaluation of the partial
overlaps) allowing for the exact investigation of systems with
hundreds of particles at zero temperature and tens of particles
at very high temperatures, which is more than enough for
comparison with current experiments (see, for example, the
recent experiment [42] where N = 32 atoms per tube at zero
temperature). Similar representations for single-component
systems in the continuum can be found in Refs. [35–38].

VI. LENARD’S FORMULA

In Ref. [22] Lenard used the Bose-Fermi mapping to de-
rive an expansion of single-component bosonic correlators in
terms of free fermionic correlators, which was independent
on the statistical ensemble and interparticle potential as long
as the hard-core condition was satisfied. In Appendix E we
show that the determinant representation (43) for the equal-
time correlators is equivalent to the following multicomponent
generalization of Lenard’s formula:

g(−)
↑ (x, y| t ) = gFF

↑ (x, y| t ) +
∞∑
j=1

(−ξ ) j

j!

×
∫ y

x
dx1 · · ·

∫ y

x
dx j gFF

↑

(
x x1 · · · x j

y x1 · · · x j
; t

)
,

(46)
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with

ξ = [γ − e−i πκsign(y−x)]sign(y − x), (47)

and gFF
↑ (x, y| t ) =∑∞

a=1 ϑ (a) φa(x, t )φa(y, t ), which can be understood as the field-field correlation function of a system of free
fermions with Fermi function ϑ (a) defined in (31). In (46) we have used the notation

gFF
↑

(
x x1 · · · x j

y x1 · · · x j
; t

)
=

∣∣∣∣∣∣∣∣∣∣∣

gFF
↑ (x, y| t ) gFF

↑ (x, x1| t ) · · · gFF
↑ (x, x j | t )

gFF
↑ (x1, y| t ) gFF

↑ (x1, x1| t ) · · · gFF
↑ (x1, x j | t )

...
...

. . .
...

gFF
↑ (x j, y| t ) gFF

↑ (x j, x1| t ) · · · gFF
↑ (x j, x j | t )

∣∣∣∣∣∣∣∣∣∣∣
. (48)

The correlator g↓(x, y|t ) has a similar representation as (46) with B replaced by −B in the expressions for γ and the Fermi
function ϑ (a).

At zero temperature and zero magnetic field we have gFF
↑ (x, y| t ) = 1

2

∑N
a=1 φa(x, t )φa(y, t ) where N is the number of

particles for the balanced system in the ground state. The generalization of Lenard’s formula for the balanced system takes
the form [g(−)

↑ (x, y| t ) = g(−)
↓ (x, y| t )]

g(−)
↑ (x, y| t ) = 1

2

⎡
⎣gFF,0

↑ (x, y| t ) +
∞∑
j=1

(−ξ0) j

j!

∫ y

x
dx1 · · ·

∫ y

x
dx j gFF,0

↑

(
x x1 · · · x j

y x1 · · · x j
; t

)⎤⎦, (49)

with

ξ0 = 1

2
[2 − e−i πκsign(y−x)]sign(y − x), gFF,0

↑ (x, y| t ) =
N∑

a=1

φa(x, t )φa(y, t ). (50)

Lenard’s formula (46) is extremely useful in deriving short
distance expansions for the correlators, from which the Tan
contacts, which govern the C(t )/k4 tails of the momentum
distributions, can be extracted, but it can also be used to obtain
Painlevé transcendent representations for finite-size systems
in equilibrium at zero temperature. Let us show how this can
be done. The main observation is that (49) can be understood
as the first Fredholm minor of the Fredholm integral opera-
tor 1 − ξ0 ĝFF,0

↑ acting on [x, y] and with kernel gFF,0
↑ (λ,μ).

Using Hurwitz formula [89] we find

g(−)
↑ (x, y) = 1

2 RFF
↑ (x, y) det

(
1 − ξ0 ĝFF,0

↑
)
, (51)

with the resolvent satisfying the integral equation

RFF
↑ (λ,μ) = gFF,0

↑ (λ,μ) + ξ0

∫ y

x
gFF,0

↑ (λ, ν)RFF
↑ (ν, μ) dν.

(52)

In the particular case at when x and y are chosen such that
they are symmetrical about the origin, say [−x, x], and using
d
dx ln det(1 − ξ0 ĝFF

↑ ) = −2RFF
↑ (x, x) we obtain

g(−)
↑ (−x, x) = 1

2
RFF

↑ (−x, x) exp

(
−2
∫ x

0
RFF

↑ (t, t ) dt

)
.

(53)

The importance of the previous formula resides in the fact that
the quantities RFF

↑ (−x, x) and RFF
↑ (t, t ) have previously been

calculated in terms of Painlevé transcendents as part of stud-
ies on gap probabilities for certain random matrix ensembles
[90,91]. In the harmonic trapping case the relevant ensemble is
the Gaussian unitary ensemble and the Painlevé transcendent

representation can be found in Proposition 5 of Ref. [39] with
the parameter ξ = (1 − e−i πκ/2). It is interesting to note that
modulo a 1/2 factor the correlators of the finite GY model
with harmonic trapping can be expressed in terms of the same
PV transcendent as the single-component bosonic system,
the only difference being in the boundary conditions. In the
case of Dirichlet and Neumann boundary conditions the en-
semble of interest is the Jacobi unitary ensemble with a =
b = ±1/2 and the transcendent representation can be found
in Proposition 6 of Ref. [39].

VII. DYNAMICS IN THE CASE OF VARIABLE
FREQUENCY

Using the results of Sec. V we can investigate the dy-
namics of the real-space densities and momentum distribution
functions of the Gaudin-Yang model in the experimentally
relevant case of a trapping potential with variable frequency.
We will focus on the case of free expansion of the gas and
the breathing oscillations initiated by a sudden change in the
trap’s frequency.

In the case of a harmonic potential with variable fre-
quency V (x, t ) = mω2(t )x2/2 with ω(t � 0) = ω0 the single-
particle eigenfunctions at t = 0 are the Hermite functions of
frequency ω0

φ j (x) = 1√
2 j j!

(mω0

π

)1/4
e− mω2

0x2

2 Hj (
√

mω0x), (54)

where Hj (x) are the Hermite polynomials. The time evolu-
tion of the single-particle orbitals is given by the scaling
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transformation ([92], Chap. VII of Ref. [93]):

φ j (x, t ) = 1√
b(t )

φ j

(
x

b(t )
, 0

)
exp

[
i
mx2

2

ḃ

b
− iε( j)τ (t )

]
,

(55)

with b(t ) the solution of the Ermakov-Pinney equation b̈ +
ω2(t )b = ω2

0/b3 and initial boundary conditions b(0) = 1,
ḃ(0) = 0, ε( j) = ω0( j + 1/2), and τ (t ) = ∫ t

0 dt ′/b2(t ′). Due
to the fact that the dynamics is encoded only in the charge
degrees of freedom the time evolution of the correlators is
given by [18–20]

g(−)
σ (x, y| t ) = 1

b(t )
g(−)

σ

(
x

b(t )
,

y

b(t )

∣∣∣∣ 0
)

e
− i

b
ḃ

ω0

x2−y2

2l2o , (56)

with lo = √
1/mω0 the harmonic oscillator length. The time

evolution of the densities is

ρσ (x, t ) = 1

b(t )
ρσ

(
x

b(t )

∣∣∣∣0
)

, (57)

and in the case of the momentum distributions we have

nσ (k, t ) = b

2π

∫∫
dxdy g(−)

σ (x, y|0)

× exp

[
−ib

(
ḃ

ω0

x2 − y2

2l2
o

+ k(x − y)

)]
. (58)

These results show that in order to study the exact dynamics
in the case of a system with variable frequency it is sufficient
to compute the correlators at t = 0 and then use Eqs. (56) and
(58).

A. Free expansion

Free expansion is described by ω(t � 0) = ω0 and ω(t �
0) = 0 and is ubiquitous in cold gases experiments allowing
for the investigation of the MDF. In this case the solu-
tion of the Ermakov-Pinney equation is b(t ) = (1 + ω2

0t2)1/2.
We will consider first the case of balanced systems at zero
temperature (note that even an infinitesimal magnetic field
will polarize the system at T = 0 reducing its study to the
single-component case). Employing the stationary phase ap-
proximation in (58) analytical results on the total asymptotic
momentum distribution can be obtained showing that it is the
same as the MDF of a system of free fermions in the initial
trap. This phenomenon is called dynamical fermionization
[36,94–100] and in the case of the single-component bosonic
TG gas was experimentally observed in [101]. In the case
of bosonic and fermionic spinor gases with any number of
components at zero-temperature dynamical fermionization of
the total momentum distribution was derived by an Alam et.
al in Ref. [18]. For the anyonic GY model using the explicit
form of the wave functions (7) and the method of Ref. [20] it
can be shown that the asymptotic momentum distributions are
given by

nσ (k, t → ∞) ∼ 1
2 nFF (k), n(k, t → ∞) ∼ nFF (k), (59)

where n(k, t ) = n↑(k, t ) + n↓(k, t ) is the total MDF of the GY
model and nFF (k) is the MDF of a similar number of free

fermions N in the original trap [φ j (x) are defined in (54)]

nFF (k) = 1

2π

∫∫
e−ik(x−y)g(−)

FF (x, y) dxdy,

g(−)
FF (x, y) =

N−1∑
i=0

φi(x)φi(y). (60)

In Fig. 1 we present the dynamics of the total MDF for
a zero-temperature balanced anyonic GY model with N =
30 particles for different values of the statistical parameter
κ = {1, 0.66, 0.33, 0} and three values of t : before the re-
lease from the trap t = 0 (first row), immediately after release
t = 0.1π/ω0 (second row), and in the asymptotic region t =
4π/ω0 (third row). At t = 0 the MDF for the bosonic system
(κ = 1) presents a visible peak at k = 0 similar with the one
for single-component bosons but less pronounced due to the
spin-incoherent nature of the system. The fermionic MDF
(κ = 0) of the GY model is also smoothened out compared
with the free fermionic MDF, which in the presence of the
trapping potential presents a number of local maxima equal
to the number of particles in the system. The main feature of
the MDF for anyonic systems (κ = {0.66, 0.33}) is the asym-
metry, which is caused by the broken space invariance of the

commutation relations (2) resulting in g(−)
σ (x, y) = g(−)

σ (y, x)
[for the bosonic and fermionic systems g(−)

σ (x, y) is real and
we have g(−)

σ (x, y) = g(−)
σ (y, x)]. For all systems at large times

after the release from the trap the asymptotic momentum
distribution approaches the symmetric MDF for free fermions
in the initial trap (60) as it can be seen in the last row of Fig. 1.

At finite temperature the situation is more complex. In
Ref. [20] it was shown that for a trapped system initially found
in a thermal state described by the chemical potential μ, mag-
netic field B and temperature T the asymptotic momentum
distribution is the same as the one for spinless free fermions
in the initial trap at the same temperature but renormalized
chemical potential

μ′ = μ + T ln[2 cosh(B/T )]. (61)

Explicitly, the asymptotic MDF for each component reads

n↓(k, t → ∞) ∼ eB/T

2 cosh(B/T )
nμ′

FF (k),

(62)

n↑(k, t → ∞) ∼ e−B/T

2 cosh(B/T )
nμ′

FF (k),

and n(k, t → ∞) ≡ n↓(k, t → ∞) + n↑(k, t → ∞) = nμ′
FF

(k), where nμ′
FF (k) is the MDF of trapped spinless free

fermions given by

nμ′
FF (k) = 1

2π

∫∫
e−ik(x−y)g(−)

FF,μ′ (x, y) dxdy,

g(−)
FF,μ′ (x, y) =

∞∑
i=0

1

1 + e(ε(i)−μ′ )/T
φi(x)φi(y). (63)

In Fig. 2 we present the time evolution of the MDF after
release from the trap for an unbalanced system of N = 30
particles (N↓ = 20, N↑ = 10) at temperature T = 4, which
shows the perfect agreement with our analytical predictions
for the asymptotic distributions (62).
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(d)(a) (b) (c)

(h)(e) (f) (g)

(l)(i) (j) (k)

FIG. 1. Momentum distribution functions before (first row) and after free expansion at t = 0.1�t (second row) and t = 4�t (third row)
computed using Eqs. (43), (45), and (58). We consider balanced systems of N = 30 particles at zero temperature (ω0 = 1, lo = 1, �t = π/ω0)
and statistics parameter κ = {1, 0.66, 0.33, 0}. In the second and third row the black line represents the momentum distribution function of a
system of free fermions with the same number of particles in the initial harmonic trap Eq. (60).

B. Breathing oscillations and collective
many-body bounce effect

A confinement quench in which the trap frequency is
suddenly changed to a new value initiates breathing oscilla-
tions, which can be experimentally observed [101,102]. We
will denote the prequench frequency by ω(t � 0) = ω0 and
the postquench frequency by ω(t � 0) = ω1. In this case
the solution of the Ermakov-Pinney equation is given by

b(t ) = [1 + ε0 sin2(ω1t )]1/2 with ε0 = (ω0/ω1)2 − 1 and de-
scribes oscillations between 1 and ω0/ω1 with period π/ω1.

In Fig. 3 we present and compare the dynamics of the
densities and MDFs for a balanced GY model with N = 30
particles at zero temperature and the LL model with the
same number of particles subjected to a strong confinement
quench ω1 = 6ω0. The time evolution of the real-space
densities, which are the same for both models, is described by

(d)(a) (b) (c)

(h)(e) (f) (g)

(l)(i) (j) (k)

FIG. 2. Momentum distribution functions of an imbalanced system at finite temperature before (first row) and after free expansion at t =
0.1�t (second row) and t = 4�t (third row) computed using Eqs. (43), (44), and (58). Here we consider systems with N = 30 particles (N↓ =
20, N↑ = 10) at temperature T = 4 (ω0 = 1, lo = 1, �t = π/ω0) and statistics parameter κ = {1, 0.66, 0.33, 0}. The blue (green) continuous
lines represent the MDFs of the spin-down (-up) particles and in the second and third row the black continuous (dashed) lines represent the
analytical result Eq. (62) for the spin-down (-up) particles.
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(d)(a) (b) (c)(b)

(f) (h)(e)

(f)

(g)

(l)(i) (j)

(j)

(k)

(p)(m) (n) (o)

FIG. 3. Breathing oscillations dynamics in the GY and LL models. First row: (a) Time dependence of the total density ρ(x, t ) [Eq. (57)]
and total momentum distribution n(k, t ) [Eq. (60)] for (b) κ = 1, (c) κ = 0.5, and (d) κ = 0 in the balanced GY model at zero temperature with
N = 30 particles after a strong quench of the trap frequency (ω0 = 1, ω1 = 6ω0, ε0 ∼ −0.972, lo = 1). The correlator at t = 0 is computed
with Eqs. (43) and (45). Second row: (e)–(h) Same quantities as above for the single-component LL model with the same number of particles.
Third row: (a) Width (FWHM) of the densities [blue (green) line for the GY (LL) model] (i) and momentum distributions (j)–(l). Fourth row:
Width difference �FW HM = FW HMGY − FW HMLL for the (m) densities and (n)–(p) momentum distributions.

self-similar breathing cycles ρ(x, t ) = ρ(x/b(t )|0)/b(t ),
which can be seen in Fig. 3(a) and Fig. 3(e). The situation is
more complex in the case of the MDFs. From Figs. 3(b)–3(d)
we see that for the GY model and all values of the
statistics parameter the MDF dynamics is no longer
self-similar and presents two instances of narrowing: at
ω1t = π l, l = 0, 1, . . . (called outer turning points [40]) when
the real density is the broadest and at ω1t = π

2 l, l = 1, 2, . . .

(called inner turning points) when the gas is maximally
compressed. The additional narrowing at the inner turning
point is a manifestation of a many-body collective effect
not present in noninteracting systems [see Fig. 3(h)], which
can be understood as a self-reflection of the cloud due to

the repulsive interactions. In the case of single-component
bosons this collective effect was discovered and investigated
in Ref. [40] and in the case of single-component anyonic
systems in Ref. [38]. The amplitude of the narrowing at the
inner turning points depends on statistics being the largest for
bosons (κ = 1) and smallest for fermions (κ = 0). This can
be seen in the evolution of the full width at half-maximum
of the MDF presented in Figs. 3(j)–3(l) and can also be
explained in terms of the repulsive interactions between the
particles: in the bosonic case we have inter- and intraparticles
interaction while in the fermionic case only particles with
opposite pseudospins interact with the anyonic case being
in between. We will denote FW HMGY (FW HMLL ) the
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widths of the relevant quantities for the GY (LL) model.
The width differences �FW HM = FW HMGY − FW HMLL

plotted in the fourth row of Fig. 3 show that during the time
evolution the largest differences in the MDFs of single- and
two-component systems occur in the vicinities of the inner
and outer turning points. For the bosonic and anyonic system
with κ = 0.5 �FW HM is always positive signaling a broader
MDF for the two-component system, which is due to the spin
incoherence of the system (see the discussion in Sec. VIII).
In the fermionic case in the vicinities of the inner and outer
turning points the MDF of free fermions is wider than the
one for the GY model while in between the inner and outer
turning points the opposite is true.

VIII. DYNAMICS IN THE NEWTON’S
QUANTUM CRADLE SETUP

In the original quantum Newton’s cradle (QNC) experi-
ment [4] a quasi-1D ultracold gas of LL bosons in a weakly
harmonic trap is subjected to a sequence of Bragg pulses,
which splits the initial quasicondensate into two counterprop-
agating clouds with momenta centered around ±q. The fact
that these clouds undergo repeated oscillations without ther-
malization like an ordinary gas highlighted the importance
of the large number of conservation laws in the description
of nonequilibrium 1D quantum systems. From the theoretical
point of view the dynamics of single-component bosons in the
QNC setup has been investigated in Refs. [37,97,103–105].
Here, we focus on the two-component Gaudin-Yang model
(see also Ref. [17] for a GHD approach).

First, let us show how our formalism developed in the pre-
vious sections can be applied in the QNC setup. Generalizing
the results of Ref. [103] in the case of two-component systems
we model a Bragg pulse in the Raman-Nath limit [106,107], in
which the motion of the particles during the pulse is neglected,
with the Bragg pulse operator

UB(q, A) = e−iA
∫

dx cos(qx)(�†
↑(x)�↑(x)+�

†
↓(x)�↓(x)). (64)

The action of such an instantaneous pulse on an arbitrary
eigenstate of the Hamiltonian (1) is given by∣∣�q,A

N,M ( j,λ)
〉 = UB(q, A)|�N,M ( j,λ)〉, (65)

with |�q,A
N,M ( j,λ)〉 given by (6) with the wave function mul-

tiplied by e−iA
∑N

k=1 cos(qxk ). This means that the effect of the
Bragg pulse is that in the Slater determinant describing the
charge degrees of freedom we have to replace φ j (x) with
φ j (x)e−iA cos(qx). After the pulse the time evolution is given by
the Hamiltonian (1) with V (x) = mω2x2/2 and the dynamics
of the single-particle eigenfunctions can be computed analyti-
cally using the propagator of the quantum harmonic oscillator

K (x, u| t ) =
(

mω

2π i sin(ωt )

)1/2

× exp

(−mω(x2 + u2) cos(ωt ) + 2mωxu

2i sin(ωt )

)
,

(66)

and φ j (x, t ) = ∫ +∞
−∞ K (x, u| t )e−iA cos(qx)φ j (u) du . One ob-

tains [103]

φ j (x, t ) =
∞∑

n=−∞
In(−iA)e−inq cos(ωt )(x+nq sin(ωt )

2mω )

× φ j

(
x + nq

sin(ωt )

mω

)
e−iω( j+ 1

2 )t , (67)

with In(x) = ∫ π

0 ex cos θ cos(nθ )dθ/π the modified Bessel
function of the first kind. Therefore, the dynamics of the
GY model in the quantum Newton’s cradle is given by the
determinant representation (43) with matrices (44) at finite
temperature and (45) at zero temperature with the time-
evolved single-particle orbitals defined in (67). In the TG
regime the time evolution of the GY model in the QNC setup
is periodic with period π/ω. This statement can proved using
the relation In(−iA) = I−n(iA) (see the integral representa-
tion) in (67) resulting in φ j (x, t + π/ω) = e−i( j+1/2)πφ j (x, t ).
The correlators involve products of wave functions of the type
χN,MχN,M resulting in cancellation of the phases and there-
fore the densities and momentum distributions are periodic
with period π/ω. In the single-component case Berg et al.
[103] showed that there are two separate time scales in the
problem: rapid and trap-insensitive dephasing after the pulse
followed by the slow periodic behavior. The fastest time scale
is associated with hydrodynamization and was experimentally
observed in single-component TG bosons [42]. Below we will
investigate the hydrodynamization in the GY model and high-
light the differences between the single- and two-component
case.

Hydrodynamization occurs in systems which are quenched
with energies much larger than the ground-state energy and is
characterized by a rapid onset of hydrodynamics before local
thermal equilibrium is established [41]. Hydrodynamization
takes place on the fastest available timescale, which is related
to the Bragg peak energies and can be seen in the redistri-
bution of energy among distant momentum modes [42]. For
Bragg pulses with A ∼ 1 the hydrodynamization frequency
ωhd can be obtained from the difference of the n = 0 and n =
±1 Bragg orders ωhd = q2/2m and the associated timescale
of hydrodynamization is given by Thd = 2π/ωhd .

In order to investigate the action of the Bragg pulse on the
MDF and the subsequent time evolution it is useful to remind
the reader some analytical results on the correlators of TG
gases. For any interaction and geometry the following relation
is valid [� ≡ �N,M ( j,λ)]

〈�|U †
B (q, A)�†

σ (x)�σ (y)UB(q, A)|�〉
= e−2iA sin(q x−y

2 ) sin(q x+y
2 )〈�|�†

σ (x)�σ (y)|�〉, (68)

which can be proved by using the explicit expression of the
mean value on terms of the wave functions and the fact that the
action of the Bragg operator multiplies the wave function of an
arbitrary state with e−iA

∑N
k=1 cos(qxk ). Then, performing similar

calculations as in the Supplemental Material of Ref. [103], one
can show that in the case of circular geometry the momentum
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(d)(a) (b) (c)

(h)(e) (f) (g)

(l)(i) (j) (k)

FIG. 4. First row: The momentum distribution functions after the Bragg pulse at t = {0, 0.1�t, 0.2�t, 0.6�t} (�t = π/40ω) for systems
of N = 32 particles at zero temperature (ω = 1, A = 1.5, q = 5π , l0 = 1, q̃ = ql0). We present results for (a) the bosonic GY model, (b) bosonic
LL model, (c) fermionic GY model, and (d) single-component free fermions (anyonic LL model at κ = 0). The results for the GY model were
computed using Eqs. (43), (45), and (67). Second row: Time evolution of the momentum distribution functions showing the rapid population of
the modes between the ±q satellites due to hydrodynamization, which is essentially complete by Thd = 2π/ωhd (marked by the white dashed
line). Third row: Time evolution of the integrated energy (in units of Eq = q2/2m) in 0.1q wide momentum groups. The average momentum
of each groups is shown in the legend. The dashed black line marks Thd .

distribution function after the pulse is given by

nσ (k, t = 0) =
∞∑

l=−∞
cl (A)n(0)

σ (k + lq), (69)

where n(0)
σ (k) is the MDF before the pulse and the coefficients

cl (A) depend on the value of A. Equation (69) shows that
in the case of a homogeneous system the MDF after the
pulse is a sum of copies of the ground-state MDF at T = 0
(thermal MDF at finite temperature) centered around multi-
ples of q. Using the local density approximation one expects
that a similar picture holds in the case of weak harmonic

trapping. Therefore, it is useful to study the MDF of ho-
mogeneous systems. In the case of single-component anyons
without trapping the large distance asymptotics of the field-
field correlators is given by [27,51,52]

g(−)(x, 0) ≡ 〈�†(x)�(0)〉

∼ a
eikF (κ−1)x

x1−κ+ κ2
2

+ b
eikF (κ+1)x

x1+κ+ κ2
2

, x > 0, (70)

with a, b constants that can be found in Ref. [27]. Note
that g(−)(−x, 0) = g(−)(x, 0). We focus on the large distance
asymptotics because via Fourier transform they give the be-
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FIG. 5. Momentum distribution functions and densities of the GY and LL anyonic models for t = {0, 5, 10, 15, 20, 25, 30, 35, 40} ×
�t, �t = π/40ω in the QNC setup a for a system of N = 30 particles at zero temperature (ω = 1, A = 1.5, q = 5π , l0 = 1, q̃ = ql0). First
column: κ = 1 (bosons), second column κ = 0.5, third column κ = 0 (fermions). Fourth column: Density, which is the same for all values of
κ and for both GY and LL models. The quantities for the GY model are computed using Eqs. (43), (45), and (67).
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havior of the MDF for k ∼ 0. In the bosonic case, κ = 1, the
first term in the right-hand side of (70) is dominant and we
have g(−)(x, 0) ∼ a/x1/2, which results in an MDF behaving
like n(k) ∼ 1/k1/2 for k → 0 [108–111]. For free fermions,
κ = 0, both terms are relevant and they reproduce the well-
known result g(−)(x, 0) = sin(kF x)/πx with n(k) ∼ 1[−kF ,kF ].

The large distance asymptotics for homogeneous impene-
trable Gaudin-Yang anyons is given by [27] (ν = −i ln 2

2π
− κ

2 )

g(−)
σ (x, 0) ∼ e−2iνkF x

x2ν2+1
[a x−2νe−ikF x + b x2νeikF x], x > 0,

(71)

with a, b constants, which can be found in Ref, [27]. Similar
to the single-component case in the bosonic case the first term
in the right-hand side is dominant obtaining [85]

g(−)
σ (x, 0) ∼ e− ln 2

π
kF xx− 1

2 + 1
2 ( ln2

π )2

, (72)

and in the fermionic case both terms contribute with the results
[25,82–84,87]

g(−)
σ (x, 0) ∼ e− ln 2

π
kF xx−1+ 1

2 ( ln2
π

)2
sin (kF x − ln 2 ln x/π − ϕ0),

(73)

with ϕ0 a constant. The main feature of the asymptotics
(72) and (73) is the presence of the exponential decreasing
term e− ln 2

π
kF x even though we are at zero temperature. This

is a general feature of multicomponent systems in the spin-
incoherent regime: in the case of a system with M components
the exponential terms is e− ln M

π
kF x [87]. The algebraic correc-

tions are very close to the ones for single-component systems
1
2 ( ln2

π
)2 ∼ 0.024 but in the fermionic case the oscillatory term

has a ln x term dependence in addition to a phase. In the
bosonic case this results in a MDF for the GY model, which is
wider and does not present the weak singularity k−1/2 charac-
teristic of single-component bosons. In the fermionic case the
opposite statement is true with the MDF for the GY model
being narrower than the similar quantity for free fermions.
These observations remain valid also in the case of harmonic
trapping as it can be seen in the first row of Fig. 4 where we
present the MDF for several values of t immediately after the
Bragg pulse. One can see that the MDF for free fermions (their
momenta are just the rapidities) remains almost unchanged
while in the other cases we can clearly see the transfer of
energy from the ±q,±2q satellites to the modes between the
peaks. The time evolution of the MDF is shown in the second
row of Fig. 4 where it can be seen clearly that the modes
between the first Bragg peaks are populated very rapidly.
This is due to the fact that these modes are composed of the
widest range of rapidities and, hence, they dephase fastest.
One can see that the process of hydrodynamization takes place
on the timescale set by Thd = 2π/ωhd . The rapid change in
the energy distribution associated with hydrodynamization
can be seen more clearly by integrating the kinetic energy
in successive momentum ranges and plotted as function of
time as it can be seen in the last row of Fig. 4. Each curve
presents the time evolution of the integrated energy in 0.1q
wide momentum groups up to the first Bragg peak. For the GY
model one can see that the rapid initial change in the interme-
diate momentum groups is more dramatic in the bosonic case

compared with the fermionic case, which is to be expected due
to the wider initial MDF in the fermionic case. The change
is also more pronounced in the bosonic LL model compared
with the bosonic GY model due to the quasicondensate nature
of the MDF in the single-component case compared with
the wider MDF of the spin-incoherent GY model. While the
changes in the free fermionic case are extremely small it
should be noted that they are nonzero.

In Fig. 5 we present results the time evolution of the
MDF and densities for a system of N = 30 particles at zero
temperature for both the GY model and its single-component
counterpart and three values of the statistics parameter: κ = 1
(bosons), κ = 0.5, and κ = 0 (fermions). For κ = 0.5 one can
see the nonsymmetric momentum distribution and that at t =
0 the MDF of the single component is narrower (the leading

term comes from the Fourier transform of eikF (κ−1)x/x1−κ+ κ2

2 )
than the one for the two-component system. The nonsym-
metry remains visible for the entire period of the oscillation.
From the first three columns of Fig. 5 we see that the overlap
between the MDF for single- and two-component systems
during the oscillations is pretty large with significant differ-
ences occurring in the vicinities of t = pπ/ω and t = 1

2 pπ/ω

with p integer. However, we should point out that the tails
of the MDFs, which behave like n(k, t ) ∼ C(t )/k4 with C(t )
the Tan contact are different with the contacts for the two-
component systems being smaller than the contacts for the
single-component ones [85]. The density for systems with
the same number of particles is independent of statistics and
the number of components in the system. Its dynamics is
shown in the fourth column of Fig. 5 where it can be seen
that it oscillates in out-of-phase with respect to the MDFs: the
density is narrowest when the MDF is largest and the converse
is also true.

IX. CONCLUSIONS

In this paper we have investigated the nonequilibrium
dynamics of the Gaudin-Yang model in two experimen-
tally accessible scenarios: the quench induced by the sudden
change in the trap’s frequency and the quantum Newton’s cra-
dle setup. Our investigation used a determinant representation
for the space-, time-, and temperature-dependent correlators,
which is extremely easy to implement numerically with the
main computational effort coming from the calculation of the
partial overlaps for the time-evolved single-particle orbitals.
When the model is subjected to a quench of the trap’s fre-
quency we have identified a collective many-body bounce
effect with an amplitude that depends on the statistics of the
particles and for the QNC setup we have performed a thor-
ough study of the dynamics and hydrodynamization. A natural
extension of our work would be the derivation of similar
representations for the lattice analog of the GY model, the
Hubbard model. This will be deferred to a future publication.

ACKNOWLEDGMENTS

Financial support from the Grant No. 30N/2023 of the Na-
tional Core Program of the Romanian Ministry of Research,
Innovation and Digitization is gratefully acknowledged.

053304-14



NONEQUILIBRIUM DYNAMICS IN ONE-DIMENSIONAL … PHYSICAL REVIEW A 108, 053304 (2023)

APPENDIX A: DERIVATION OF THE DETERMINANT REPRESENTATION FOR THE FORM FACTORS

In this Appendix we will derive the determinant representations for the form factors (26). The arbitrary state in the (N + 1, M )
sector appearing in the definition of the form factor is characterized by j = ( j1, . . . , jN+1), which describes the charge degrees
of freedom and λ = (λ1, . . . , λM ) specifying the spin sector with eiλa (N+1) = (−1)M−1 for a = 1, 2, . . . , M. The other state
appearing in the definition of the form factor belongs to the (N, M̄ ) sector and is characterized by q = (q1, . . . , qN ) and μ =
(μ1, . . . , nM̄ ) with eiμbN = (−1)M̄−1 for b = 1, 2, . . . , M̄. Introducing

� =
M∑

a=1

λa, � =
M̄∑

b=1

μb and ω = ei�, ν = ei�, (A1)

we have

η
(α,α1α2···αN+1 )
N+1,M (λ) = ω η

(α,α2α3···αN+1α1 )
N+1,M (λ), (A2)

η
(α,α1α2···αN )
N,M̄

(μ) = ν η
(α,α2α3···αN α1 )
N,M̄

(μ), (A3)

which is a consequence of the fact that the XX spin chain wave functions (9) are also eigenfunctions of the cyclic shift operator
on the lattice. Also, using (13) we obtain

F (σ )
N,M ( j,λ; q,μ|x, t ) = eitμσ 〈�N,M̄ (t |q,μ)|�σ (x)|�N+1,M (t | j,λ)〉, (A4)

with the time-evolved wave functions given by (14) and μ↑ = μ − B, μ↓ = μ + B. Using the commutation relations (2) and the
symmetry of the wave functions (11) the starting point of our calculations is

F (σ )
N,M (x, t ) = (N + 1)!eitμσ

∫ L+

L−

N∏
i=1

dxi

[N,M̄]∑
α1,··· ,αN ={↑,↓}

χα
N,M̄ (x1, . . . , xN , t |q,μ)χασ

N+1,M (x1, . . . , xN , x, t | j,λ) (A5)

where the bar denotes complex conjugation and L± are the limits of integration, which can differ depending on the system we
consider. For example, in the case of trapping we have L± = ±∞ but in the case of Dirichlet boundary conditions in the box
[0, L] we have L− = 0 and L+ = L. The evolved wave functions are

χα
N,M̄ (x1, . . . , xN , t |q,μ) = 1

N!NM̄/2

⎡
⎣∑

R∈SN

θ (Rx)e−i πκ
2

∑
1�a<b<N sign(xa−xb)η

(α,Rα)
N,M̄

(μ)

⎤
⎦ ∑

Q∈SN

(−1)Q
N∏

l=1

φqQ(l )
(xl , t ), (A6)

and

χασ
N+1,M (x1, . . . , xN , x, t | j,λ) = 1

(N + 1)!(N + 1)M/2

[ ∑
R′∈SN+1

θ (R′x′)ei πκ
2

∑
1�a<b<N sign(xa−xb)ei πκ

2

∑N
a=1 sign(xa−x)

× η
(ασ,R′ασ )
N+1,M (λ)

] ∑
P∈SN+1

(−1)P
N∏

l=1

φ jP(l ) (xl , t )φ jP(N+1) (x, t ), (A7)

where Rx = xR(1) < · · · < xR(N ) and R′x′ = xR′(1) < · · · < xR′(N+1) (one xR′(i) = x). Multiplying the wave functions we encounter
products of the type θ (Rx)θ (R′x′) =∏N

j=1 δR( j),R′ ( j)θ (R′x′) with R ∈ SN and R′ ∈ SN+1. The (N + 1)! surviving terms can be
divided in N + 1 sets of N! terms depending on the position of R′(N + 1), which indexes the position of x, i.e.,

∑
R∈SN

∑
R′∈SN+1

θ (Rx)θ (R′x′) =
∑
R∈SN

{
θ (xR(1) < · · · < xR(N ) < x) +

N−1∑
n=1

θ (xR(1) < · · · < xR(n) < x < xR(n+1) < · · · < xR(N ) )

+ θ (x < zR(1) < · · · < xR(N ) )

}
. (A8)

If we consider the set in which x is on the nth position, then, for a given α = (α1 · · ·αN ), the product of spin wave functions is
given by η

(α,Rα)
N,M̄

(μ) η
(ασ,R′ασ )
N+1,M (λ) = η

(α,α1···αN )
N,M̄

(μ) η
(ασ,α1···αnσαn+1···αN )
N+1,M (λ). Collecting these results (A4) can be written as

F (σ )
N,M (x, t ) = eitμσ

N!NM̄/2(N + 1)M/2

∫ L+

L−

N∏
i=1

dxi

∑
R∈SN

{
θ (xR(1) < · · · < xR(N ) < x)e−i πκN

2 Fσ (N )

+
N−1∑
n=1

θ (xR(1) < · · · < xR(n) < x < xR(n+1) < · · · < xR(N ) ) e−i πκ
2 nei πκ

2 (N−n)Fσ (n)
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+ θ (x < zR(1) < · · · < xR(N ) ) ei πκ
2 N Fσ (0)

}( ∑
Q∈SN

(−1)Q
N∏

l=1

φqQ(l )
(xl , t )

)

×
⎛
⎝ ∑

P∈SN+1

(−1)P
N∏

l=1

φ jP(l ) (xl , t )φ jP(N+1) (x, t )

⎞
⎠, (A9)

with

Fσ (n) =
[N,M̄]∑

α1,··· ,αN ={↑,↓}
η

(α,α1···αN )
N,M̄

(μ) η
(ασ,α1···αnσαn+1···αN )
N+1,M (λ). (A10)

Using the cyclic property of the spin wave functions (A2) and the fact that ω = ω−1, ν = ν−1 we find that

Fσ (n) = (ων)N−nFσ (N ), Fσ ≡ Fσ (N ), (A11)

and, therefore,

F (σ )
N,M (x, t ) = eitμσ e−i πκN

2 Fσ

N!NM̄/2(N + 1)M/2

∫ L+

L−

N∏
i=1

dxi

∑
R∈SN

{
θ (xR(1) < · · · < xR(N ) < x)

+
N−1∑
n=1

θ (xR(1) < · · · < xR(n) < x < xR(n+1) < · · · < xR(N ) ) (ωνeiπκ )N−n

+ θ (x < zR(1) < · · · < xR(N ) ) (ωνeiπκ )N

}⎛⎝∑
Q∈SN

(−1)Q
N∏

l=1

φqQ(l )
(xl , t )

⎞
⎠

×
⎛
⎝ ∑

P∈SN+1

(−1)P
N∏

l=1

φ jP(l ) (xl , t )φ jP(N+1) (x, t )

⎞
⎠. (A12)

Fortunately, one can show that

∑
R∈SN

{
θ (xR(1) < · · · < xR(N ) < x) +

N−1∑
n=1

θ (xR(1) < · · · < xR(n) < x < xR(n+1) < · · · < xR(N ) )(ωνeiπκ )N−n

+ θ (x < zR(1) < · · · < xR(N ) ) (ωνeiπκ )N

}
=

N∏
n=1

ρ(x − xn), (A13)

with

ρ(x) = θ (x) + eiπκωνθ (−x). (A14)

This identity is valid for all x1, . . . , xN ∈ [L−, L+] when the xi’s are different. The value of ρ(0) is not important because when
two coordinates are equal the determinants in the right-hand side of (A12) vanish. In order to prove this identity it is instructive
to look at the particular case N = 2 where the left-hand side of (A13) is

L.H.S =
∑
R∈S2

{θ (xR(1) < xR(2) < x) + θ (xR(1) < x < xR(2) ) ωνeiπκ + θ (x < xR(1) < xR(2) )( ωνeiπκ )2} (A15)

and the right-hand side is

R.H.S. = θ (x − x1)θ (x − x2) + [θ (x − x1)θ (x2 − x) + θ (x − x2)θ (x1 − x)] ωνeiπκ + θ (x1 − x)θ (x2 − x)(ωνeiπκ )2. (A16)

The equality of (A15) and (A16) becomes evident noticing that θ (x − x1)θ (x − x2) =∑R∈S2
θ (xR(1) < xR(2) < x), [θ (x −

x1)θ (x2 − x) + θ (x − x2)θ (x1 − x)] =∑R∈S2
θ (xR(1) < x < xR(2) ), and θ (x1 − x)θ (x2 − x) =∑R∈S2

θ (x < xR(1) < xR(2) ). The
general case is proved along the same lines by noticing that the terms multiplied by ( ωνeiπκ )N−n obtained by expanding the
right-hand side of (A13) are equal to

∑
R∈SN

θ (xR(1) < · · · < xR(n) < x < xR(n+1) < · · · < xR(N ) ).
Inserting the identity (A13) in (A12) we see that the integration over the charge degrees of freedom can be written in a

factorized form

F (σ )
N,M (x, t ) = eitμσ e−i πκN

2 Fσ

N!NM̄/2(N + 1)M/2

∫ L+

L−

N∏
i=1

dxiρ(x − xi )
∑
Q∈SN

∑
P∈SN+1

(−1)P+Q

(
N∏

l=1

φqQ(l )
(xl , t )φ jP(l ) (xl , t )

)
φ jP(N+1) (x, t ). (A17)
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Using the orthonormality of the wave functions
∫ L+

L−
φq(v, t )φ j (v, t ) dv = δ j,q the integrals over xi can be calculated using the

formula ∫ L+

L−
ρ(x − v)φq(v, t )φ j (v, t ) dv =

∫ x

L−
φq(v, t )φ j (v, t ) dv + eiπκων

∫ L+

x
φq(v, t )φ j (v, t ) dv,

=
∫ L+

L−
φq(v, t )φ j (v, t ) dv − (1 − eiπκων

) ∫ L+

x
φq(v, t )φ j (v, t ) dv,

= f ( j, q|x, t ),

with

f ( j, q|x, t ) = δ j,q − (1 − eiπκων)
∫ L+

x
φq(v, t )φ j (v, t ) dv. (A18)

Therefore, we find

F (σ )
N,M (x, t ) = eitμσ e−i πκN

2 Fσ

N!NM̄/2(N + 1)M/2

∑
Q∈SN

∑
P∈SN+1

(−1)P+Q

(
N∏

l=1

f ( jP(l ), qQ(l )|x, t )

)
φ jP(N+1) (x, t ), (A19)

with the last part, which can be written as a determinant

∑
Q∈SN

(−1)Q

∣∣∣∣∣∣∣
f ( j1, qQ(1) ) · · · f ( j1, qQ(N ) ) φ j1

...
. . .

...
...

f ( jN+1, qQ(1) ) · · · f ( jN+1, qQ(N ) ) φ jN+1

∣∣∣∣∣∣∣(x, t ). (A20)

Reorganizing the columns such that (Q1, . . . , QN ) → (1, . . . , N ) gives a (−1)Q sign, therefore, the sum produces N! identical
terms and the form factor can be written as

F (σ )
N,M (x, t ) = eitμσ e−i πκN

2

NM̄/2(N + 1)M/2
Fσ det

N+1
D( j, q|x, t ), (A21)

with D( j, q|x, t ) a square matrix of dimension N + 1 and elements

[D( j, q|x, t )]ab =
{

f ( ja, qb|x, t ) for a = 1, . . . , N + 1 ; b = 1, . . . , N,

φ ja (x, t ) for a = 1, . . . , N + 1 ; b = N + 1.
(A22)

The only thing that remains is to compute is the Fσ factor. We start with the case σ =↑. Taking into account that the n’s are
the position of the spin-down particles on the lattice the first observation that we make is that the sum over α’s in

Fσ ≡ Fσ (N ) =
[N,M̄]∑

α1,··· ,αN ={↑,↓}
η

(α,α1···αN )
N,M̄

(μ) η
(ασ,α1···αN σ )
N+1,M (λ) (A23)

is equivalent with
∑

1�n1<···<nN �N . For σ =↑ the product ηN,M̄ηN+1,M is symmetric in n’s (the products of sign factors cancel)
and vanish when two of them are equal. Therefore, we have

∑
1�n1<···<nM�N

= 1

M!

N∑
n1=1

· · ·
N∑

nM=1

, (A24)

and

F↑ = 1

M!

N∑
n1=1

· · ·
N∑

nM=1

⎛
⎝∑

Q∈SM

(−1)Q
M∏

k=1

e−inkμQ(k)

⎞
⎠
⎛
⎝∑

P∈SM

(−1)P
M∏

k=1

einkλP(k)

⎞
⎠,

= 1

M!

N∑
n1=1

· · ·
N∑

nM=1

∑
Q∈SM

∑
P∈SM

(−1)P+Q
M∏

k=1

eink (λP(k)−μQ(k) ),

=
∑
P∈SM

(−1)P
M∏

k=1

(
N∑

n=1

ein(λP(k)−μ j )

)
, (A25)

which shows that F↑ = detM B↑(λ,μ) where the matrix B↑ has elements. In the σ =↓ case we have M̄ = M − 1 and nM = N + 1
for the n’s in η

(ασ,ασ )
N+1,M (λ). The product ηN,M̄ηN+1,M is now symmetric in M − 1 variables and vanish when two of them are equal.
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We find

F↓ = 1

(M − 1)!

N∑
n1=1

· · ·
N∑

nM−1=1

⎛
⎝ ∑

Q∈SM−1

(−1)Q
M−1∏
k=1

e−inkμQ(k)

⎞
⎠
⎛
⎝∑

P∈SM

(−1)P
M−1∏
k=1

einkλP(k)

⎞
⎠ei(N+1)λP(M ) ,

= 1

(M − 1)!

N∑
n1=1

· · ·
N∑

nM−1=1

∑
Q∈SM−1

∑
P∈SM

(−1)P+Q
M∏

k=1

eink (λP(k)−μQ(k) )(−1)M−1,

= 1

(M − 1)!

∑
Q∈SM−1

∑
P∈SM

(−1)P+Q
M∏

k=1

(
N∑

n=1

ein(λP(k)−μQ(k) )

)
(−1)M−1, (A26)

where in the second line we have used the BAEs eiλa (N+1) = (−1)M−1. The analysis of the last expression is similar with the one
for the charge degrees of freedom. We obtain F↓ = (−1)M−1 detM B↓(λ,μ) with matrix elements

[B↓(λ,μ)]ab =
{∑N

n=1 ein(λa−μb) for a = 1, . . . , M ; b = 1, . . . , M − 1,

1 for a = 1, . . . , M ; b = M.
(A27)

APPENDIX B: DERIVATION OF THE DETERMINANT REPRESENTATION FOR THE CORRELATORS

Here, we present the derivation of the determinant representation for the correlators starting with the summation of form
factors for the mean values appearing on the right-hand side of (17) and (18).

1. Determinant representation for 〈�N+1,M ( j, λ)|�†
↑(x, t )�↑(y, t ′ )|�N+1,M ( j, λ)〉

Using the determinant formulas for the form factors (26) one can obtain similar representations for the mean value
of bilocal operators appearing in the definition of the correlators (17) and (18). In this section we consider A ≡
〈�N+1,M ( j,λ)|�†

↑(x, t )�↑(y, t ′)|�N+1,M ( j,λ)〉. In this case M̄ = M and we have

A =
∑

q1<···<qN
μ1<···<μM

F (↑)
N,M ( j,λ; q,μ|x, t )F (↑)

N,M ( j,λ; q,μ|y, t ′),

=
∑

q1<···<qN
μ1<···<μM

e−i(t−t ′ )μ↑

(N + 1)MNM
| det

M
B↑(λ,μ)|2 det

N+1
D( j, q|x, t ) det

N+1
D( j, q|y, t ′). (B1)

In (B1) the summation over q’s is independent on the summation on μ’s and the summands are symmetric functions indepen-
dently in q’s and μ’s and vanish when two of them are equal (exchanging two q’s is equivalent with transposing two columns
in the matrix D and we have a product of DD, the same argument applies in the case of exchange of two μ’s). Therefore, the
summations can be written as

∑
q1<···<qN
μ1<···<μM

= 1

N!

∞∑
q1=1

· · ·
∞∑

qN =1

1

M!

∑
μ1

· · ·
∑
μM

, (B2)

where
∑

μ h(μ) =∑N
l=1 h(μl ) with μl = 2π

N (−N
2 − 1+(−1)N−M

4 + l ) for an arbitrary function h.

a. Summation over q1, . . . , qN

We focus now on the summation over the q’s in (B1). We find

Aq = 1

N!

∞∑
q1=1

· · ·
∞∑

qN =1

det
N+1

D( j, q|x, t ) det
N+1

D( j, q|y, t ′)

= 1

N!

∞∑
q1=1

· · ·
∞∑

qN =1

∑
P∈SN+1

∑
Q∈SN+1

(−1)P+Q

(
N∏

l=1

f ( jP(l ), ql |x, t ) f ( jQ(l ), ql |y, t ′)

)
φ jP(N+1)

(x, t )φ jQ(N+1) (y, t ′),

= 1

N!

∞∑
q1=1

· · ·
∞∑

qN =1

∑
R,Q∈SN+1

(−1)R

(
N∏

l=1

f ( jRQ(l ), ql |x, t ) f ( jQ(l ), ql |y, t ′)

)
φ jRQ(N+1)

(x, t )φ jQ(N+1) (y, t ′), (B3)
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where in the last line we have used the fact that every permutation P can be written as P = RQ with R another permutation. The
sum over permutations in (B3) can be written as a sum over determinants

∑
Q∈SN+1

∣∣∣∣∣∣∣
f ( jQ(1), q1|x, t ) f ( jQ(1), q1|y, t ′) · · · f ( jQ(1), qN |x, t ) f ( jQ(N ), qN |y, t ′) φ jQ(1)

(x, t )φ jQ(N+1) (y, t ′)
...

. . .
...

...

f ( jQ(N+1), q1|x, t ) f ( jQ(1), q1|y, t ′) · · · f ( jQ(N+1), qN |x, t ) f ( jQ(N ), qN |y, t ′) φ jQ(N+1)
(x, t )φ jQ(N+1) (y, t ′)

∣∣∣∣∣∣∣
In the previous result qi appears only in the ith column, which means that we can sum inside the determinant. Introducing two
square matrices of dimension N + 1, depending on the state j, with elements

Ũ (−)
ab (x, t ; y, t ′) =

∞∑
q=1

f ( ja, q|x, t ) f ( jb, q|y, t ′), a, b = 1, . . . , N + 1, (B4)

R̃(−)
ab (x, t ; y, t ′) = φ ja (x, t )φ jb (y, t ′), a, b = 1, . . . , N + 1 (B5)

we obtain

Aq = 1

N!

∑
Q∈SN+1

∣∣∣∣∣∣∣∣
Ũ (−)

Q(1),Q(1) · · · Ũ (−)
Q(1),Q(N ) R̃(−)

Q(1),Q(N+1)
...

. . .
...

...

Ũ (−)
Q(N+1),Q(1) · · · Ũ (−)

Q(N+1),Q(N ) R̃(−)
Q(N+1),Q(N+1)

∣∣∣∣∣∣∣∣(x, t ; y, t ′). (B6)

Performing permutations of both columns and rows such that [Q(1), . . . , Q(N + 1)] → (1, . . . , N + 1) we find

Aq =
N+1∑
k=1

∣∣∣∣∣∣∣∣
Ũ (−)

1,1 · · · R̃(−)
1,k Ũ (−)

1,N+1
...

. . .
...

...

Ũ (−)
N+1,1 · · · R̃(−)

N+1,k Ũ (−)
N+1,N+1

∣∣∣∣∣∣∣∣(x, t ; y, t ′). (B7)

which can be written as

Aq = ∂

∂z
det
N+1

(Ũ (−) + zR̃(−) )|z=0, (B8)

= det
N+1

(Ũ (−) + R̃(−) ) − det
N+1

Ũ (−), (B9)

due to the fact that the matrix R̃(−) has rank 1.

b. Summation over μ1, . . . , μM

We have obtained that

A = 1

M!

∑
μ1

· · ·
∑
μM

e−i(t−t ′ )μ↑

(N + 1)MNM

∣∣ det
M

B↑(λ,μ)
∣∣2[ det

N+1
(Ũ (−) + R̃(−) ) − det

N+1
Ũ (−)

]
, (B10)

where the term appearing in the square brackets depends on μ1, . . . , μM only via ei� = ei
∑M

a=1 μa [see (A18) and (B4)]. This
also means that the square bracket is periodic on � with period 2π . Because eiμbN = (−1)M−1 or, equivalently, because ei� are
eigenvalues of the cyclic shift operator we have � = 2πn

N with n = 0, 1, . . . , N − 1. Therefore, in terms of the Kronecker symbol
on ZN defined by

δ(N )(m) =
{

1 if m = 0 (mod N ),

0 otherwise,
δ(N )(m) = 1

N

N−1∑
p=0

e
2π i
N pm, (B11)

a resolution of unity can be written as 1 =∑N−1
n=0 δ(N )(N

μ1+···+μM

2π
− n). Defining Ũ (−)

n = Ũ (−)|�=2πn/N (note that R(−) does not
depend on �) then (B10) can be written as

A = 1

M!

∑
μ1

· · ·
∑
μM

e−i(t−t ′ )μ↑

(N + 1)MNM+1

N−1∑
n,p=0

eip(μ1+···+μM )− 2π i
N pn
∣∣ det

M
B↑(λ,μ)

∣∣2[ det
N+1

(Ũ (−)
n + R̃(−) ) − det

N+1
Ũ (−)

n

]
, (B12)

with [B↑(λ,μ)]ab =∑N
n=1 ein(λa−μb). Let us focus on

Aμ = 1

M!

∑
μ1

· · ·
∑
μM

eip(μ1+···+μM )

(N + 1)MNM+1
| det

M
B↑(λ,μ)|2. (B13)
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Using the definition of the determinant we have

Aμ = 1

M!

∑
μ1

· · ·
∑
μM

eip(μ1+···+μM )

(N + 1)MNM+1

⎛
⎝∑

P∈SM

(−1)P
M∏

a=1

[B↑]P(a),a

⎞
⎠
⎛
⎝∑

Q∈SM

(−1)Q
M∏

a=1

[B↑]Q(a),a

⎞
⎠,

= 1

M!

∑
μ1

· · ·
∑
μM

eip(μ1+···+μM )

(N + 1)MNM+1

∑
Q∈SM

∑
R∈SM

(−1)R
M∏

a=1

([B↑]RQ(a),a[B↑]Q(a),a),

= 1

M!

∑
μ1

· · ·
∑
μM

eip(μ1+···+μM )

(N + 1)MNM+1

∑
Q∈SM

∣∣∣∣∣∣∣
[B↑]Q(1),1 · · · [B↑]Q(1),M

...
. . .

...

[B↑]Q(M ),1 · · · [B↑]Q(M ),M

∣∣∣∣∣∣∣
M∏

a=1

([B↑]Q(a),a),

= 1

M!

∑
μ1

· · ·
∑
μM

∑
Q∈SM

∣∣∣∣∣∣∣∣
[B↑]Q(1),1[B↑]Q(1),1eipμ1

N (N+1) · · · [B↑]Q(1),M [B↑]Q(M ),M eipμM

N (N+1)
...

. . .
...

[B↑]Q(M ),1[B↑]Q(1),1eipμ1

N (N+1) · · · [B↑]Q(M ),M [B↑]Q(M ),M eipμM

N (N+1)

∣∣∣∣∣∣∣∣. (B14)

In the last determinant of (B14) μ j appears only in the jth column so we can sum inside the determinant. Introducing a set of
matrices of dimension M denoted by O(−,↑)

p with elements

[O(−,↑)
p ]ab = 1

N (N + 1)

N∑
n=1

N∑
m=1

∑
μ

ei(p+m−n)μ+inλa−imλb, a, b = 1, . . . , M, (B15)

we obtain

Aμ = 1

N

1

M!

∑
Q∈SM

∣∣∣∣∣∣∣∣
[O

(↑,−)
p ]Q(1),Q(1) · · · [O

(↑,−)
p ]Q(M ),Q(1)

...
. . .

...

[O
(↑,−)
p ]Q(1),Q(M ) · · · [O

(↑,−)
p ]Q(M ),Q(M )

∣∣∣∣∣∣∣∣. (B16)

Permuting the rows and columns such that [Q(1), . . . , Q(M )] → (1, . . . , M ) we obtain M! identical terms. Plugging (B16) in
(B12) we finally obtain

A = e−i(t−t ′ )μ↑ 1

N

N−1∑
n,p=0

e− 2π i
N pn det

M
O(−,↑)

p

[
det
N+1

(
Ũ (−)

n + R̃(−)
)− det

N+1
Ũ (−)

n

]
, (B17)

which represents the finite-size determinant representation for the mean value A ≡ 〈�N+1,M ( j,λ)|�†
↑(x, t )�↑(y, t ′)|�N+1,M

( j,λ)〉.

2. Determinant representation for 〈�N,M̄ (q, μ)|�↑(x, t )�†
↑(y, t ′ )|�N,M̄ (q, μ)〉

In the case of the other type of mean value of bilocal operators B = 〈�N,M̄ (q,μ)|�↑(x, t )�†
↑(y, t ′)|�N,M̄ (q,μ)〉 we have

(M̄ = M for σ =↑)

B =
∑

j1<···< jN+1
λ1<···<λM

F (↑)
N,M ( j,λ; q,μ|x, t )F (↑)

N,M ( j,λ; q,μ|y, t ′),

=
∑

j1<···< jN+1
λ1<···<λM

ei(t−t ′ )μ↑

NM (N + 1)M

∣∣ det
M

B↑(λ,μ)
∣∣2 det

N+1
D( j, q|x, t )det

N+1
D( j, q|y, t ′). (B18)

Like in the previous case the summation over j’s is independent on the summation over λ’s and the summands are independently
symmetric in j’s and λ’s and vanish when two of them are equal. Therefore, the summation can be written as

∑
j1<···< jN+1
λ1<···<λM

= 1

(N + 1)!

∞∑
j1=1

· · ·
∞∑

jN+1=1

1

M!

∑
λ1

· · ·
∑
λM

, (B19)

where
∑

λ h(λ) =∑N+1
l=1 h(λl ) with λl = 2π

N+1 (−N+1
2 − 1+(−1)N−M+1

4 + l ) for an arbitrary function h.

053304-20



NONEQUILIBRIUM DYNAMICS IN ONE-DIMENSIONAL … PHYSICAL REVIEW A 108, 053304 (2023)

a. Summation over λ1, . . . , λN+1

The summation over the λ’s in (B18) can be written as

Bj = 1

(N + 1)!

∞∑
j1=1

· · ·
∞∑

jN+1=1

det
N+1

D( j, q|x, t )det
N+1

D( j, q|y, t ′),

= 1

(N + 1)!

∞∑
j1=1

· · ·
∞∑

jN+1=1

∑
P,Q∈SN+1

(−1)P+Q

(
N∏

l=1

f ( jP(l ), ql |x, t ) f ( jQ(l ), ql |y, t ′)

)
φ jP(N+1) (x, t )φ jQ(N+1)

(y, t ′),

= 1

(N + 1)!

∞∑
j1=1

· · ·
∞∑

jN+1=1

∑
R,Q∈SN+1

(−1)R

(
N∏

l=1

f ( jRQ(l ), ql |x, t ) f ( jQ(l ), ql |y, t ′)

)
φ jRQ(N+1) (x, t )φ jQ(N+1)

(y, t ′),

= 1

(N + 1)!

∞∑
j1=1

· · ·
∞∑

jN+1=1

∑
Q∈SN+1

(
N∏

l=1

f ( jQ(l ), ql |y, t ′)

)
φ jQ(N+1)

(y, t ′)

×

∣∣∣∣∣∣∣
f ( jQ(1), q1|x, t ) · · · f ( jQ(1), qN |x, t ) φ jQ(1) (x, t )

...
. . .

...
...

f ( jQ(N+1), q1|x, t ) · · · f ( jQ(N+1), qN |x, t ) φ jQ(N+1) (x, t )

∣∣∣∣∣∣∣. (B20)

Multiplying the jth row of the last determinant with f ( jQ( j), q j |y, t ′) and the (N + 1)th row with φ jQ(N+1
(y, t ′) we see that we

have jQ(l ) appearing only on the lth row, which means that we can sum inside the determinant. Introducing the q-dependent
matrix and vectors

Ũ (+)
ab (x, t ; y, t ′) =

∞∑
j=1

f ( j, qb|x, t ) f ( j, qa|y, t ′), a, b,= 1, . . . , N, (B21)

ẽa(x, t ; y, t ′) =
∞∑
j=1

f ( j, qa|x, t )φ j (y, t ′), a = 1, . . . , N, (B22)

˜̄ea(x, t ; y, t ′) =
∞∑
j=1

f ( j, qa|y, t ′)φ j (x, t ), a = 1, . . . , N, (B23)

and

g(x, t ; y, t ′) =
∞∑
j=1

φ j (x, t )φ j (y, t ′), (B24)

then (B20) can be written as [the summation over the Q permutations gives (N + 1)! identical terms]

Bj =

∣∣∣∣∣∣∣∣∣∣

Ũ (+)
1,1 · · · Ũ (+)

1,N
˜̄e1

...
. . .

...
...

Ũ (+)
N,1 · · · Ũ (+)

N,N
˜̄eN

ẽ1 · · · ẽN g

∣∣∣∣∣∣∣∣∣∣
(x, t ; y, t ′). (B25)

Introducing the q-dependent matrix

R̃(+)
ab (x, t ; y, t ′) = ˜̄ea(x, t ; y, t ′)ẽb(x, t ; y, t ′), a, b,= 1, . . . , N, (B26)

and expanding on the last column of (B25) we obtain

Bj =
[

g + ∂

∂z

]
det

N
(Ũ (+) − zR̃(+) ),

= det
N

(Ũ (+) − R̃(+) ) + (g − 1) det
N

Ũ (+). (B27)

b. Summation over λ1, . . . , λM

We have obtained that

B = 1

M!

∑
λ1

· · ·
∑
λM

ei(t−t ′ )μ↑

NM (N + 1)M

∣∣ det
M

B↑(λ,μ)
∣∣2[ det

N
(Ũ (+) − R̃(+) ) + (g − 1) det

N
Ũ (+)

]
, (B28)
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where Ũ (+) and R̃(+) depend on λ1, . . . , λM only via their sum � = λ1 + · · · λM . Like in the previous case this implies periodicity
in � with period 2π . In this case � = 2πn

N+1 with n = 0, . . . , N , which means that a resolution of identity is given by 1 =∑N
m=0 δ(N+1)(m − (N + 1) λ1+···+λM

2π
) with

δ(N+1)(m) =
{

1 if m = 0 (mod N + 1),

0 otherwise,
δ(N+1)(m) = 1

N

N∑
r=0

e
2π i
N rm. (B29)

Introducing Ũ (+)
m = Ũ (+)|�=2πm/(N+1)R̃(+)

m = R̃(+)|�=2πm/(N+1) the computations are similar with the ones in the previous section
and Ref. [26] obtaining

B = ei(t−t ′ )μ↑ 1

N + 1

N∑
r,m=0

e
2π i

N+1 rm det
M

O(+,↑)
r

[
det

N
(Ũ (+)

m − R̃(+)
m ) + (g − 1) det

N
Ũ (+)

m

]
, (B30)

with the O(+,↑)
r matrices defined as (we correct a typo in 4.44 of Ref. [26])

[O(+,↑)
r ]ab = 1

N (N + 1)

N∑
m=1

N∑
n=1

∑
λ

e−i(r+m−n)λ−inμa+imμb, a, b = 1, . . . , M. (B31)

3. Thermodynamic limit

The thermal summation in (17) and (18) is very similar with the one performed in [26] for two-component systems without
an external potential (see also Ref. [30]). The main ingredient is the von Koch determinant formula, which reads

det(1 + zA) = 1 + z
M∑

m=1

Am,m + z2

2!

M∑
m=1

M∑
n=1

∣∣∣∣Am,m Am,n

An,m An,n

∣∣∣∣+ · · · (B32)

for A a square matrix of dimension M (which can also be infinite) and z a bounded complex parameter. Following the similar
steps in Ref. [26] one obtains (32) and (34).

APPENDIX C: THERMODYNAMICS OF THE IMPENETRABLE GAUDIN-YANG MODEL

In this Appendix we present some results for the thermodynamics of the trapped impenetrable Gaudin-Yang model. The
energy spectrum of the trapped impenetrable system is given by (12). We notice two important features: (i) it is independent
of the statistics of the constituent particles and (ii) does not depend on the spin state λ. This means that for the system with N
particles of which M have spin down there are CN

M states with the same energy for a given set of orbital numbers q. The partition
function is

Z (μ, B, T ) = Tr[e−HI /T ] =
∞∑

N=0

N∑
M=0

∑
q1<···<qN

∑
μ1<···<μM

e−EN,M (q)/T ,

=
∞∑

N=0

N∑
M=0

∑
q1<···<qN

∑
μ1<···<μM

e2BM/T e−∑N
i=1(ε(qi )−μ+B)/T ,

=
∞∑

N=0

∑
q1<···<qN

(1 + e2B/T )N e−∑N
i=1(ε(qi )−μ+B)/T ,

=
∞∑

N=0

∑
q1<···<qN

[2 cosh(B/T )]N e−∑N
i=1(ε(qi )−μ)/T ,

=
∞∏

q=1

[1 + 2 cosh(B/T )e−(ε(q)−μ)/T ], (C1)

where we have used
∑N

M=0

∑
μ1<···<μM

e2BM/T =∑N
M=0 CN

Me2B/T = (1 + e2B/T )N . The grand canonical potential φ(μ, B, T ) =
U − T S − μ(N↑ + N↓) + B(N↑ − N↓) is

φ(μ, B, T ) = −T lnZ (μ, B, T ) = −T
∞∑

q=1

ln(1 + 2 cosh(B/T )e−(ε(q)−μ)/T ). (C2)
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From the grand canonical potential the number of particles of each type can be obtained as

N↑ = −1

2

(
∂φ

∂μ
− ∂φ

∂B

)
=

∞∑
q=1

e−B/T

2 cosh(B/T ) + e(ε(q)−μ)/T
, (C3)

N↓ = −1

2

(
∂φ

∂μ
+ ∂φ

∂B

)
=

∞∑
q=1

eB/T

2 cosh(B/T ) + e(ε(q)−μ)/T
. (C4)

APPENDIX D: ELEMENTS OF THE V (T,−) MATRIX IN THE EQUAL-TIME CASE

Here we derive the simplified expressions for the elements of the V (T,−) matrix in the equal-time case (41). Because
[V (T,−)]ab = √

ϑ (a)(U (−)
ab − δa,b)

√
ϑ (b) we will focus on U (−)

ab , which is defined in (33a). We obtain different results depending
on the ordering of x and y. In the case x � y using (30) we have

[U (−)]ab = δa,b − ζ

∫ L+

y
φa(w, t )φb(w, t ) dw − ζ

∫ L+

x
φa(v, t )φb(v, t ) dv

+ ζ ζ

∞∑
q=1

(∫ L+

x
φa(v, t )φq(v, t ) dv

)(∫ L+

y
φq(w, t )φb(w, t ) dw

)
,

= δa,b − ζ

∫ y

x
φa(v, t )φb(v, t ) dv − (ζ + ζ )

∫ L+

y
φa(w, t )φb(w, t ) dw︸ ︷︷ ︸

A

+ ζ ζ

∞∑
q=1

(∫ y

x
φa(v, t )φq(v, t ) dv

)(∫ L+

y
φq(w, t )φb(w, t ) dw

)
︸ ︷︷ ︸

B

+ ζ ζ

∞∑
q=1

(∫ L+

y
φa(v, t )φq(v, t ) dv

)(∫ L+

y
φq(w, t )φb(w, t ) dw

)
︸ ︷︷ ︸

C

, (D1)

with ζ = (1 − ei(πκ−η) ). Now we will show that in the previous expression the terms A and C are equal canceling each other. We
have ∫ L+

y
φa(w, t )φb(w, t ) dw =

∫ L+

L−
φ̃a(w, t )φ̃b(w, t ) dw, (D2)

where φ̃a(w, t ) = 1[y,L+]φa(w, t ) and φ̃b(w, t ) = 1[y,L+]φb(w, t ) with 1[y,L+] the characteristic function of the interval [y, L+],
which is 1 when w is in the interval and 0 otherwise. Also, using the orthonormality of the wave functions (40) we find∫ L+

L−
φ̃a(w, t )φ̃b(w, t ) dw =

∫ L+

L−

∫ L+

L−
φ̃a(v, t )δ(v − w)φ̃b(w, t ) dwdv,

=
∞∑

q=1

(∫ L+

L−
φ̃a(v, t )φq(v, t ) dv

)(∫ L+

L−
φ̃q(w, t )φ̃b(w, t ) dw

)
,

=
∞∑

q=1

(∫ L+

y
φa(v, t )φq(v, t ) dv

)(∫ L+

y
φq(w, t )φb(w, t ) dw

)
. (D3)

Equations (D2) and (D3) together with ζ + ζ = ζ ζ = 2 − 2 cos(πκ − η) show that the A and C terms cancel each other in

(D1). In a similar fashion it can be shown that B = 0 by noticing that it is the expansion of
∫ L+

L−
φ̃a(w, t )φ̃b(w, t ) dw with

φ̃a(w, t ) = 1[x,y]φa(w, t ) and φ̃b(w, t ) = 1[y,L+]φb(w, t ) and 1[x,y]1[y,L+] = 0. Therefore, we find

[V (T,−)]ab = −(1 − e−i[πκ−η] )
√

ϑ (a)ϑ (b)
∫ y

x
φa(v, t )φb(v, t ) dv, x � y. (D4)

In the other case we obtain

[V (T,−)]ab = −(1 − e+i[πκ−η] )
√

ϑ (a)ϑ (b)
∫ x

y
φa(v, t )φb(v, t ) dv, y < x. (D5)
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OVIDIU I. PÂŢU PHYSICAL REVIEW A 108, 053304 (2023)

APPENDIX E: EQUIVALENCE WITH LENARD’S
FORMULA

We will show the equivalence of the determinant repre-
sentation (43) with Lenard’s formula (46). Similar to the
particular case of zero temperature treated in Sec.VI the repre-
sentation (46) can be understood as the first Fredholm minor
of the integral operator 1 − ξ ĝFF

↑ acting on [x, y] with ker-

nel gFF
↑ (x, y| t ) =∑∞

a=1 ϑ (a) φa(x, t )φa(y, t ) and ξ defined in
(47). From Hurwitz formula [89] we have

g(−)
↑ (x, y| t ) = RFF

↑ (x, y| t ) det(1 − ξ ĝFF
↑ ), (E1)

with the resolvent satisfying the integral equation

RFF
↑ (λ,μ| t ) = gFF

↑ (λ,μ| t )

+ ξ

∫ y

x
gFF

↑ (λ, ν| t )RFF
↑ (ν, μ| t ) dν. (E2)

We will show that (43) is equivalent with (E1) but, first
we need a preliminary result. For any invertible matrix
A and two column vectors of the same dimension, u
and v, the following identity holds: det(A + uvT ) = det A +
det AvT A−1u [112]. Introducing φT

a (x, t ) = √
ϑ (a)φa(x, t )

and noticing that the matrix r (T,−) defined in (44b) can be
written as uvT with u = [φ

T
1 (x, t ), φ

T
2 (x, t ), . . .]T and v =

[φT
1 (y, t ), φT

2 (y, t ), . . .]T we find from (43)

g(−)
↑ (x, y| t ) = det(1 + v(T,−) )

∑
i, j

φT
i (y, t )[(1 + v(T,−) )−1]i j

× φ
T
j (x, t ). (E3)

The proof that det(1 + v(T,−) ) = det(1 − ξ ĝFF
↑ ) is the same

as in Sec. V B of Ref. [38]. It remains to show that the other
term in the right-hand side of (E3) is equal to RFF

↑ (x, y| t ). In

terms of φT
a we have gFF

↑ (λ,μ| t ) =∑∞
a=1 φ

T
a (λ, t )φT

a (μ, t ).
Plugging this in the equation for the resolvent (E2) we find

RFF
↑ (λ,μ| t )

=
∞∑

b=1

φ
T
a (λ, t )φT

a (μ, t ) + ξ

∞∑
b=1

φ
T
b (λ, t )Bb(μ, t ), (E4)

with Bb(μ, t ) = ∫ y
x φT

b (ν, t )RFF
↑ (ν, μ| t ) dν. In order to obtain

the Bb(μ, t ) coefficients we multiply the previous expression
with φT

a (λ, t ) and integrate from x to y. We obtain

Ba(μ, t ) =
∞∑

b=1

Aba(t )φT
b (μ, t ) + ξ

∞∑
b=1

Aba(t )Bb(μ, t ), (E5)

where we have introduced the matrix A with elements

Aab(t ) =
∫ y

x
φ

T
a (λ, t )φT

b (λ, t ) dλ. (E6)

In terms of the column vectors φ = [φT
1 (μ, t ),

φT
2 (μ, t ), . . .]T , B = [B1(μ, t ), B2(μ, t ), . . .]T the equa-

tion (E5) can be written as B = AT φ + ξAT B with the
solution B = (1 − ξAT )−1AT φ. Using this result and (E4)

we have RFF
↑ (λ,μ| t ) = φ

T
(1 + ξ (1 − ξAT )−1AT )φ with

φ
T = [φ

T
1 (λ, t ), φ

T
2 (λ, t ), . . .] a row vector. This last relation

can also be written as RFF
↑ (λ,μ| t ) = φ

T
(1 − ξAT )−1φ and

shows that

RFF
↑ (x, y| t ) =

∑
i, j

φ
T
i (x, t )[(1 − ξAT )−1]i jφ

T
j (y, t ). (E7)

Using (1 − ξAT )−1 = [(1 − ξA)−1]T this shows that (E7) is
equal to the second term in the right-hand side of (E3) proving
the equivalence of the representations (46) and (43).
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