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Vortex structure and spectrum of an atomic Fermi superfluid in a spherical bubble trap
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The structures of multiply quantized vortices (MQVs) of an equal-population atomic Fermi superfluid in a
rotating spherical bubble trap approximated as a thin shell are analyzed by solving the Bogoliubov–de Gennes
(BdG) equation throughout the Bardeen-Cooper-Schrieffer (BCS)–Bose-Einstein condensation (BEC) crossover.
Consistent with the Poincaré-Hopf theorem, a pair of vortices emerge at the poles of the rotation axis in the
presence of azimuthal symmetry and the compact geometry provides confinement for the MQVs. While the
single-vorticity vortex structure is similar to that in a planar geometry, higher-vorticity vortices exhibit interesting
phenomena at the vortex center, such as a density peak due to accumulation of a normal Fermi gas and reversed
circulation of current due to in-gap states carrying angular momentum in the BCS regime but not the BEC regime
because of the subtle relations between the order parameter and density. The energy spectrum shows the number
of the in-gap state branches corresponds to the vorticity of a vortex, and an explanation based on a topological
correspondence is provided.
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I. INTRODUCTION

Multiply quantized vortices (MQVs), also known as giant
vortices, have vorticity higher than the elemental quantum of
angular momentum inside. There have been early theoreti-
cal predictions [1,2] and experimental results consistent with
MQVs in nanocrystals [3], mesoscopic [4,5], and thin-film [6]
superconductors. However, the infinite two-dimensional (2D)
plane tends to disfavor MQVs because the excitation energy
is quadratic in the vorticity [7,8], so MQVs tend to decay
into multiple single-vorticity vortices. Nevertheless, confine-
ment effects or symmetries may protect MQVs as observable
metastable states. There have been more theoretical analy-
ses of MQVs in superconductors [9–12] and other settings
[13–15].

While quantum vortices have also been studied in cold
atoms (see Refs. [8,16,17] for reviews), it is challenging to
realize MQVs in cold atoms due to the limitation from the
conventional harmonic potential. There have been proposals
of imposing quadratic plus quartic potentials or other types
of potentials to tightly confine the atoms [18–21] or utilizing
multicomponent atomic gases [22,23] to realize MQVs. There
have been experimental demonstrations of metastable MQVs
in cold bosonic atoms [24–27]. A different route of realizing
MQVs in cold atoms [28,29] via the recently realized bubble
trap [30–33] has been proposed for bosonic superfluids, in
addition to other theoretical studies of quantum vortices of
bosonic superfluids in a spherical geometry [34,35]. Here we
explore the structures of MQVs in a fermionic superfluid
confined in a spherical bubble trap approximated as a thin
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shell throughout the Bardeen—Cooper—Schrieffer (BCS)-
Bose Einstein condensation (BEC) crossover and unravel
interesting effects due to the enlarged vortex core and topo-
logical properties in the energy spectrum. We mention that the
authors of Ref. [36] summarized some properties of vortices
on curved surfaces, and here we investigate the structures from
a microscopic framework.

By solving the Bogoliubov–de Gennes (BdG) equa-
tion [37–39] of two-component attractive Fermi gases with
equal population in a thin spherical-shell geometry, we char-
acterize the structures of vortices when the gas rotates about
a fixed axis. Our major findings are as follows. (1) Consistent
with the Poincaré-Hopf theorem [40], a pair of vortices, one
in the north pole and the other in the south pole of the rotation
axis, emerge as the rotation exceeds a critical angular velocity.
(2) For a pair of vortices with vorticity ν = ±1 on a sphere,
the profiles of the order parameter, density, and superfluid cur-
rent resemble those of the single vortex in a planar geometry
studied previously [37–39]. (3) For a pair of vortices with
ν = ±2, a normal Fermi gas may overoccupy the enlarged
vortex core in the BCS regime, leading to a density peak, not
a density dip, at the center of the vortex core. In contrast,
the regular density dip remains robust in the BEC regime
for the ν = 2 vortex. (4) For a pair of ν = ±3 vortices on a
sphere in the BCS regime, a reversed circulation of the current
emerges inside the vortex core, in addition to the density peak
due to the occupation of a normal Fermi gas in the core. (5)
For a MQV with vorticity ν, there are ν branches of in-gap
states in the energy spectrum, which are argued to be from a
topological origin.

In the literature, consistency with the Poincaré-Hopf the-
orem has been discussed in bosonic superfluids in spherical
bubble traps [34], p-wave superfluids on a sphere [41], and
the classical XY model on a spherical lattice [42]. Possibilities
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of a reversed current inside a MQV have been speculated on
in Ref. [11], where a suppression of the angular momentum
in BCS MQVs was discussed, and in Ref. [43] discussing
vortex structures of population-imbalanced Fermi superfluids.
The MQVs of equal-population Fermi superfluids in spherical
bubble traps presented here will offer a feasible way for in-
vestigating the intriguing phenomenon of a countercirculating
current inside a giant vortex. Moreover, we will provide an
explanation of the topological correspondence between the
vorticity and the number of in-gap states via an analogy with
the Chern insulator.

The rest of the paper is organized as follows. Section II
presents the BdG equation of an atomic Fermi superfluid in
a spherical bubble trap approximated by a thin shell and its
vortex solutions. Physical quantities such as the gap function,
density, and current for characterizing vortices are introduced.
Section III presents the vortex solutions with vorticity ν =
1, 2, 3 and explains the density peak and reversed circulation
of current at the core center for higher-vorticity vortices in the
BCS regime. The energy spectrum showing the in-gap states
will be presented, and the topological correspondence be-
tween the in-gap states and vorticity will be explained. Some
implications for experimental studies are also discussed. Sec-
tion IV concludes our work.

II. THEORETICAL BACKGROUND

A. BdG equation on sphere

To investigate the vortices of a fermionic superfluid in a
bubble trap throughout the BCS-BEC crossover at T = 0, we
setup and solve the BdG equation on a sphere. Here we set
h̄ = 1 and kB = 1. On a thin spherical shell of radius R0, the
single-particle Hamiltonian in the spherical coordinates can
be expressed as

H0 = − 1

2M

[
1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2
∇2

s

]
+ V (r − R0). (1)

Here M is the fermion mass and ∇2
s is the spherical Laplacian

to be explained later. The spherical-shell potential V (r − R0)
is assumed to be highly concentrated at r = R0, thus the r
derivative terms can be ignored. The single-fermion Hamil-
tonian then becomes

H0 = − 1

2MR2
0

∇2
s . (2)

In the following, we take E0 = 1
2MR2

0
as the energy unit and

will no longer show it explicitly. The spherical Laplacian
operator is given by

∇2
s ≡ − 1√

G
∂μ

√
GGμν∂ν

= −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂2φ

)
, (3)

where Gμν = diag{1, sin2 θ} is the metric on a 2D unit sphere
and G = det(Gμν ). By keeping the radius R0 implicit, the
fermion system is effectively on a unit sphere characterized
by the spherical coordinates r̂ = (θ, φ).

Following Ref. [44], a fermionic superfluid on a thin spher-
ical shell is described by the BCS mean-field Hamiltonian
given by

HBCS =
∫

S2
d r̂

[ ∑
σ

ψ†
σ (r̂)T̂ ψσ (r̂) + �(r̂)ψ†

↑(r̂)ψ†
↓(r̂)

+ �∗(r̂)ψ↓(r̂)ψ↑(r̂)

]
. (4)

Here the surface element is d r̂ = sin θdθφ. ψσ is the fermion
annihilation operator of spin σ =↑,↓. The kinematic energy
operator is given by

T̂ = H0 − μ. (5)

Here we assume equal population of the two components. The
gap function representing the order parameter is defined as

�(r̂) = −g〈ψ↑(r̂)ψ↓(r̂)〉, (6)

where g is the bare coupling constant.
The BCS mean-field Hamiltonian can be diagonalized by

the Bogoliubov transformation, which introduces the quasi-
particle operators as

ψ↑(r̂) =
∑

n

[un(r̂)γn,1 − v∗
n (r̂)γ †

n,2],

ψ
†
↓(r̂) =

∑
n

[vn(r̂)γn,1 + u∗
n(r̂)γ †

n,2]. (7)

The coefficients of the above transformation satisfy the or-
thonormal conditions∫

S2
d r̂[u∗

m(r̂)un(r̂) + v∗
m(r̂)vn(r̂)] = δmn. (8)

In terms of γ , the BCS Hamiltonian can be expressed as

HBCS = E0 +
∑
n,σ

Enγ
†
n,σ γn,σ , (9)

where E0 is the ground-state energy. With the above Hamilto-
nian, one has the following commutation relations:

[HBCS, γn,σ ] = −Enγn,σ , [HBCS, γ
†
n,σ ] = Enγ

†
n,σ . (10)

Substituting Eq. (4) and the inverse of Eq. (7) into the
above equations and equating both sides, we arrive at the
Bogoliubov–de Gennes equation of a Fermi superfluid in a
spherical-shell geometry. Explicitly,(

T̂ �(r̂)
�∗(r̂) −T̂

)(
un(r̂)
vn(r̂)

)
= En

(
un(r̂)
vn(r̂)

)
. (11)

The gap function is determined by the wave functions un and
vn as

�(r̂) = g
∑

n

un(r̂)v∗
n (r̂)[1 − 2nF (En)]. (12)

Here nF (x) = 1/(ex/T + 1) is the Fermi distribution function.
The summation

∑
n is for eigenenergies that satisfy the con-

dition 0 � En � Ecut with some cutoff energy Ecut. Here we
assume that the cutoff energy is the largest kinematic energy
Ecut = Lmax(Lmax + 1) with the maximal angular momentum
quantum number Lmax. Further increments of Ecut do not lead
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to qualitative changes of the results. More details are given
below in the discussion of vortex solutions.

The bare coupling constant g is related to the two-body
scattering length a by making use of the following renormal-
ization relation on a thin spherical shell [44]:

1

g
=

∫
dl

2l + 1

2εl + |Eb| =
∫ Ecut

0

dεl

2εl + |Eb| . (13)

Here εl = l (l + 1) is the dispersion of free fermions on a unit
sphere and Eb = − 1

Ma2 is the binding energy of the two-body
bound state. Since the two-body scattering length in two di-
mensions is positive, solving Eq. (13) allows us to translate the
coupling constant g to the dimensionless parameter − ln(kF a),
which varies from negative to positive values throughout the
BCS-BEC crossover. The BCS-BEC crossover occurs when
the chemical potential changes sign [44], implying a change
of nature of the Fermi superfluid as the attraction increases.
Following Ref. [44], there are two ways to tune the ratio
between the kinetic and interaction energies of a Fermi su-
perfluid on a thin spherical shell and push the system through
the BCS-BEC crossover. One may tune the scattering length
a to increase the pairing strength or increase the size of the
spherical shell to lower the Fermi energy. As the size of
the sphere increases, the curvature decreases, leading to a
curvature-induced crossover of atomic Fermi superfluids. A
combination of the two approaches will make it more feasible
to study the entire crossover of a Fermi superfluid in a spheri-
cal bubble trap approximated as a thin shell.

B. Vortex solutions

We consider a solution of the BdG equation with a pair
of vortices located at the north and south poles of a thin
spherical shell, where the rotation axis goes through the two
poles. Figure 1 schematically shows the setup. The azimuthal
symmetry is assumed to hold. For vortices with vorticity ν,
the gap function is assumed to take the following form:

�(r̂) = �(θ )e−iνφ, (14)

which means the vorticities of the two vortices are ±ν, re-
spectively. With the functional form of the gap function, we
can expand un(r̂) and vn(r̂) by the spherical harmonics as

un(r̂) =
∑
l,m

cnlmYl,m(θ, φ), (15)

vn(r̂) =
∑
l,m

dnlmYl,m+ν (θ, φ). (16)

Then the BdG equation becomes a matrix eigenvalue equa-
tion. However, the matrix can be split into diagonal blocks for
different values of m. For a given m, the BdG equation can be
written as

∑
ll ′

(
Tm Dm

DT
m −Tm+1

)
ll ′

(
cnl ′m
dnl ′m

)
= En

(
cnlm

dnlm

)
. (17)

Since the spherical harmonics are the eigenfunctions of ∇2
s ,

we find that the kinematic term is simply a diagonal matrix

FIG. 1. Illustration of a Fermi superfluid on a 2D thin spherical
shell under rotation (indicated by the circular arrow around the rota-
tion axis). A pair of vortices (the black dots) emerge at the north and
south poles while the currents (black arrows on the sphere) circulate
the vortices.

given by

(Tm)ll ′ =
(

l (l + 1)

2M
− μ

)
δll ′ , l = m, m + 1, . . . , Lmax.

(18)

The matrix elements of the gap function require integrations
of the form

(Dm)ll ′ =
∫ 1

−1
dx�(x)Nl,mPm

l (x)Nl ′,m+1Pm+1
l ′ (x). (19)

Here we use the definition of spherical Harmonics to introduce
the associated Legendre polynomial Pm

l (x) with x = cos θ ,

the normalization factor is Nl,m =
√

(l−|m|)!
(l+|m|)!

2l+1
2 , and the φ

integral has been completed.
In our numerical computations, the integration is calculated

by Gaussian quadrature. For the present case, it has the form∫ 1

−1
h(x)dx =

∑
i

wih(zi ), (20)

where zi are the zeros of the Legendre polynomial PLM (x)
with large enough LM . Here the weights are given by wi =

2
(1−x2

i )[P′
LM

(xi )]2 . Since the integration functions of this work are

polynomials of order smaller than 2Lmax, the above Gaussian
quadrature will be accurate as long as we take LM > 2Lmax.
Using Eq. (17), the BdG equation is transformed into a set
of matrix eigenequations of dimension 2(Lmax − |m| + 1) for
each m. We can diagonalize each matrix corresponding to a
specific m to find the eigenenergies {En} and the eigenfunc-
tions {un(x)} and {vn(x)}. This procedure will be repeated for
all possible m from −Lmax to Lmax. We take Lmax = 30 in our
numerical calculations since further increments of Lmax do not
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lead to observable changes in the results. In the numerical cal-
culations, the fermion mass is set to M = 1/2 for simplicity.

To obtain a self-consistent solution of the BdG equation,
we start with an initial guess of the gap function, which
vanishes at both the north and south poles of the sphere. For
example, one may try �(x) = �0(1 − x2) as an initial guess.
This is consistent with the boundary conditions of the two
vortices located at the poles of the sphere. From Eq. (17), we
find the eigenfunctions un(x) and vn(x) and generate a new
gap function �′(x) according to Eq. (12) to be used for the
next round. These steps will be repeated many times until the
convergence of �(x) is reached. The convergence condition
that we use is∫ 1

−1
|�′(x) − �(x)|dx

/∫ 1

−1
|�(x)|dx < ε, (21)

where we take ε = 10−3. During the iteration for obtaining a
self-consistent solution, the chemical potential μ is kept fixed.

To make a comparison with the uniform case, we determine
the Fermi energy EF , which is the Fermi energy of a free
Fermi gas with the same total particle number in the same
geometry. The fermion density of both spins is given by

n(r̂) = 2
∑

n

[|un(r̂)|2nF (En) + |vn(r̂)|2[1 − nF (En)]]. (22)

Integrating Eq. (22) over the sphere gives the total particle
number N of the Fermi superfluid. Assuming that the same
amount of free fermions on the same sphere fills up to angular
quantum number L, then we have

N = 2
∫ L

0
(2l + 1)dl = 2L(L + 1). (23)

Therefore, the Fermi energy on a sphere is given by EF =
L(L + 1) = N/2, and the corresponding Fermi momentum is
kF = √

2MEF . We will normalize the results by EF and kF .
Since a vortex is accompanied by a circulating current, we

also evaluate the particle current, which can be obtained by

J(r̂) = i

2M

∑
σ

〈ψ†
σ (r̂)∇ψσ (r̂) − ∇ψ†

σ (r̂)ψσ (r̂)〉. (24)

Making use of the Bogoliubov transformation of Eq. (7) and
the φ dependence in Eq. (16), we find that the circulating
current can be computed from un and vn as

J(r̂) = 2

M sin θ

∑
n,m

[m|un(r̂)|2nF (En)

− (m + 1)|vn(r̂)|2[1 − nF (En)]]eφ. (25)

We note that the BdG equation allows spatial resolution of
all the physical quantities, including the density and current,
which will reveal interesting physics inside the MQVs. The
numerical results of the MQV will be presented in the next
section.

The energy of a vortex Ev is usually higher than the ground-
state energy E0 of a uniform state [7,8] because the vortex
states are excitations of the underlying superfluid. Moreover,
the excitation energy of a vortex with vorticity ν is pro-
portional to ν2 [7,8], therefore, a MQV tends to decay into
multiple vortices with lower vorticity. To stabilize the vortex

state, however, one may rotate the entire system [28], which
is equivalent to adding an extra term to the kinematic operator
given by

T̂ ′ = H0 − μ − �L̂z. (26)

Here L̂z = i ∂
∂φ

and � is the angular velocity of the rotation.
Therefore, in the laboratory frame, the energy of the vortex
state is E ′

v = Ev − �〈L̂z〉. Therefore, if the angular velocity
exceeds the following bound � > Ev−E0

〈L̂z〉 , then E ′
v < E0 in the

laboratory frame. Here 〈L̂z〉 is proportional to ν. Therefore, for
large-enough � and ν, the MQV states may be stabilized, as
mentioned in Refs. [28,29]. Additionally, cold atoms in spher-
ical bubble traps are promising to maintain the MQVs due to
the strong confinement from the compact geometry and the
azimuthal symmetry disfavoring multivortex configurations
violating the symmetry. More discussion will be presented
later. We mention that our study considers the sphere to be
much larger than the vortices, so the curvature only tunes
the BCS-BEC crossover and does not substantially affect the
stability of the vortices.

III. RESULT AND DISCUSSION

A. Vortex structures

For a pair of ν = ±1 vortices on a sphere, the numerical
results of the gap function �(x), density n(x), and current J (x)
are shown in Fig. 2 for two selected cases: − ln(kF a) = −0.96
with μ/EF = 0.9 and − ln(kF a) = 0.3 with μ/EF = −0.4.
Here x = cos θ . The positive (negative) value of μ confirms
the Fermi superfluid is in the BCS (BEC) regime. The two
cases are chosen because they are not far away from the
crossover indicated by μ = 0 and exhibit some contrasting
properties of BCS and BEC superfluids. We caution that
different pairing strengths tune the interaction energy scale,
but the stability of the vortices are determined by the angu-
lar velocity, confining potential, vortex energy, and vorticity.
Therefore, the vortices may be stabilized in different regimes
of the BCS-BEC crossover illustrated here by suitable choices
of the parameters.

While the order parameter represented by the gap function
vanishes in the vortex center, the depletion of the density
inside the vortex increases as the system getting deeper into
the BEC regime. Finally, the circulating current shows a max-
imum, which indicates the size of the vortex. The results are
similar to the ν = 1 vortex on a 2D plane studied previously
[37–39].

We comment on a subtlety about the Poincaré-Hopf
theorem when applied to a rotating superfluid on a 2D sur-
face. The Poincaré-Hopf theory concerns the total index of
the singularities of a tangent vector field on a surface. Mean-
while, the vortex results from the phase field of the order
parameter, which at first look is not a tangent vector field in
real space. Nevertheless, the circulating current J reflects the
gradient of the phase field [7,8] and forms a tangent vector
field on the surface. Therefore, the Poincaré-Hopf theorem
constrains the net number of vortices of a superfluid confined
on a surface due to the underlying topology in a subtle way.

For a pair of ν = ±2 vortices on a sphere, the numerical
results of the gap function �(x), density n(x), and current J (x)
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FIG. 2. The pairing gap �, density n, and particle current J
as a function of cos θ for a ν = 1 vortex in the BCS regime (red
full line) and BEC regime (blue dashed line). The BCS and BEC
cases correspond to − ln(kF a) = −0.96 and 0.3. The corresponding
μ/EF = 0.9 and −0.4. Here n0 = N/(4π ) is the averaged density on
the sphere while EF and vF are the Fermi energy and Fermi velocity
of a noninteracting Fermi gas with the same geometry and particle
number.

are shown in Fig. 3 for the same selected cases − ln(kF a) =
−0.96 and 0.3. The chemical potential is positive (negative)
for the first (second) case, indicating the Fermi superfluid is
in the BCS (BEC) regime. The results in the BEC regime
look similar to those of ν = 1 in the BEC regime except for
the larger size of the vortex and the more complete depletion
of the density at the vortex center. In contrast, the density of
a ν = 2 vortex shows a density peak instead of a dip at the
center of the vortex in the BCS regime when μ is close to EF .

The density peak inside a MQV in the BCS regime can be
understood by a qualitative argument from the BdG equation.
Since the chemical potential is positive in the BCS regime
while the gap function vanishes inside the vortex core, a nor-
mal Fermi gas survives inside the vortex core. For the ν = 1
case, this leads to incomplete depletion of the density inside
the core. For MQVs with higher ν, the enlargement of the

FIG. 3. The gap function �, density n, and particle current J as
functions of cos θ for a ν = 2 vortex. The red solid and blue dashed
lines correspond to − ln(kF a) = −0.96 and 0.3 with μ/EF = 0.9
and −0.4, respectively.

vortex core allows more normal fermions in the BCS regime
to accumulate there and eventually give rise to a density peak
at the core center. The accumulation of the normal Fermi gas
is not possible in the BEC regime because the strong pairing of
fermions forms composite bosons, which fix the order param-
eter with the density and lead to a negative chemical potential
of the fermions. Therefore, the density peaks of MQVs in the
BCS regime contribute to features not observable for bosonic
superfluids in the same setup.

Figure 4 shows the results of a vortex with ν = 3 for
the two selected cases in the BCS and BEC regimes. Due
to its high vorticity, the vortex core is even larger. The re-
sults in the BEC regime still resemble the BEC results of
the ν = 1, 2 cases. In the BCS regime, the density again
shows a peak at the vortex center due to the accumulation
of normal fermions. However, another feature emerges in the
core, where one can see that the circulation of the current is
reversed near the vortex center as indicated by the negative
value of the current. The result thus confirms the conjecture
found in Ref. [11] that reversed circulation may reside in
the cores of higher MQVs of Fermi superfluids. In contrast
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FIG. 4. Profiles of the gap function �, density n, and parti-
cle current J as functions of cos θ for a ν = 3 vortex. The solid
(dashed) line corresponds to − ln(kF a) = −0.96 [− ln(kF a) = 0.3]
with μ/Ef = 0.9 (μ/Ef = −0.4) in the BCS (BEC) regime.

to Ref. [43], where reversed circulation was discussed in the
vortex core of population-imbalanced Fermi superfluids, here
we show that for an equal-population Fermi superfluid in a
spherical bubble trap, reversed circulation may be prominent
in MQVs with ν � 3. A careful examination of the current
in the core of the ν = 2 vortex shown in Fig. 3 reveals that a
slight reversal of the current already occurs at the center in the
BCS regime. However, the tiny region and magnitude of the
reversed current of a ν = 2 vortex suggests it is more feasible
to investigate vortices with ν � 3 to probe the phenomenon.
As we will show by analyzing the energy spectrum from the
BdG equation in the next subsection, the reversed current
is associated with the states in the core that carry angular
momentum.

B. Energy spectrum and in-gap states

The eigenenergy spectrum of the vortex solutions from the
BdG equation is shown in Fig. 5. There are in-gap states with
En < �0 in every case, where �0 is the gap function away

FIG. 5. From top to bottom: The eigenvalues En as a function
of m from the BdG equation of vortices with vorticity ν = 1, 2, 3.
The left (right) column is the BCS (BEC) case with − ln(kF a) =
−0.96 [− ln(kF a) = 0.3]. The black dashed lines represent the value
of the bulk gap �0. For the left (right) column, �0/EF = 0.7
(�0/EF = 2.8).

from the vortex. We find that the number of in-gap states
increases with the vorticity. What is interesting here is that for
higher-vorticity vortices (ν = 2, 3, for example), the in-gap
states near E = 0 start acquiring finite angular momentum in
the BCS regime, as indicated by the m > 0 eigenvalues near
the zero energy. Those states near E = 0 will be shown to
be inside the vortex core and carry angular momentum. They
lead to the countercirculation of the current inside the vortex
core of a vortex with higher vorticity, as shown in Fig. 4 and
conjectured in Ref. [11].

Figure 5 suggests that the number of the branches of the
in-gap states is equal to the vorticity of the MQV. Specifically,
for a vortex with vorticity ν, there are ν branches of in-gap
states in its spectrum. Here we provide a heuristic argument to
support this correspondence. We note that the BdG equation in
momentum space may be viewed as a two-band model. In the
first-quantization language, it can be expressed as

H = Re(�) σ1 + Im(�) σ2 +
(

k2

2M
− μ

)
σ3. (27)

Here σ1,2,3 are the Pauli matrices. For a MQV with vorticity ν,
we assume � = f (θ )eiνφ , where the amplitude f (θ ) satisfies
the boundary condition f (0) = f (π ) = 0. The Chern number
of the above 2D two-band model can be obtained as follows.
Since quantized topological indices do not depend on the
details of the functional forms, we may assume that f (θ ) =
sinν θ for simplicity. By defining k± = kx ± iky = sin θe±iφ ,
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the two-band model of Eq. (27) then becomes

H = Rekν
+ σ1 + Imkν

+ σ2 +
(

k2

2M
− μ

)
σ3. (28)

For ν = 1, the above model is the continuum limit of the
Qi-Wu-Zhang model of a Chern insulator [45] with the Hamil-
tonian

HQWZ = sin kxσ1 + sin kyσ2

+
(

2 − cos kx − cos ky

M
− μ

)
σ3. (29)

It is known that, for μ not too large, the Qi-Wu-Zhang model
has Chern number C = 1, which is the same as the vorticity
ν = 1 of the vortex solution from the BdG equation. Thus,
a connection between the vortex solution of the BdG equa-
tion and the Chern insulator has been built.

For higher values of ν, we construct a three-dimensional
(3D) vector with the components at small k corresponding to
the coefficients of the Hamiltonian. Specifically,

R =
(

Rekν
+, Imkν

+,
2 − cos kx − cos ky

M
− μ

)
. (30)

The Chern number is then given by

C = 1

4π

∫
d2k

R · ∂xR × ∂yR
R3

, (31)

with R = |R| and ∂i = ∂
∂ki

. For μ not too large, one can verify
that C = ν, which extends the connection between the vortex
solutions from the BdG equation and Chern insulator. Accord-
ing to the bulk-edge correspondence of the Chern insulator
[46–48], the number of edge modes located in the gap between
the two bands should be the same as the Chern number. In the
vortex solutions on a sphere, the cores of the two vortices at
the north and south poles support localized states analogous
to the edge modes inside the band gap. Therefore, the number
of the in-gap state branches is equal to the vorticity that plays
the role of the Chern number.

We mention that there have been discussions of Dirac
fermions inside a scalar vortex [49–51], where it was sug-
gested that for a MQV with vorticity ν, the Dirac fermions
will support ν zero modes. By viewing the pairing gap �

as a dynamically generated scalar field, our results provide
another example connecting the topological indices of MQVs
with interesting states of fermions inside their cores.

Figure 6 shows the eigenfunctions un and vn of selected
in-gap states with lowest energies and a typical bulk state with
E > �0 in the BCS case. One can see that the in-gap states
are indeed localized inside the vortex core while the bulk
states extends to the whole sphere. Here the lowest energy
in-gap states for the vortices with vorticity ν = 1, 2, 3 have
m = 0, 1, 3, respectively. As ν increases, the peaks of u and
v are moving away from the center because of the enlarged
vortex core. For higher-vorticity vortices in the BCS regime,
those in-gap states with finite angular momentum contribute
to the reversed circulation at the core center. The in-gap states
in the BEC regime are more localized compared to those in the
BCS regime and do not carry significant angular momentum.
Nevertheless, the eigenfunctions in the BEC regime are qual-
itatively similar to those in the BCS regime shown in Fig. 6.

FIG. 6. The BdG eigenfunctions u (solid lines) and v (dashed
lines) as functions of cos θ of the vortex solutions in the BCS regime
with − ln(kF a) = −0.96. Panels (a), (b), and (c) show the lowest-
energy in-gap states for the solutions with vorticity ν = 1, 2, 3,
respectively. Panel (d) shows a typical bulk state of ν = 1.

C. Implications

The reason that interesting behavior, such as the density
peak or reversed circulation of current at the vortex center in
the BCS regime but not BEC regime, is due to the different re-
lations between the density and gap function in the BCS-BEC
crossover. In the BCS regime, the density and gap function are
two different quantities, and a vanishing gap does not imply
zero density. Therefore, a normal Fermi gas is allowed to enter
the vortex core with a vanishing order parameter due to the
positive chemical potential and gives rise to a density peak
at the core center for higher MQVs. In contrast, fermions
form tightly bound pairs in the BEC regime, and the literature
[52,53] shows that the gap function now plays the role of
the condensate wave function of the composite bosons and
is proportional to the square root of the composite-boson
density. Therefore, the gap function and density are tied to
each other in the BEC regime and vanish together in the vortex
core, eliminating those features from a normal Fermi gas in
the cores of MQVs. Therefore, MQVs in Fermi superfluids in
the BCS-BEC crossover reveal rich physics from pairing of
fermions.

We emphasize that the spherical bubble trap has the follow-
ing advantages for realizing and probing MQVs in cold-atom
systems. First, the compact geometry of a sphere provides a
tight confinement of the Fermi superfluid to prevent the atoms
from escaping to spatial infinity due to high angular velocity
and avoids the unnecessary distortion of the density profile
from the introduction of additional confining potentials. As
explained below Eq. (26), high angular velocity helps stabilize
the MQVs, so tight confinement of the atoms is important.
Second, the azimuthal symmetry of a sphere rotating about
a fixed axis pins the pair of vortices at the two poles and
disfavors their decay into configurations which break the
symmetry. We caution that imperfections or fluctuations in ex-
periments may violate the azimuthal symmetry and break the
MQVs into clusters of vortices, as discussed in Refs. [28,29]
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for bosonic superfluids. To account for possible violation of
the azimuthal symmetry in the calculations, sectors of the
BdG equations with different values of m will couple to each
other to address the azimuthal variation. The generalization
will complicate the numerical evaluation and demand more
resources for its investigation. Third, as discussed in Ref. [44],
the BCS-BEC crossover of a Fermi superfluid on a thin spher-
ical shell can be induced by tuning the size of the sphere or the
interactions, allowing more controls in experiments to explore
the physics of MQVs.

IV. CONCLUSION

The vortex solutions from the BdG equation reveal the
structures of MQVs of a Fermi superfluid in a spherical bub-
ble trap approximated by a thin shell across the BCS-BEC
crossover. The agreement of the single-vorticity vortex struc-
ture with that in the planar geometry reflects the local nature
of the vortex. Nevertheless, in the cores of higher-vorticity

vortices in the BCS regime, a density peak emerges due to an
accumulation of a normal Fermi gas as the pairing gap van-
ishes, and reversed circulation of the current occurs due to the
in-gap states carrying finite angular momentum. Moreover,
the number of in-gap state branches is topologically related
to the vorticity of the vortex. Our results of MQVs in Fermi
superfluids in spherical bubble traps thus demonstrate the
interesting interplay between geometry, many-body physics,
and topology.
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