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Entanglement generation and detection in split exciton-polariton condensates
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We propose a method of generating and detecting spatially defined entanglement in exciton-polariton conden-
sates at steady state. In our scheme we first create a spinor polariton condensate, such that steady-state squeezing
is obtained under a one-axis twisting interaction. Then the condensate is split either physically or virtually,
which results in entanglement generated between the two parts. A virtual split means that the condensate is
not physically split, but its near-field image is divided into two parts, and the spin correlations are deduced
from polarization measurements in each half. We theoretically model and examine the logarithmic negativity
criterion and several correlation-based criteria to show that entanglement exists under experimentally achievable
parameters.
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I. INTRODUCTION

Entanglement is a central property of quantum physics that
distinguishes it from classical physics [1,2] and is consid-
ered an essential resource for applications such as quantum
information [3,4], quantum cryptography [5–7], and quantum
metrology [8,9]. Entangled states have already been achieved
at the macroscopic scale and in systems such as atomic
ensembles [10] and mechanical resonators [11]. Several ex-
periments realized the generation of entanglement and other
quantum correlations in a single Bose-Einstein-condensate
(BEC) cloud [12–15], which has been proposed for several ap-
plications [16,17]. A well-known platform for creating BECs
is to use suitably structured semiconductor systems support-
ing exciton-polaritons. Exciton-polaritons are a superposition
of an exciton (an electron-hole bound pair) and a cavity pho-
ton and form a bosonic quasiparticle [18–21]. The coupling
between the exciton and photon results in an extremely light
mass for the exciton-polaritons [21,22], allowing for the pos-
sibility of realizing BECs [19,22–25]. One of the advantages
of polariton BECs is that they can be experimentally imple-
mented at higher temperatures, even at room temperatures, by
using materials such as GaN and ZnO [26–31]. This makes the
polariton system attractive for future technological applica-
tions, as they would not require a bulky cryogenic apparatus.

Recently, it was observed that entanglement between two
spatially separated atomic BECs could be generated [32]. In
that study, the authors first created a spinor 87Rb BEC via spin
squeezing, which generates Einstein-Podolsky-Rosen (EPR)
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multiparticle entanglement in the single BEC. Next, the sin-
gle BEC was physically split into two parts, and the EPR
entanglement between the two components was verified by
measuring spin correlations. Prior to this, entanglement be-
tween different spatial regions of atomic BECs was achieved
[12–14]. In these works, entanglement was first created be-
tween the atoms on a single 87Rb atomic BEC, using methods
such as state-dependent forces, spin-nematic squeezing, and
spin-changing collisions. Then, by using a magnified near-
field image of the single atomic BEC, two different spatial
regions of the same BEC were examined for correlations. It
was shown that entanglement can be detected after releasing
the atomic gases from the traps. These experimental works
showed that the splitting process can be either virtual or phys-
ical, in which coherence and entanglement can still survive
after the split. The physical-splitting scheme [32] requires pre-
cise techniques to avoid environment noise to avoid additional
sources of decoherence. However, as shown in Ref. [33],
physical and virtual splits give identical results in terms of
entanglement. Thus, the virtual-splitting procedure may be
an excellent option for observing such entanglement, even
if physical splitting is closer to the concept of “splitting.”
We note that numerous theoretical proposals also have been
made for generating entanglement in two completely separate
atomic BECs [33–41]. For polariton condensates, to date, no
reports of detection of entanglement in single or multiple
polariton condensates have been made. However, squeezing
in the polaritonic system has been observed [42], in which
the quadrature squeezing in polaritons is generated by us-
ing a four-wave mixing method. Furthermore, experimental
quantum optical toolbox techniques were developed for po-
laritonic systems such as homodyne detection in Ref. [42].
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FIG. 1. The experimental setup for our system. (a) A spinor
exciton-polariton condensate forms in the QWs generated by the
pump laser. The spinor condensate is formed from the spin com-
ponents of the polaritons and is excited by applying a laser of
suitable polarization (both clockwise and counterclockwise circular
polarization) to excite equal populations of the spins. The photon
component of the polaritons leaks through the semiconductor quan-
tum microcavity; then its image is focused on a charge-coupled
device (CCD) of a camera. By individually detecting the polarization
of the separate parts of the photoluminescence (imaged light) on
a CCD, one may deduce the presence of entanglement between
different spatial regions of the condensate as imaged on the CCD.
(b) The enlarged image resolved from the CCD. The vertical dashed
line shows the regions defining the two spin components used to
detect entanglement.

These results make the probability that such entanglement
splitting in two polariton condensates can be realized in the
near future promising, taking advantage of the fact that such
systems can be easily manipulated [43–45].

In this paper, we propose a method of generating entangle-
ment in a split polariton condensate and give an experimental
scheme for detecting entanglement (see Fig. 1). A single
spinor polariton condensate is initially excited in the QWs
by optical pumping. Due to the natural self-interactions be-
tween the polaritons, this produces a one-axis twisting effect,
producing multiparticle entanglement which involves all po-
laritons in the condensate. The single condensate is then
spatially split into two ensembles which produce two separate
spins. We note that this splitting procedure can be either
a physical split or a virtual-splitting procedure, where the
image of the polaritons is partitioned into two [Fig. 1(b)]
[33]. After the splitting procedure, the subsystems are still
entangled due to the one-axis twisting producing multiparticle
entanglement (see Fig. 2) [46–48]. We use a spin mapping
to map our system with particle-number fluctuations onto a
fixed-particle-number space in order to use well-established
spin correlators developed to detect entanglement. We cal-
culate logarithmic negativity and correlation-based criteria to
demonstrate that multiparticle entanglement exists not only
in each condensate but in a spatially separated configuration

(a) (b)

FIG. 2. Entanglement in a split polariton condensate. (a) A sin-
gle spinor polariton condensate first forms in the QWs, generating
multiparticle entanglement at steady state, represented by the wiggly
lines. (b) The external potential trapping the condensate is modified
such that it is spatially split into two condensates. The entanglement
is transformed to a nonlocal form where it exists between the two
split condensates.

between two condensates. We show that our system exhibits
stronger entanglement for larger particle-number sectors in
various regimes. By adjusting realistic system parameters one
can improve the entanglement level.

This paper is organized as follows. In Sec. II we introduce
the theoretical model for a single spinor exciton-polariton
condensate and introduce the splitting operation, which pro-
duces two spatially separate condensates. In Sec. III, we
numerically simulate our method and analyze our simulation
results. In Sec. IV, we show the main results of entanglement
generation and detection using different entanglement criteria.
Finally, in Sec. V we summarize and discuss our results.

II. SPIN-SQUEEZED POLARITON CONDENSATES

A. Theoretical model

We now describe the theoretical model used to simulate our
interacting spinor polariton condensate. For further details we
refer the reader to Ref. [49], which analyzes a similar situation
prior to splitting. The master equation for the spinor polariton
condensate is

dρ

dt
= − i

h̄
[Hsystem, ρ] − γ

2
L[a, ρ] − γ

2
L[b, ρ], (1)

where the Hamiltonian Hsystem = H0 + Hpump + Hint is de-
fined as

H0 = h̄�(a†a + b†b),

Hpump = h̄A(a†e−iθa + aeiθa + b†e−iθb + beiθb ),

Hint = h̄U

2
[a†a(a†a − 1)] + h̄U

2
[b†b(b†b − 1)]

+ h̄Va†ab†b. (2)

Here, a†, b† and a, b are the creation and annihilation op-
erators for the two zero-momentum polariton spin species
s = ±1, respectively, which obey the bosonic commutation
relations

[a, a†] = [b, b†] = 1,

[a, b] = 0. (3)

The contribution of higher-momentum polariton modes is
not considered in our proposal because they do not affect
the spin-squeezing entanglement, which is the focus of this
study. The above Hamiltonian models resonant excitation, in
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which the polaritons are typically excited at zero in-plane
momentum, such that the remaining momenta are relatively
unpopulated. One may also consider off-resonant excitation,
in which other momenta will also be present, but in such a
scheme only the zero-momentum polaritons should be ex-
amined, which could be achieved by filtering in momentum
space. We note that resonant-excitation techniques have been
used in numerous experimental studies of polariton conden-
sates and are considered to be an equivalent way of obtaining
a condensed polariton cloud, although they lack the conden-
sation step that characterizes the condensate phase transition
[42,50,51]. The Hamiltonian H0 defines the energy h̄� of
zero-momentum polaritons with respect to the pump laser.
Hpump is the Hamiltonian for the pump laser with amplitude
A, and θa and θb represent the pumping phases of modes a
and b, respectively. The Hamiltonian Hint includes the non-
linear interaction energy h̄U between the same spins and h̄V
between different spins. The superoperator

L[a, ρ] = a†aρ + ρa†a − 2aρa†,

L[b, ρ] = b†bρ + ρb†b − 2bρb† (4)

is the Lindbladian loss for photons leaking through the cavity.
According to the master equation (1), the polariton population
decays with rate γ .

To solve the master equation, we decompose the density
matrix in the Fock basis and numerically evolve the master
equation. The density matrix can be written as

ρ =
∑
klk′l ′

ρklk′l ′ |k, l〉〈k′, l ′|, (5)

where

|k, l〉 = (a†)k (b†)l

√
k!l!

|0〉 (6)

are the normalized Fock states that obey 〈k, l|k′, l ′〉 = δkk′δll ′ .

B. Splitting the polariton condensate

Initially, spin modes a and b form a single condensate with
all polaritons forming a multipartite entangled state due to the
nonlinear interaction, as illustrated in Fig. 2(a). In order to
obtain submodes a1, a2, b1, and b2 of spins a and b, we apply
the transformation

a → 1√
2

(a1 + a2),

b → 1√
2

(b1 + b2). (7)

The above splitting implies that there exist unoccupied modes
undergoing the transformation

ã → 1√
2

(a1 − a2),

b̃ → 1√
2

(b1 − b2). (8)

This transformation corresponds to a coherent splitting pro-
cess similar to that shown in Fig. 2(b). Alternatively, it could
correspond to virtual splitting like that shown in Fig. 1, where

the polariton condensate is split into two parts according to
two spatial regions. These spatial regions have a one-to-one
relation to the optical modes that emerge from the microcavity
and hence may be spatially imaged according to the scheme
shown in Fig. 1(b). The above splitting operation forms either
two physically separate condensates or two distinct halves of
a condensate and changes the entanglement structure, which
we show in Fig. 2(b). After the split, the Fock states transform
as

|k, l〉 → 1√
k!l!

(
a†

1 + a†
2√

2

)k(
b†

1 + b†
2√

2

)l

|0〉

= 1√
2k+l

√
k!l!

∑
nm

(
k

n

)(
l

m

)
× (a†

1)n(a†
2)k−n(b†

1)m(b†
2)l−m|0〉

= 1√
2k+l

∑
nm

√(
k

n

)(
l

m

)
|n, m, k − n, l − m〉, (9)

where the normalized Fock state with four modes can be
written as

|k1, l1, k2, l2〉 = (a†
1)k1 (b†

1)l1 (a†
2)k2 (b†

1)l2

√
k1!l1!k2!l2!

|0〉. (10)

Substituting the above equation into (5), the density matrix of
the split condensate is written, in general, as

ρsp =
∑

kl
k′l ′

∑
nm

n′m′

ρklk′l ′√
2k+l+k′+l ′

√(
k

n

)(
l

m

)(
k′

n′

)(
l ′

m′

)

× |n, m, k − n, l − m〉〈n′, m′, k′ − n′, l ′ − m′|. (11)

The spin operators on the split condensate are defined as

Sx
j = a†

j b j + b†
ja j,

Sy
j = i(b†

ja j − a†
j b j ),

Sz
j = a†

j a j − b†
jb j, (12)

where j ∈ {1, 2} labels the two condensates (either physical or
virtual). These spin operators obey the bosonic commutation
relations

[Sl , Sm] = 2iεlmnSn, (13)

where εlmn is the Levi-Civita symbol and l, m, n ∈ {x, y, z}.
The number operators for the two parts can be written as

N j = a†
j a j + b†

jb j, (14)

where j ∈ {1, 2}.

C. Number fixing

The exciton-polariton condensate system is an open dis-
sipative system and does not obey conservation of the total
polariton number. In the context of atomic condensates, the
total atom number N is assumed to be fixed for a single run
of the experiment. Any relation that is derived for a fixed
atom number (such as entanglement criteria) is not necessarily
valid if the total particle number fluctuates. In order to deal
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with this, we thus use an approach similar to that in Sec. II
of Ref. [49] to map ρsp onto a fixed Hilbert space. Thus, we
define the density matrix in the N sector as

ρ
sp
N = �Nρsp�N

pN
, (15)

where

�N =
N∑

N1=0

N1∑
k1=0

N−N1∑
k2=0

|k1, N1 − k1, k2, N − N1 − k2〉

× 〈k1, N1 − k1, k2, N − N1 − k2| (16)

is the projector on the N-particle subspace and N1 is the
number of polaritons in the first condensate. The probability
of the N sector is defined as

pN = Tr(�Nρsp�N ), (17)

which satisfies the relation∑
N

pN = 1. (18)

Next, we define the expectation values of quantum operator O
in fixed N sectors,

〈O〉N ≡ Tr(ρNO), (19)

where ρN is the projection of ρ in a fixed N space and the
subscript N refers to the fixed subspace. Therefore, the total
polariton number would be

〈N1〉N + 〈N2〉N = N. (20)

The variance of operator O for the N sector is defined as

VarN (O) = 〈O2〉N − 〈O〉2
N . (21)

The projector (16) involves a fixed polariton number N .
However, the total polariton number collapses to fixed N1 and
N2 after measurement. To define the projector in the fixed
N1, N2 space (N2 = N − N1), we denote

�N1,N2 =
N1∑

k1=0

N2∑
k2=0

|k1, N1 − k1, k2, N2 − k2〉

× 〈k1, N1 − k1, k2, N2 − k2|, (22)

which gives a fixed particle number for the two halves. Thus,
the expectation values for the operator O in this space can be
written as

〈O〉N1,N2 ≡ Tr(ρN1,N2O). (23)

We then obtain the relation for the expectation value of O for
the two types of number fixing:

〈O〉N = Tr(ρNO)

=
N∑

N1=0

N∑
N ′

1=0

Tr(�N1,N2ρN�N ′
1,N

′
2
O)

=
N∑

N1=0

pN1,N2|N Tr(ρN1,N2O)

=
N∑

N1=0

pN1,N2|N 〈O〉N1,N2 , (24)

where pN1,N2|N is the conditional probability and satisfies∑N
N1

pN1,N2|N = 1, we assume O is a locally particle number
conserving operator, and we use the fact that �2

N = �N and
�2

N1,N2
= �N1,N2 . The above relations will be useful for exam-

ining correlation-based entanglement detection criteria since
they are often derived in the context of fixed N1 and N2 and
we wish to relate them to number fluctuating averages.

III. NUMERICAL SIMULATION

A. Evaluation of expectation values

In simulating the master equation (1), a truncation is nec-
essary since the full Hilbert space is unbounded. Therefore,
we impose a cutoff Nmax, which means that the number of
bosons that occupy each mode is restricted to k, l ∈ [0, Nmax].
Any states with k, l > Nmax are set to have zero amplitude.
We note that the calculation of the effective spin still involves
considering the truncation space within its context [49].

We then use (16) to project the states on fixed total number
N . We note that, physically, such a projection is automatically
done when any measurement is performed. In any entan-
glement detection procedure, one requires detection of the
correlation between the two halves of the condensate. This
involves detecting polaritons on the two sides of the conden-
sate, and implicitly, this involves a number-fixing procedure.
The density matrix (11) is defined in a large Hilbert space
with four spin modes, a1, b1, a2, and b2. Due to the numerical
overhead for directly calculating the split four-mode case, we
calculate the expectation value of spin quantities O based on
the original space before the splitting transformation, which
contains only two modes. For example, the spin operators
under this transformation will be written as

Sx
j = a†

j b j + b†
ja j → 1

2
(a†b + a†b̃ + ã†b + ã†b̃)

+ 1

2
(b†a + b†ã + b̃†a + b̃†ã),

Sy
j = i(b†

ja j − a†
j b j ) → i

2
(b†a + b†ã + b̃†a + b̃†ã)

− i

2
(a†b + a†b̃ + ã†b + ã†b̃),

Sz
j = a†

j a j − b†
jb j → 1

2
(a†a + a†ã + ã†a + ã†ã)

− 1

2
(b†b + b†b̃ + b̃†b + b̃†b̃), (25)

where j ∈ {1, 2} and we applied the inverse unitary transfor-
mation of the splitting procedure

a1 → 1√
2

(a + ã),

b1 → 1√
2

(b + b̃),
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a2 → 1√
2

(a − ã),

b2 → 1√
2

(b − b̃). (26)

The transformed spin operators involve both the original
modes a and b as well as the unoccupied modes ã and b̃.
Since we know that prior to the splitting operations the ã and
b̃ annihilation operators are unoccupied, expectation values
involving operators ã and b̃ will be zero. For example, ex-
pectation values of the local modes are

〈
Sx

j

〉
N = 1

2
〈a†b + b†a〉N ,

〈
Sy

j

〉
N = i

2
〈b†a − a†b〉N ,

〈
Sz

j

〉
N = 1

2
〈a†a − b†b〉N , (27)

where j ∈ {1, 2}. For second-order spin correlations, we have〈
Sx

1Sx
2

〉
N

= 1
4 〈a†ba†b + a†bb†a − a†a + b†aa†b − b†b

+ b†ab†a〉N ,〈
Sy

1Sy
2

〉
N = 1

4 〈a†bb†a − a†a − a†ba†b − b†ab†a

+ b†aa†b − b†b〉N ,〈
Sz

1Sz
2

〉
N = 1

4 〈a†aa†a − a†a − a†ab†b − b†ba†a

+ b†bb†b − b†b〉N , (28)

where we used the commutation relation [̃a, ã†] =
[̃b, b̃†] = 1.

The elements of density matrix (11) can also be obtained
from the original space, which can be calculated by

〈k1, l1, k2, l2|ρsp|k′
1, l ′

1, k′
2, l ′

2〉

= 1√
k1!l1!k2!l2!k′

1!l ′
1!k′

2!l ′
2!

× 〈0|ak1
1 bl1

1 ak2
2 bl2

1 ρsp(a†
1)k′

1 (b†
1)l ′1 (a†

2)k′
2 (b†

1)l ′2 |0〉

→ 1√
k1!l1!k2!l2!k′

1!l ′
1!k′

2!l ′
2!

1
√

2
k1+l1+k2+l2+k′

1+l ′1+k′
2+l ′2

× 〈0|ak1+k2 bl1+l2ρ(a†)k′
1+k′

2 (b†)l ′1+l ′2 |0〉, (29)

where, again, we used the inverse unitary transformation (26).
In the noninteracting limit (U/γ = V/γ = 0), each N sec-

tor corresponds to a spin-coherent state |1/
√

2, 1/
√

2〉〉1 ⊗
|1/

√
2, 1/

√
2〉〉2 in the pump regime, where θa = θb = 0 and

� = 0 after spin mapping [49], where we define the spin-
coherent state as

|α, β〉〉 = 1√
N!

(αa† + βb†)N |0〉

=
∑

k

√(
N

k

)
αkβN−k|k, N − k〉. (30)

For the initial state that is polarized in the Sx direction, we find
that 〈

Sx
1

〉
N = 1

2N

∑
N1

(
N

N1

)
N1 = N

2
, (31)

〈
Sx

2

〉
N = 1

2N

∑
N2

(
N

N2

)
N2 = N

2
. (32)

Hence, for each chosen N sector, the average number of
polaritons for the two parts is N/2, which indicates the equiv-
alence of the calculations in the large space and in the split
procedure.

B. Effective entangling Hamiltonian

To show the effect of one-axis twisting in this split proce-
dure, we project the total spin operator Sz onto the fixed N1, N2

space by using (22):

�N1,N2 Sz�N1,N2 = �N1,N2 a†a�N1,N2 − �N1,N2 b†b�N1,N2

= 1
2�N1,N2 (a†

1a1 − b†
1b1 + a†

2a2 − b†
2b2)

× �N1,N2

+ 1
2�N1,N2 (a†

1a2 + a†
2a1 − b†

1b2 − b†
2b1)

× �N1,N2

→ �N1,N2 (a†
1a1 − b†

1b1 + a†
2a2 − b†

2b2)�N1,N2

= �N1,N2

(
Sz

1 + Sz
2

)
�N1,N2 , (33)

where the cross terms return zero for a fixed number N . Using
the above result, we then obtain

�N1,N2 (Sz )2�N1,N2 = (�N1,N2 Sz�N1,N2 )2

→ �N1,N2

(
Sz

1 + Sz
2

)2
�N1,N2

= �N1,N2

((
Sz

1

)2 + 2Sz
1Sz

2 + (
Sz

2

)2)
�N1,N2 ,

(34)

where we applied the relations �2
N1,N2

= �N1,N2 and
[�N1,N2 , Sz] = 0. Thus, the effective spin of the squeezing-
generation operator S2

z in one single-polariton condensate in
a fixed N1, N2 subspace corresponds to the case with two
spatial BECs as (Sz )2 → (Sz

1)2 + 2Sz
1Sz

2 + (Sz
2)2. This shows

that we expect squeezing on each condensate individually due
to the terms (Sz

1)2 and (Sz
2)2, and the term 2Sz

1Sz
2 generates

entanglement between two condensates. This is similar to the
one-axis, two-spin squeezing Hamiltonian, which produces
entanglement with a fractal time dependence [52,53].

IV. ENTANGLEMENT DETECTION

A. Logarithmic negativity

Logarithmic negativity is an entanglement monotone that
is used to quantify the bipartite entanglement in mixed states
[54–56]. It is defined as

E
(
ρ

sp
N

) = log2

∣∣∣∣(ρsp
N

)T2
∣∣∣∣ = log2

∑
i

|λi|, (35)

where (ρsp
N )T2 is the partial transpose of the second polari-

ton BEC density matrix, ||X || is the Schatten 1-norm of X ,
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FIG. 3. The logarithmic negativity (35) as a function of pump
rate A/γ and the nonlinear S2

z interaction parameter U/γ . Common
parameters are V/γ = 0, θa = θb = 0, and Nmax = 10.

and |λi| is the absolute value of the eigenvalues of (ρsp
N )T2 .

The range of E is from zero to the maximum value Emax =
log2(N/2 + 1), where in the maximally entangled case N1 =
N2 = N/2. We note that this result involves only the N sector
which has the maximum pN for the particular parameter set
that we choose, i.e., the most likely measured N sector.

In Fig. 3, we examine the logarithmic negativity, where
we show (35) as a function of the pumping rate A/γ and
the squeezing-interaction parameter U/γ . We find that E = 0
for a spin-coherent state (U/γ = 0) and E > 0 when both
U/γ , A/γ > 0, as expected. The tendency of the growth of E
with A/γ and U/γ is clearly seen. We note that large N needs
less time to reach the same squeezing level, as expected from
the optimal squeezing time ∝ 1/N2/3 for one-axis squeez-
ing [57,58]. Larger pumping and interaction correspond to a
higher level of squeezing, giving rise to more entanglement
in our system. We thus expect that entanglement should be
present in the current polariton system at steady state for a
large pumping rate and high-Q cavity regime [49]. Concretely,
this would mean parameters corresponding to 1/γ > 30 ps
and U/γ > 0.3.

B. Correlation-based criteria

While a nonzero logarithmic negativity gives an unambigu-
ous signal of entanglement, it may be difficult in practice to
detect it in experiment due to the need for full density-matrix
tomography. Thus, experimental limitations may require the
use of alternative measures that are better suited to the avail-
able measurements. Several correlation-based entanglement
detectors are available. The more sensitive detectors are the
expectation values of total spin operators. The first one we
consider is the Giovannetti-Mancini-Vitali-Tombesi (GMVT)
criterion [59], which states that for any separable state√

VarN
(
gySy

1 − Sy
2

)
VarN

(
gzS

z
1 + Sz

2

)
|gygz|

(∣∣〈Sx
1

〉
N

∣∣ + ∣∣〈Sx
2

〉
N

∣∣) � 1, (36)

where gy and gz are free parameters to minimize the left-hand
side. The inequality (36) is true for all separable states. Hence,
a violation of the inequality indicates that the state must be
entangled. In our case we choose gy = gz = 1. The second
criterion is the Duan-Giedke-Cirac-Zoller (DGCZ) criterion
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FIG. 4. Entanglement criteria for the split polariton condensate
system at steady state. Criteria (36), (37), and (38) versus N sectors
are calculated in (a)–(c), respectively. The main experimental param-
eters A/γ ,U/γ , and �/γ are as marked. The shaded regions indicate
the presence of entanglement. The indicated values are in units of γ .
Common parameters are V/γ = 0, θa = θb = 0, and Nmax = 10.

[60], which is valid for any separable state
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The third criterion is the Hofmann-Takeuchi (HT) criterion
[61], which is valid for any separable state

VarN
(
Sx

1 + Sx
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) + VarN
(
Sy

1 − Sy
2

) + VarN
(
Sz

1 + Sz
2

)
2(〈N1〉N + 〈N2〉N )

� 1,

(38)

where N is the total polariton number of the N sector. The
above inequalities have been converted from their fixed N1,
N2 relations to a fixed N through an averaging procedure. We
note that the average variance of the operator O in the fixed
N1, N2 space is either equal to or less than the variance defined
using N sectors, denoted by VarN (O) (see Appendix A). Fur-
thermore, the average expectation values are equal to 〈O〉N

(see Appendix B). Therefore, the violation of inequalities
(36)–(38) indicates the presence of entanglement within each
N sector.

Figures 4(a)–4(c) show the three criteria as a function of
the N sectors. The first thing that we notice is the similar
behavior of GMVT and DGCZ criteria. The curves show that
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FIG. 5. Entanglement criteria (36), (37), and (38) for the split
polariton condensate system at steady state as a function of (a) pump
rate A/γ and (b) interaction parameter U/γ . The three entanglement
criteria are as marked. The N sectors are chosen by the maximum
pN for each parameter. The shaded regions indicate the presence
of entanglement. Parameters are (a) U/γ = 0.3 and (b) A/γ =
1.5. Common parameters are �/γ = 0,V/γ = 0, θa = θb = 0, and
Nmax = 10.

the former detects entanglement in a wider range than the
latter. In Fig. 4(a), we see that for experimentally reason-
able parameter choices, for larger A/γ and small �/γ , the
entanglement criteria decrease monotonically with N . This
shows that more squeezing is present for larger N , which was
observed from the Q functions and squeezing parameters in
Ref. [49]. Comparing the different parameters U/γ , we find
that we obtain a larger violation level in a high-Q cavity,
where the larger U/γ yields more squeezing. We note that
the value of these nonseparability criteria does not necessarily
mean more entanglement and indicates solely the presence of
entanglement [62]. It may, however, be experimentally advan-
tageous to have a larger violation in order to more easily detect
entanglement. Further, we show that the small detuning can
increase the level of violation considerably. Depending upon
the N sector examined, in some cases increasing the pump
A/γ does not necessarily lead to an increased violation. We
find a threshold in the N sector, where below the threshold a
larger pump rate A/γ tends to increase violation, while above
the threshold it decreases. For example, under HT criterion in
Fig. 4(c), the threshold is N ≈ 6.

Figure 5(a) shows a “staircase” dependence of the GMVT,
DGCZ, and HT criteria. The staircase dependence is observed
because we consider the most likely N sector to be measured,
and with increasing A/γ or U/γ this changes. For example,
at A/γ ∼ 1.25, the violation level suddenly decreases due to
the change in the N sector; then the violation level slightly
decreases. What this shows is that while increasing A/γ can
slightly degrade the level of violation within a fixed N sector,
a larger pump can also change the most probable N sector,

which can lead to an improvement in the level of violation. In
experiments, typically, a larger pump rate is easily achieved,
and a large violation is easier to observe; thus, the most reach-
able regime is the higher A/γ . In Fig. 5(b) we show these three
criteria versus the interaction parameter U/γ . We see that
below the threshold U/γ ∼ 0.09, the violation level improves
monotonically but then saturates and again has a staircase
dependence due to the changes in the N sector. Therefore,
to obtain a larger violation level, a moderate interaction U/γ

may be sufficient to obtain an optimized level of violation.

V. CONCLUSION

In this work we theoretically proposed a method of gen-
erating spatially separated entanglement at steady state in a
spinor exciton-polariton condensate and gave two ways of
realizing the experimental setup. In the first approach, the
polaritons are physically split in a coherent fashion by increas-
ing an external potential, for example. The second approach
involves virtually splitting the polariton condensate into two
halves by examining a spatially resolved near-field image of
entanglement in the polariton condensate. Equivalent results
were obtained for these two approaches in the ideal case.
Technically, the virtual split is much easier to achieve than
the physical split since such extra manipulations may involve
additional sources of decoherence. However, the physical split
is more in line with the notion of two separated entangled con-
densates, as experimentally achieved in Ref. [32] recently. The
initial formation of the condensate can be attributed to one-
axis spin-squeezing interaction between the polariton modes.
This type of interaction leads to entanglement generation
between all polaritons in the system. The formation of entan-
glement can be attributed to the cross term 2Sz

1Sz
2 (34). By

examining and comparing the logarithmic negativity, GMVT,
DGCZ, and HT criteria in various regimes, we showed such
entanglement can be detected between the two condensates.
The entanglement can be improved with increasing pump rate
A/γ . We also found that a small detuning �/γ can enhance
entanglement. Further, one may obtain an optimal entangle-
ment level by adjusting the interaction parameter U/γ . To
date, there has not been any report of entanglement genera-
tion in a polaritonic system. Several experiments with atomic
BECs have been performed, both at the single-BEC level to
demonstrate entanglement and between two physically sepa-
rated atomic BECs. Due to the controllability of the polariton
condensate, there is an opportunity to experimentally realize
some of these milestones in the near future.
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APPENDIX A: DERIVATION OF THE VARIANCE
AVERAGE IN THE FIXED N1, N2 SPACE

The definition of the variance average of a quantum opera-
tor O is

N∑
N1=0

pN1,N2|N VarN1,N2 (O)

=
N∑

N1=0

pN1,N2|N 〈O2〉N1,N2 −
N∑

N1=0

pN1,N2|N 〈O〉2
N1,N2

. (A1)

Using the Cauchy-Schwarz inequality [60], we find
N∑

N1=0

pN1,N2|N VarN1,N2 (O)

�
N∑

N1=0

pN1,N2|N 〈O2〉N1,N2 −
⎛⎝ N∑

N1=0

pN1,N2|N |〈O〉N1,N2 |
⎞⎠2

�
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⎛⎝ N∑

N1=0

pN1,N2|N 〈O〉N1,N2

⎞⎠2

.

(A2)

By substituting 〈O2〉N1,N2 and 〈O〉2
N1,N2

with 〈O2〉N and 〈O〉2
N

(24), we have

N∑
N1=0

pN1,N2|N VarN1,N2 (O) � VarN (O). (A3)

Replacing O with Sx
1 + Sx

2, Sy
1 − Sy

2, and Sz
1 + Sz

2, we obtain
the relations in (36)–(38), respectively.

APPENDIX B: DERIVATION OF THE AVERAGE
OF THE EXPECTATION VALUES IN THE FIXED N1, N2

SPACE

The definition of the average of the expectation values of a
quantum operator O is

N∑
N1=0

pN1,N2|N 〈O〉N1,N2 . (B1)

By using the relations (24) we have

N∑
N1=0

pN1,N2|N 〈O〉N1,N2 = 〈O〉N . (B2)

Replacing O with Sx
1, Sx

2, N1, and N2, we obtain the relations
in (36)–(38), respectively.
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J. L. Staehli et al., Nature (London) 443, 409 (2006).

[20] J. Keeling and N. G. Berloff, Contemp. Phys. 52, 131 (2011).
[21] T. Byrnes, N. Y. Kim, and Y. Yamamoto, Nat. Phys. 10, 803

(2014).
[22] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto,

Science 298, 199 (2002).
[23] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West,

Science 316, 1007 (2007).
[24] M. Wouters and I. Carusotto, Phys. Rev. A 76, 043807 (2007).
[25] J. Bloch, I. Carusotto, and M. Wouters, Nat. Rev. Phys. 4, 470

(2022).
[26] S. Christopoulos, G. B. H. v. Högersthal, A. J. D. Grundy, P. G.

Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R.
Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett.
98, 126405 (2007).

[27] J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D.
Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G.
Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin,
J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 101, 136409
(2008).

053301-8

https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1038/nphys2904
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevA.66.052318
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1038/s41586-020-2401-y
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1038/nphys2631
https://doi.org/10.1126/science.abf2998
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1038/nature07332
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1038/nature05131
https://doi.org/10.1080/00107514.2010.550120
https://doi.org/10.1038/nphys3143
https://doi.org/10.1126/science.1074464
https://doi.org/10.1126/science.1140990
https://doi.org/10.1103/PhysRevA.76.043807
https://doi.org/10.1038/s42254-022-00464-0
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.101.136409


ENTANGLEMENT GENERATION AND DETECTION IN … PHYSICAL REVIEW A 108, 053301 (2023)

[28] S. Kéna-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
[29] T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T.

Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz et al., Appl.
Phys. Lett. 99, 161104 (2011).

[30] J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt,
Nat. Mater. 13, 247 (2014).

[31] F. Chen, H. Li, H. Zhou, S. Luo, Z. Sun, Z. Ye, F. Sun, J. Wang,
Y. Zheng, X. Chen, H. Xu, H. Xu, T. Byrnes, Z. Chen, and J.
Wu, Phys. Rev. Lett. 129, 057402 (2022).

[32] P. Colciaghi, Y. Li, P. Treutlein, and T. Zibold, Phys. Rev. X 13,
021031 (2023).

[33] Y. Jing, M. Fadel, V. Ivannikov, and T. Byrnes, New J. Phys. 21,
093038 (2019).

[34] P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A.
Cirone, and T. Calarco, Phys. Rev. A 74, 022312 (2006).

[35] J. Kitzinger, M. Chaudhary, M. Kondappan, V. Ivannikov, and
T. Byrnes, Phys. Rev. Res. 2, 033504 (2020).

[36] S. Idlas, L. Domenzain, R. Spreeuw, and T. Byrnes, Phys. Rev.
A 93, 022319 (2016).

[37] A. N. Pyrkov and T. Byrnes, New J. Phys. 15, 093019 (2013).
[38] O. Pettersson and T. Byrnes, Phys. Rev. A 95, 043817 (2017).
[39] A. Abdelrahman, T. Mukai, H. Häffner, and T. Byrnes, Opt.

Express 22, 3501 (2014).
[40] D. Rosseau, Q. Ha, and T. Byrnes, Phys. Rev. A 90, 052315

(2014).
[41] M. I. Hussain, E. O. Ilo-Okeke, and T. Byrnes, Phys. Rev. A 89,

053607 (2014).
[42] T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaitre, E.

Galopin, I. Sagnes, J. Bloch, C. Ciuti, E. Giacobino et al., Nat.
Commun. 5, 3260 (2014).

[43] N. Y. Kim, C.-W. Lai, S. Utsunomiya, G. Roumpos, M. Fraser,
H. Deng, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa et al.,
Phys. Status Solidi B 245, 1076 (2008).

[44] E. Estrecho, Nat. Rev. Phys. 3, 536 (2021).

[45] Y. Wu, J. Duan, W. Ma, Q. Ou, P. Li, P. Alonso-González,
J. D. Caldwell, and Q. Bao, Nat. Rev. Phys. 4, 578
(2022).

[46] M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. Lett.
109, 260403 (2012).

[47] P. A. Bouvrie, M. C. Tichy, and K. Mølmer, Phys. Rev. A 94,
053624 (2016).

[48] P. A. Bouvrie, E. Cuestas, I. Roditi, and A. P. Majtey, Phys. Rev.
A 99, 063601 (2019).

[49] J. Feng, E. O. Ilo-Okeke, A. N. Pyrkov, A. Askitopoulos, and
T. Byrnes, Phys. Rev. A 104, 013318 (2021).

[50] A. F. Adiyatullin, M. D. Anderson, H. Flayac, M. T. Portella-
Oberli, F. Jabeen, C. Ouellet-Plamondon, G. C. Sallen, and B.
Deveaud, Nat. Commun. 8, 1329 (2017).

[51] H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R)
(2004).

[52] T. Byrnes, Phys. Rev. A 88, 023609 (2013).
[53] H. Kurkjian, K. Pawłowski, A. Sinatra, and P. Treutlein, Phys.

Rev. A 88, 043605 (2013).
[54] M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005).
[55] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[56] G. Adesso and F. Illuminati, Phys. Rev. A 72, 032334 (2005).
[57] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[58] T. Byrnes and E. O. Ilo-Okeke, Quantum Atom Optics: The-

ory and Applications to Quantum Technology (Cambridge
University Press, Cambridge, 2021).

[59] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev.
A 67, 022320 (2003).

[60] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000).

[61] H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103
(2003).

[62] M. Isoard, N. Milazzo, N. Pavloff, and O. Giraud, Phys. Rev. A
104, 063302 (2021).

053301-9

https://doi.org/10.1038/nphoton.2010.86
https://doi.org/10.1063/1.3650268
https://doi.org/10.1038/nmat3825
https://doi.org/10.1103/PhysRevLett.129.057402
https://doi.org/10.1103/PhysRevX.13.021031
https://doi.org/10.1088/1367-2630/ab3fcf
https://doi.org/10.1103/PhysRevA.74.022312
https://doi.org/10.1103/PhysRevResearch.2.033504
https://doi.org/10.1103/PhysRevA.93.022319
https://doi.org/10.1088/1367-2630/15/9/093019
https://doi.org/10.1103/PhysRevA.95.043817
https://doi.org/10.1364/OE.22.003501
https://doi.org/10.1103/PhysRevA.90.052315
https://doi.org/10.1103/PhysRevA.89.053607
https://doi.org/10.1038/ncomms4260
https://doi.org/10.1002/pssb.200777610
https://doi.org/10.1038/s42254-021-00333-2
https://doi.org/10.1038/s42254-022-00472-0
https://doi.org/10.1103/PhysRevLett.109.260403
https://doi.org/10.1103/PhysRevA.94.053624
https://doi.org/10.1103/PhysRevA.99.063601
https://doi.org/10.1103/PhysRevA.104.013318
https://doi.org/10.1038/s41467-017-01331-8
https://doi.org/10.1103/PhysRevA.70.031802
https://doi.org/10.1103/PhysRevA.88.023609
https://doi.org/10.1103/PhysRevA.88.043605
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.72.032334
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.67.022320
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevA.68.032103
https://doi.org/10.1103/PhysRevA.104.063302

