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Unveiling Rabi dynamics through angle-resolved photoelectron momentum distributions
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We present an interferometric method for studying the Rabi dynamics in atoms by employing an ω-2ω extreme
ultraviolet pulse pair generated from the seeded free-electron laser. By solving the time-dependent Schrödinger
equation (TDSE) for hydrogen atoms, we study the photoelectron spectrum that emerges when the ω pulse
triggers Rabi oscillations between the ground state and the first excited state. The interference between the
one-photon and two-photon ionization pathways in the photoelectron signal gives access to the phase difference
between the one- and two-photon transition amplitudes. Compared to the cases without Rabi oscillations, an
additional π phase jump is observed in the energy domain. Based on perturbation theory, we demonstrate that
this phase jump directly reflects the ultrafast buildup of Rabi oscillations in the time domain. The present ω-2ω

scheme can be generalized and applied to other more complex atoms or molecules provided that the populations
of bound states can be efficiently and coherently modulated using the free-electron laser.
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I. INTRODUCTION

Rabi oscillations are the periodic population flopping of
two states when an external field with a resonant frequency
is applied [1–5]. They have long been a topic of interest due
to their unique features and prominent applications in the
coherent control of quantum systems [6–11]. For instance,
Rabi oscillations of excitons in single quantum dots allow for
the coherent control of the quantum state of single excitons
[12]. By utilizing the Freeman resonance, a scheme is pro-
posed to drive two-photon Rabi oscillations to Rydberg states.
This scheme paves the way for the manipulation of Rydberg
states [6]. In the context of strong field ionization, high-
order above-threshold ionization of atoms from a coherent
superposition of bound states is studied, emphasizing how the
relative amplitude and phase of these states can be controlled
with a weak resonant laser pulse and how the photoelectron
spectra are affected by the relative phase [13]. In stretching
molecules, the Rabi oscillations, which depend on bond length
and involve nuclear motions, enable the control of strong-field
dissociation of molecules [14,15].

Aulter-Townes (AT) splitting is often regarded as observ-
able evidence of Rabi dynamics [16]. In the near-infrared
regime, which is often associated with the coupling between
excited states or multiphoton resonance, the splitting can
be observed in the attosecond transient absorption spectrum
(ATAS) [17–22]. When the infrared laser can simultaneously
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induce tunneling ionization, the doublet can be extended to
every order in high harmonic generation (HHG) spectroscopy
[23].

In the short-wavelength domain, the AT splitting can be
observed in the photoelectron energy spectrum (PES) [24–27].
However, most of the studies remain theoretical due to limi-
tations in the experimental setups. In the past few decades,
the development of the free-electron laser (FEL) technique
has advanced the study of ionization processes in atoms or
molecules in the extreme-ultraviolet (XUV) or even soft x-ray
regimes [28–30]. If the pulses are from self-amplified sponta-
neous emission (SASE) FEL sources, they are usually unable
to drive Rabi oscillations due to the significant change on a
shot-to-shot basis. However, they can still be applied in the
preparation of excited states [6,31]. Seeded FEL, such as Free
Electron laser Radiation for Multidisciplinary Investigations
(FERMI), can generate XUV pulses for coherent control and
detection of light-matter interactions. This is possible due
to its high reproducibility in temporal and spatial properties
[32,33]. By using this technique, an asymmetric AT doublet is
observed in the measured photoelectron spectrum of helium
atoms. The AT doublet is attributed to the Rabi dynamics
between the ground state and an excited state [31]. The result
is later reproduced by solving the time-dependent Schrödinger
equation (TDSE) and a minimal three-state model [34]. The
influence of the quantum interference effect between reso-
nant and nonresonant photoionization pathways, as well as
the ac-Stark shift effect, is addressed in relation to the ultra-
fast buildup of the asymmetric doublet structure. Recently,
a feasible experimental scheme was proposed to detect the
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fingerprint of Rabi oscillations in the superfluorescence spec-
trum [35].

A further application of seeded FEL is to produce ω-2ω

pulse pairs at the XUV or soft x-ray regimes with a tunable
time delay and high coherence. With the assistance of acceler-
ator physics, the relative phase of the fundamental wavelength
and its second harmonic can be adjusted with attosecond
precision [33,36]. The absolute phase can be extracted from
the photoelectron angular distribution (PAD) by analyzing the
interference of different partial waves [37]. With a complete
characterization of the pulse pairs, this method has been em-
ployed to extract the angle-resolved phase difference between
the one-photon and two-photon ionization pathways in neon
[38]. In the presence of intermediate resonant states, an addi-
tional phase shift of the two-photon pathways can be inferred,
with the one-photon pathway serving as the reference. The
energy derivative of the phase difference corresponds to the
Wigner time delay difference of the partial waves [39], which
offers a perspective for measuring the time of photon absorp-
tion. Many theoretical calculations have also been conducted
to study the left-right asymmetry in this case for different
atom systems [40–43]. When the pulse pair is long enough to
trigger the Rabi oscillation between the two resonant states,
the extracted phases can be strongly modulated. In this case,
both the information of the population flopping and the phase
shifts induced by the Rabi oscillation could be encoded in the
PAD. To our best understanding, this has not yet been studied
before.

In this work, we propose a scheme to study the Rabi dy-
namics in atoms using an ω-2ω pulse pair. By numerically
solving the TDSE, we obtain the PADs for both ω-2ω pulse
pairs, with and without Rabi oscillations, in hydrogen atoms.
The phase difference between the one- and two-photon ion-
ization pathways can be determined from the PAD. Compared
to the cases without Rabi oscillations, we observe that Rabi
oscillations exhibit an additional π phase jump in the energy-
dependent phase difference. It is a consequence of both the
population oscillation between the two resonant states and the
corresponding phase shifts. In addition, the phase information
is examined for various pulse widths to evaluate the phase
difference characteristics at different stages of Rabi oscil-
lations. Rabi oscillations with near-resonant frequencies are
also considered for the generalization of this method.

This paper is organized as follows. Section II presents the
numerical methods used in this paper. These methods include
solving the TDSE and extracting the phase information from
the PAD. In Sec. III, the phase difference is extracted for both
cases: with and without Rabi oscillations, respectively. The
processes involving different numbers of Rabi periods or near-
resonant frequencies are also analyzed. Section IV provides a
summary of the paper. Atomic units are applied throughout
the paper unless otherwise specified.

II. NUMERICAL METHODS

A. TDSE simulation

We numerically solve the TDSE for hydrogen atoms ir-
radiated by a pair of XUV pulses. All the simulations are
performed using the publicly available QPC-TDSE program

[44]. In the velocity gauge, the TDSE is written as

i
∂ψ (r, t )

∂t
=

[
− 1

2
∇2 − iA(t ) · ∇ + 1

r

]
ψ (r, t ), (1)

with the vector potential of the two-color field in the dipole
approximation in the form

A(t ) = Aω exp

(
−2 ln 2

t2

τ 2

)
sin(ωt )ez

+ A2ω exp

(
−2 ln 2

t2

τ 2

)
sin(2ωt − δ)ez, (2)

where ω is the fundamental angular frequency of the pulse
pair, Aω and A2ω are the amplitudes of the ω and 2ω com-
ponents, respectively, τ is the full width at half maximum
(FWHM), and δ is the relative phase between the two com-
ponents of the pulse pair. In the calculation, we smoothly
truncate the tails of the Gaussian envelope to avoid any un-
physical effects.

Since only linearly polarized fields are applied, the mag-
netic quantum number is constant and set to zero. Then Eq. (1)
is solved by expanding the wave function via B-spline func-
tions Bn(r) and spherical harmonics Yl0(θ, φ)

ψ (r, t ) = 1

r

∑
nl

cnl (t )Bn(r)Yl0(θ, φ). (3)

Here, the summation involves 5000 active radial B-spline
bases and 30 angular spherical harmonic bases. Eighth-order
B-spline functions are defined on a knot sequence that is lin-
early spaced in the radial direction. For the time propagation,
the Crank-Nicholson propagator is utilized with a time step
size of 
t = 0.008 a.u. The simulation is conducted in a
spherical box with a radius of Rm = 1800 a.u. The absorbing
boundary is located at Ra = 1750 a.u. A mask function in the
form cosα[π (r − Ra)/2(Rm − Ra)] is applied at the boundary
with α = 0.002. We verified that all the results are converged
in terms of spatial and temporal discretization.

The ground state of the hydrogen atom is obtained by
diagonalizing the field-free Hamiltonian. At the end of the
laser pulse, the angle-resolved photoelectron momentum dis-
tribution (PMD) is calculated by projecting the final wave
function onto the field-free Coulomb continuum states. For
each momentum k = (k, θ, φ) in spherical coordinates, the
momentum distribution detected at infinity can be expressed
as [45,46]

P(k) = |〈ψ−
k |ψt f 〉|2, (4)

where ψ−
k is the scattering state for momentum k at infinity

with incoming boundary condition [47], t f is the time when
the laser field vanishes. The calculation in QPC is realized by
first evaluating the partial wave PMD

Pl0(k) =
√

2

π

∑
n

cnl (t f )Iln(k), (5)

where

Iln = k−1
∫ Rm

0
wl (kr)Bn(r)dr. (6)
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wl (kr) is the regular solution to

d2w

dρ2
+

{
1 − l (l + 1)

ρ2
− 2

ρk

}
w = 0. (7)

Then the angle-resolved PMD, which is a collection of PADs
with different k, can be calculated as

I (k, θ, φ) = |
∑

l

(−i)l ei
l (k)Yl0(θ, φ)Pl0(k)|2, (8)

where


l (k) = arg

[


(
l + 1 − i

k

)]
, (9)

is the Coulomb phase shift [48].

B. Phase extraction from photoelectron spectra

It is known that photoionization by ω-2ω shows no interfer-
ence in the angle-integrated PES [40,49,50]. On the contrary,
the PAD is a coherent sum of various partial waves. As a
result, for electrons initially located at s orbitals, the PADs
for each momentum k after ω-2ω photoionization contain the
s, p, and d partial waves. These PADs can be expressed as
[37,38]

I (θ ) = ∣∣cse
iσsdY00(θ, φ) − cpeiσpd +i(δ−π/2)Y10(θ, φ)

− cdY20(θ, φ)
∣∣2

, (10)

where σsd = σs − σd and σpd = σp − σd . cs, cp, and cd are
the partial wave amplitudes of s, p, and d waves, respectively.
σs, σp, and σd are the partial wave phases, which include the
Coulomb phase shift but exclude the prefactor −lπ/2. The
prefactor corresponds to the centrifugal potential phase of
(−i)l in Eq. (8). Since the maximum l for Yl0(θ, φ) in Eq. (10)
is 2, I (θ ) can be expanded through Legendre polynomials up
to the fourth order as

I (θ ) ∝ 1 +
4∑

l=1

βl Pl (cos θ ). (11)

The β parameters in Eq. (11) can be calculated as [37,38]

β1 = 2
√

3[2
√

5cpcd sin(σpd + δ) − 5cpcssin(σps + δ)]

5
(
c2

s + c2
p + c2

d

) ,

(12)

β2 = 2
(
5c2

d + 7c2
p−7

√
5cd cs cos σsd

)
7
(
c2

s + c2
p + c2

d

) , (13)

β3 = 6
√

15cpcd sin(σpd + δ)

5
(
c2

s + c2
p + c2

d

) , (14)

β4 = 18c2
d

7
(
c2

s + c2
p + c2

d

) , (15)

β1 − 2

3
β3 = −2

√
3cpcs sin(σps + δ)

c2
s + c2

p + c2
d

, (16)

where σps = σpd − σsd . In this way, the δ dependence of the
PAD is transmitted to the dependence of the β parameters. The
odd-order β1 and β3 oscillate sinusoidally with the relative
phase δ, while the even-order β2 and β4 are independent of
δ. As a result, we can extract the phase of the two-photon

s,d p

s,d p

2p
(b state)

Rabi

1s
(a state)

E=0

FIG. 1. The sketch of the interferometric method for photoion-
ization of hydrogen atoms by ω-2ω pulse pairs. The orange pulse
pair on the left corresponds to the nonresonant case with ω = 0.35
a.u. The blue one on the right refers to the resonant case with
ω = 0.375 a.u. The Rabi oscillation occurs between the 1s and 2p
states, as indicated by the curved arrows. For the sake of convenience,
the 1s and 2p states are labeled as states |ψa〉 and |ψb〉, respectively.
�a(t ) and �b(t ) are additional phases induced by Rabi dynamics for
states |ψa〉 and |ψb〉.

ionization pathway relative to the one-photon ionization one,
namely, σps and σpd , by fitting the β parameters with respect
to δ.

III. RESULTS AND DISCUSSION

Figure 1 illustrates the sketch of the interferometric method
for photoionization of hydrogen atoms by ω-2ω pulse pairs.
In the nonresonant case, where the intermediate resonance is
absent, the 1s electron can be ionized either to the s and d
waves by absorbing two ω photons, or alternatively to the p
wave by absorbing one 2ω photon. The different partial waves
will interfere with each other in the angle-resolved PMD. If
the intensity of the pulse pair is not too strong, the depletion
of the population as well as the Stark energy shift of the initial
state can be safely neglected. Then, the interference between
the one-photon and two-photon ionization amplitudes is trivial
and can be well explained by conventional perturbation the-
ory. When the ω pulse is tuned to the resonance of the ground
state 1s and the first excited state 2p, Rabi oscillations will
occur if the pulse duration is long enough. This will result in
an AT doublet in the PES [16]. In addition to the AT splitting,
we demonstrate here that the signature of the Rabi oscillations
will be mapped to the phases of different partial waves. It
is well known that Rabi oscillations will lead to population
flopping between the two states |ψa〉 and |ψb〉. Defining ã(t )
and b̃(t ) as the complex amplitudes of the two resonant states.
Their phases, �a(t ) and �b(t ), are generally nonzero when
Rabi oscillations occur. In the ω-2ω photoionization process,
the one-photon ionization is affected by the amplitude and
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FIG. 2. (a) The PMD for the ω-2ω pair with ω = 0.35 a.u., Iω =
1 × 1013 W/cm2, I2ω = 2.3 × 1011 W/cm2, δ = 0, and τ = 15.1 fs.
(b) The PAD at E = 0.2 a.u. (c) Extracted β3 (blue dots) and β1 −
2β3/3 (red squares) from the PADs at E = 0.2 a.u. with δ from 0
to 2π with a step size of π/4. Solid curves are the corresponding
fitting, respectively. (d) The extracted σps (blue squares), σpd (red
dots) from the β parameters. Analytical Coulomb phase differences

ps (blue dashed curve), 
pd (red solid curve) are also presented for
comparison.

phase of ã(t ). The two-photon ionization pathway is modu-
lated as a combination of the flopping to the |ψb〉 state and
the subsequent ionization by one ω photon. Considering this,
the two-photon pathway is strongly influenced by b̃(t ). The
interference between different partial waves enables us to
investigate the phases of the complex amplitudes of the two
resonant states.

A. Phase extraction for the nonresonant case

We first apply the nonresonant ω-2ω pair to a hydrogen
atom with ω = 0.35 a.u. The intensities are set to be Iω =
1 × 1013 W/cm2 and I2ω = 2.3 × 1011 W/cm2, respectively,
which lie well within the perturbative region. The ground-
state depletion and ac-Stark shift can be safely neglected. The
FWHM of both pulses are τ = 15.1 fs. Figure 2(a) shows the
angle-resolved PMD for δ = 0. Strong left-right asymmetry
can be seen, which is caused by the interference between
different partial waves. The PAD is extracted from the PMD at
the E = 0.2 a.u., as shown in Fig. 2(b) for δ = 0. By scanning
the relative phase δ of the two pulses from 0 to 2π , we obtain a
series of PADs, from which the β parameters can be obtained,
as displayed in Fig. 2(c). Figure 2(d) shows the extracted
σps and σpd from the β parameters at different photoelectron
energies near the peak E = 0.2 a.u.

In this nonresonant case, the phase of each partial wave in
hydrogen atoms, excluding the centrifugal potential phase, is
trivially the same as the analytical Coulomb phase shift. This
is confirmed by the comparison of the TDSE results with the
analytical ones, as shown in Fig. 2(d). One can see that the ex-
tracted results, σpd = 0.67 and σps = −1.00, are in line with

pd = 
p − 
d and 
ps = 
p − 
s, respectively. 
s, 
p,

FIG. 3. (a) The angle-integrated PES for ω = 0.375 a.u., Iω =
1 × 1013 W/cm2, I2ω = 2.3 × 1011 W/cm2, δ = 0, and τ = 15.1 fs.
(b) 
θ (E ) extracted from the β parameters, from both σps (blue
squares) and σpd (red dots), respectively. Results obtained from
perturbation theory, where ã(t ) and b̃(t ) obtained under the RWA
(green triangles) and from the TDSE simulation (bold gray curve)
are applied, are also shown. The Rabi oscillation manifests itself as
a π phase jump at E = 0.25 a.u.

and 
d are the Coulomb phase shifts calculated analytically
by Eq. (9). For more complex atoms or molecules, when the
analytical results are not available, the ω-2ω photoionization
method provides a feasible way to measure the phase differ-
ence between one- and two-photon transition amplitudes, as
well as the Wigner delay difference of the partial waves [37].

B. π phase jump in extracted phase-shift difference

To induce the Rabi oscillation between the 1s and 2p
states, ω is tuned to 0.375 a.u. The transition dipole zab be-
tween the two states of hydrogen atoms is 128

√
2/243 [24].

We set the laser parameters to Iω = 1 × 1013 W/cm2, I2ω =
2.3 × 1011 W/cm2, and τ = 15.1 fs. The corresponding Rabi
frequency is wr = Eωzab = 0.0126 a.u., where Eω is the peak
electric field of the ω pulse. Since the Rabi dynamics can be
strongly affected by the pulse envelope, for the Gaussian enve-
lope used here, close to two Rabi periods are involved in this
process based on the area theorem [51]. Under such circum-
stances, the strong oscillation between the two resonant states
ensures the dominance of the contribution from one-photon
ionization from the 2p state, rather than the contribution from
two-photon ionization from the 1s state, in s and d waves.
Therefore, we neglect the latter in the following discussion.
This is in accordance with the acquired angle-integrated PES
shown in Fig. 3(a). If the intensities of the one-photon and
two-photon pathways for s and d waves are comparable, the
asymmetry will be much larger [31].

When the Rabi oscillation is involved, an extra π phase
jump is observed in the extracted partial wave phase dif-
ferences σps (blue squares) and σpd (red dots) compared to
their Coulomb phase shift counterparts, as shown in Fig. 3(b).
Based on perturbation theory, we demonstrate that the π phase
jump is a direct consequence of the time evolution of the
complex amplitudes of the two states. We take the wave packet
resulted from the Rabi oscillation between states |ψa〉 and |ψb〉
as the zeroth-order solution. The zeroth-order wave packet
|ψ0〉 can be written as [31]

|ψ0〉 = ã(t )e−iEat |ψa〉 + b̃(t )e−iEbt |ψb〉 , (17)
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where Ea and Eb are the energies of states |ψa〉 and
|ψb〉, respectively. For the continuum states with energy
E around 0.25 a.u., by first-order perturbation, |ψa〉 can
be coupled to the p wave term |ψ p

E 〉 through the 2ω

pulse, while |ψb〉 can be coupled to the s and d wave
term |ψ s,d

E 〉 through the ω pulse. The transition dipole
are d p

a (E ) = 〈ψ p
E |A2ω · ∇|ψa〉, ds,d

b (E ) = 〈ψ s,d
E |Aω · ∇|ψb〉,

respectively. The complex one-photon ionization amplitudes
for different partial wave terms can therefore be written as
[31,52–54]

Wp(E ) = −d p
a (E )

∫ T

0
ei(E−Ea )t sin(2ωt − δ) f (t )ã(t )dt,

Ws,d (E ) = −ds,d
b (E )

∫ T

0
ei(E−Eb)t sin(ωt ) f (t )b̃(t )dt, (18)

where T is the pulse duration, and f (t ) is the Gaussian en-
velope of the pulse pair. Since the Coulomb phase shifts are
offered by the terms 〈ψ p

E |A2ω · ∇|ψa〉 and 〈ψ s,d
E |Aω · ∇|ψb〉,

the extra phase jump is attributed to the integral kernel. The
phase of the laser field δ can be taken out just as Eq. (10). The
remaining integration can be viewed as a Fourier transforma-
tion of the phases of the two resonant states from the time
domain to the energy domain

θa(E ) = arg

[ ∫ T

0
ei(E−Ea )t sin(2ωt ) f (t )ã(t )dt

]
,

θb(E ) = arg

[ ∫ T

0
ei(E−Eb)t sin(ωt ) f (t )b̃(t )dt

]
. (19)

The partial wave phases can now be written as σp(E ) =

p(E ) + θa(E ) and σs,d (E ) = 
s,d (E ) + θb(E ). If the ampli-
tudes |ã(t )| = |b̃(t )| = 1 and the phases �a(t ) = �b(t ) = 0,
the integral kernels in Eq. (19) are positive pure imaginary
numbers under the rotating wave approximation (RWA) [55]
due to the symmetry of the functions with respect to T/2 [53].
θa(E ) and θb(E ) will cancel each other out. However, in the
case of Rabi oscillations, the amplitudes and the extra phases
of the two resonant states will result in a phase-shift difference

θ (E ) between the two states. It will then be reflected in
the deviation of the partial wave difference from the one
calculated by the Coulomb phase shifts, namely,


θ (E ) = θa(E ) − θb(E ) = σpd (E ) − 
pd (E ). (20)

In other words, the phase information that we extract in
Fig. 3(b) represents the phase-shift difference between the two
resonant states.

To further confirm our analysis, we examine the analytical
expressions for ã(t ) and b̃(t ) under the RWA. If we only focus
on the ω component of the laser field and ignore the effect
of the envelope, ã(t ) and b̃(t ) can be directly solved with the
initial condition ã(0) = 1 and b̃(0) = 0 as [31]

ã(t ) =
[

cos

(
W t

2

)
− i


ω

W
sin

(
W t

2

)]
ei
ωt/2,

b̃(t ) = i
ωr

W
sin

(
W t

2

)
e−i
ωt/2, (21)

where 
ω = ω − (Eb − Ea) and W = √
ω2

r + 
ω2 is the
generalized Rabi frequency. From Eqs. (19) and (20), the
phase difference of the two resonant states can be calculated as


θ (E ) = arg

[
i

2

∫ T ′

0
ei(E−Ea−2ωt ) cos

(
W t

2

)
dt

]

− arg

[
− 1

2

∫ T ′

0
ei(E−Eb−ωt ) sin

(
W t

2

)
dt

]
, (22)

where T ′ is set to be two Rabi periods, as determined by
the area theorem, to approximate the case with the Gaussian
envelope in the TDSE calculation. The result is an abrupt
phase jump at E = 0.25 a.u., as shown by the green triangles
in Fig. 3(b). To cover the effect of the envelope, which varies
the Rabi frequency from time to time, we directly incorporate
the ã(t ) and b̃(t ) obtained from the TDSE calculation into
Eq. (19). The resulting curve is depicted as the bold gray curve
in Fig. 3(b), which is consistent with the one fitted from the β

parameters. From the above results, we can consider such a π

phase jump as the fingerprint of Rabi dynamics concealed in
the angle-resolved PMD.

C. Phase difference information in the time domain

When multiple Rabi periods are involved in the process,
there are multiple ionization channels for each of the resonant
states in the time domain. The interference of different chan-
nels manifests itself as the splitting of the two resonant states,
which ultimately results in the formation of an AT-doublet
in the PES. From Eq. (21), in the resonant case (
ω = 0),
the splitting of each state occurs when the signs of ã(t ) and
b̃(t ) change, respectively. This is accompanied by a π phase
jump in the time domain. The splitting of the |ψa〉 state occurs
half a Rabi period ahead of the |ψb〉 state. To identify the
different stages of Rabi dynamics, we further investigate the
characteristics of the phase difference 
θ in the energy space
by controlling the pulse width. This allows us to limit the
Rabi periods involved in the entire process. In addition, to
distinguish the contributions from the amplitudes and phases
of the two states, |ã(t )| and |b̃(t )| are also applied to Eq. (19).

As a result of the envelope effect, the Rabi frequency
varies with the field strength, E (t ). Therefore, the Rabi pe-
riods involved in the process should be estimated using the
area theorem and the populations of the two resonant states.
Figure 4(a) shows the populations of the 1s and 2p states
for the case of τ = 3.7 fs, which indicates that the process
contains less than 1 Rabi period. In this case, each of the s, d ,
and p wave pathways has only one ionization channel in the
time domain. As a result, instead of the occurrence of a sudden
π phase jump, 
θ decreases monotonically with respect to
E , as shown in Fig. 4(b). Figure 4(c) shows the 
θ , θa, and
θb calculated from Eq. (19) by exerting ã(t ), b̃(t ) from the
TDSE calculation. Since only the phase difference and the
trend of change are meaningful, to better display the results,
θa, and θb are shown in the reference where the starting point
of θa in the figure is 0. All the following pictures with the
same curves follow this rule. While in Fig. 4(d), the 
θ , θa,
and θb are acquired through the same approach as Fig. 4(c)
but the applied ã(t ) and b̃(t ) are deprived of the extra phase
terms �a(t ) and �b(t ). In other words, in this case, only the
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FIG. 4. (a) The populations of the 1s (red dashed curve) and 2p
(green solid curve) states with laser parameters ω = 0.375 a.u., Iω =
1 × 1013 W/cm2, I2ω = 2.3 × 1011 W/cm2, and τ = 3.7 fs. (b) Same
as Fig. 3(b) but for shorter pulse duration. (c) θa (solid purple curve)
and θb (dashed yellow curve), together with their difference 
θ (bold
gray curve) obtained from perturbation theory by using ã(t ) and
b̃(t ) from the TDSE calculation. (d) 
θ , θa, and θb calculated from
perturbation theory by substituting |ã(t )| and |b̃(t )| from the TDSE
calculation.

effect of the amplitude is considered. By comparing these
two cases, it is discovered that the decrease originates from
the amplitudes of the two states, while the additional phases
only shift the phase of the |ψb〉 state by π/2. It is worth
noting here that Grum-Grzhimailo et al. conducted a study on
the PAD of hydrogen atoms using an ω-2ω pulse pair under
similar laser conditions [40]. Their investigation revealed that
the degree of left-right asymmetry varies in a manner akin to
a Fano-like profile with respect to the applied ω frequency.
To complement their findings, they employed both first- and
second-order perturbation theories starting from the initial
state |ψa〉 to attempt to match the results derived from the
TDSE calculations. The perturbation theory performed well in
situations where Rabi oscillations were absent. However, the
accuracy of this approach diminished when roughly half Rabi
period was involved. Even in cases where only population
inversion occurred at the specific pulse width, the influence
of Rabi oscillations remained notably significant.

As for the case of τ = 8.9 fs, 1–1.5 Rabi periods are in-
volved in the process. Figure 5 shows the populations of the
two resonant states, 
θ , θa, and θb for τ = 8.9 fs. Similar to
the case shown in Fig. 3(b), 
θ exhibits a π phase jump. From
Figs. 5(c) and 5(d), it is discovered that the jump mainly stems
from the |ψa〉 state pathway, which is in accord with the two
channels of the |ψa〉 state pathway and the only one channel
of the |ψb〉 state pathway in the time domain. In addition, the
population flopping, which produces two ionization channels
for the |ψa〉 state, can lead to two phase jumps, but the phase
shift will combine them into one jump located at the center
of two jumps. Similar to the previous case, the |ψb〉 state with
one channel is affected by an approximate π phase shift due
to the extra phases.

FIG. 5. Same as Fig. 4 but for τ = 8.9 fs.

Figures 6(a) and 6(c) show the population information, 
θ ,
θa, and θb for laser fields with τ = 15 fs (1.5–2 Rabi periods)
and Figs. 6(b) and 6(d) show the corresponding terms for τ =
16.6 fs (more than two Rabi periods). The first is almost the
same as the case in Fig. 3. In this case, both of the ionization
pathways have multiple channels in the time domain. From
the dominance of the |ψb〉 state pathway, it can be inferred
that the pathway corresponding to the last ionization channel
will take the lead of the phase jump. As for the latter case, the
more complicated π phase up-and-down is attributed to the
interference of the three channels of the |ψa〉 state.

D. Rabi oscillations with detuning

From Eq. (21), Rabi oscillations also emerge when the
laser frequency applied is red or blue shifted from the resonant

FIG. 6. (a), (b) The populations of 1s and 2p states for pulses
with τ = 15 (1.5–2 Rabi periods), 16.6 fs (more than two Rabi peri-
ods), respectively. (c), (d) The extracted 
θ and θa, θb from ã(t ) and
b̃(t ).
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FIG. 7. Extracted 
θ for pulse pairs with (a) ω = 0.37 a.u.
(b) ω = 0.38 a.u. Other laser parameters are Iω = 1 × 1013 W/cm2,
I2ω = 2.3 × 1011 W/cm2, and τ = 15.1 fs.

frequency. To extend our scheme to a broader frequency range
that allows for general Rabi oscillation, we conduct further
research on near-resonant cases. We utilize the laser with
ω = 0.37 a.u. and ω = 0.38 a.u. to study the case for red
and blue detuning, respectively. The FWHM and intensities
of the ω-2ω pairs applied in both cases are the same as the
resonant one. Figures 7(a) and 7(b) show the extracted 
θ

for ω = 0.37 a.u. and ω = 0.38 a.u., respectively. The more
complicated ã(t ) and b̃(t ) are reflected by multiple phase
jumps in the energy space.

Differing from the resonant case, the expected π phase
jump is shifted from the expected energy. For the lower laser
frequency, the hopping energy is blue-detuned, while for the
higher laser frequency, the hopping energy is red-detuned.
The deviation from the expected ionization peak is roughly
the same as 
ω. In addition, an additional π phase jump-on-
and-off occurs before or after the original phase jump in each
case. In both cases, the results are consistent with the TDSE
calculation. This feature cannot be well described by the an-
alytical result, as it is influenced by the strong modulation of
the envelope.

To identify the contributions from the |ψa〉 and |ψb〉 state
pathways, as well as the contributions from the amplitudes and
phases, we use the same approach as described in Sec. III C.
It was discovered that the jump-on-and-off mainly originates
from the |ψa〉 state pathway. Although the pulse width in
this case is set the same as the one in Figs. 6(a) and 6(c),
the population flopping is more subtle in near-resonant cases.
As a result, unlike the resonant case, the population of the
1s state almost reaches 1 at the end of the pulse, creating a
new channel similar to the case shown in Figs. 6(b) and 6(d).
By distinguishing between the effects of the amplitudes and

phases, we find that, when considering only the effect of the
amplitudes, the case exhibits normal features similar to the
resonant case. Therefore, the contributions from the perturbed
phase dominate. These features in the near-resonant cases
are influenced by the combined effects of multiple ionization
channels and phase shifts.

IV. CONCLUSION

In summary, we propose a scheme to extract the phase-shift
difference induced by Rabi oscillations in the energy domain
of the two resonant states from the PAD by utilizing the
ω-2ω pulse pair. The phase-shift difference is equal to the
extracted partial wave phase difference minus the difference
of the Coulomb phase shifts. The latter is analytical for hydro-
gen atoms. Compared to nonresonant cases, Rabi oscillations
introduce an additional π phase jump at the expected energy
in the phase difference. The result is verified by comparing
the analytical solution with the one obtained directly from the
TDSE calculations.

Furthermore, the number of Rabi periods involved in the
process also affects the phase jump. The phase jump occurs
for the ionization pathway of each state only when two chan-
nels exist for the state in the time domain. If more than three
channels are included, the phase will undergo three hops. For
the near-resonant cases, the energy at which the phase jump
occurs is shifted in the opposite direction to the detuned laser
frequency, resulting in an additional π phase jump-on-and-off.
It is worth noting that the phase characteristics in all of these
scenarios stem from the combined effects of the amplitudes
and phases of the two resonant states.

Based on these findings, we can identify a distinct signa-
ture of Rabi dynamics encoded in the photoelectron signal.
This signature, complementing the AT doublet, provides a
direct insight into the intricate complex amplitudes of the two
resonant states. In this context, the π phase shift serves as
a more pronounced indicator of the “oscillatory” nature of
Rabi dynamics. The current ω-2ω framework has the potential
to be extended and implemented with other complex atoms
or molecules, as long as we can efficiently and coherently
modulate the populations of bound states using a free-electron
laser.
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[46] B. Fetić, M. Tunja, W. Becker, and D. B. Milošević, Phys. Rev.
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