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Ultrafast switching of persistent electron and hole ring currents in a molecule
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A circularly polarized laser pulse can induce persistent intramolecular currents by either exciting or ionizing
molecules. These two cases are identified as electron currents and hole currents, respectively, and up to now
they have been studied only separately. We report ab initio time-dependent density-functional theory (TDDFT)
simulations of currents in a molecule, which reveal for the first time that both electron and hole currents can be
present simultaneously. By adjusting the intensity of the laser pulse, the balance between the two types of current
can be controlled and the overall sign of the current can be switched. We provide a physical explanation for the
effect in terms of molecular orbitals, which is consistent with the TDDFT simulations.
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I. INTRODUCTION

It has long been understood that, in response to an ap-
plied magnetic field, the delocalized electrons of an aromatic
molecule circulate in a so-called aromatic ring current [1,2].
This effect is important in nuclear magnetic resonance spec-
troscopy, where the internal magnetic field generated by the
ring current is responsible for diamagnetic shielding [3]. In
2006, it was proposed that ring currents in molecules could
also be induced by ultrashort UV laser pulses with circular
or elliptical polarization [4,5]. The basic mechanism is that
angular momentum carried by light is transferred to electrons
in a molecule, causing them to circulate. By conservation of
angular momentum, the current will persist after the pulse
has ended (even without an external magnetic field) until the
angular momentum dissipates somehow. Various experiments
on atomic targets have confirmed the existence of the effect
[6,7], although no direct observational data are available in
the case of molecules. More recent interest in photoinduced
ring currents [8–10] was motivated by the rapid technological
advances in polarization control of high-harmonic radiation
made in the last few years [11–13], which may enable experi-
mental study of these phenomena in the near future [14].

There are at least three main advantages of photoinduced
ring currents compared to the static magnetic field approach:
first, the current is orders of magnitude stronger, and so is the
internal magnetic field [15]; second, it enables femtosecond
(or even attosecond) time-resolved studies of aromaticity and
magnetism [16–18]; third, it establishes the possibility for
coherent control of ring currents [19], which may have ap-
plications for controlling chemical reactions or the operation
of advanced optoelectronic devices. This article will focus on
the aspects related to the possibility of coherent control of the
dynamics. In particular, we predict that, at high intensities
of the driving laser, the charge carrier of the ring current
transitions from electrons to holes (i.e., a sign change). This is
interpreted as a control scheme, whereby the character of the
ring current can be switched by varying the intensity of the
laser pulse. This effect cannot be accounted for in the com-
monly used few-level model for ring currents, for reasons we
discuss below, and therefore a more robust theoretical method

is required. For that reason, we use a series of ab initio time-
dependent density functional theory (TDDFT) simulations to
illustrate our control scheme in the case of benzene (C6H6),
which is the prototypical aromatic molecule.

The two types of ring current mentioned above (electron
and hole current) are usually studied separately in the liter-
ature. The distinction is essentially whether the ring current
state was prepared through excitation or ionization. When
the laser pulse excites the molecule into a state with nonva-
nishing current density, it is an electron current. When the
laser pulse ionizes a molecule into a cationic state with non-
vanishing current density (i.e., helicity-dependent ionization
[20–23]), it is a hole current. Our main observation is that,
in the interaction of atoms and molecules with strong laser
fields, excitation and ionization (and therefore electron and
hole currents) are often closely related and typically occur
together. A typical example is resonance-enhanced multipho-
ton ionization (REMPI) [24,25], a two-step ionization process
wherein an atom or molecule is first excited to an intermediate
state (that must be resonant with some multiple of the laser
frequency) and then subsequently ionized. Presently, we show
that the balance between the electron and hole current during
resonance-enhanced two-photon ionization of benzene leads
to complex, but controllable, dynamics. We also demonstrate
that because the few-level model neglects ionization com-
pletely, it is unable to account for this effect.

This article is structured as follows. We begin by review-
ing theoretical and numerical methods, TDDFT in Sec. II A,
and the few-level model in Sec. II B. Next we present our
results, with the charge and current densities in Sec. III A,
the occupations of molecular orbitals in Sec. III B, and the
dependence on molecular orientation in Sec. III C. We finish
with a conclusion in Sec. IV.

II. METHODS

A. Time-dependent density functional theory

Our main theoretical method is TDDFT, as implemented
by OCTOPUS [26–28]. We solve the time-dependent Kohn-
Sham equations (using atomic units h̄ = e = me = 4πε0 = 1
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throughout)

i
d

dt
ψn(r, t ) =

[
−1

2
∇2 + V (r, t ) + r · E (t )

]
ψn(r, t ), (1)

for the 30 valence electrons (distributed into 15 doubly oc-
cupied orbitals ψn in order of increasing energy), while the
12 core electrons are modeled by pseudopotentials [29]. The
time-dependent Kohn-Sham potential V (r, t ) is approximated
using the Perdew-Zunger parametrization of the local density
approximation [30] with the self-interaction correction imple-
mented with the optimized effective potential formalism [31].
Note that the self-interaction correction ensures the correct
long-range behavior V (r, t ) → −1/r and is crucial for sim-
ulating ionization. The laser pulse is described in the dipole
approximation by the following electric field

E (t ) =
{
E sin2 (πt/T )Re

[
ε̂eiω(t−T/2)

]
, 0 < t < T,

0, otherwise,
(2)

with central frequency ω = 6.76 eV (183 nm, resonant with
the E1u state as computed with linear response TDDFT, see
below), duration T = 16π/ω = 202 a.u. = 4.9 fs (eight op-
tical cycles), circular polarization ε̂ = (x̂ + iŷ)/

√
2 (with the

molecule in the xy plane), and a variable peak amplitude E
ranging up to 0.01687 a.u. (corresponding to maximum in-
tensity of 1013 W/cm2). The nuclei are fixed at bond lengths
|CC| = 1.39 Å and |CH| = 1.09 Å with the six-fold symmetry
enforced exactly. We verify that moving the nuclei according
to Ehrenfest molecular dynamics does not significantly affect
the results due to the very short pulse duration. Equation (1)
is propagated from t = 0 up to t = 2T = 404 a.u. with the
Crank-Nicolson method with a grid spacing of dx = 0.4 a.u.

and a time step of 0.1 a.u. The simulation box has the so-
called minimum box shape, which is the union of balls of radii
25 a.u. centered at each atom. The outermost 10 a.u. in each
direction is used for a complex absorbing potential.

Once the time-dependent Kohn-Sham orbitals are known,
we can compute the time-dependent charge and current den-
sities using

ρ(r, t ) = 2
15∑

n=1

|ψn(r, t )|2, (3)

J(r, t ) = 2
15∑

n=1

Im[ψ∗
n (r, t )∇ψn(r, t )]. (4)

In addition to the full time-dependent simulations, we also
used the Casida formulation of linear response TDDFT [32]
to compute information about the E1u excited state. The nu-
merical parameters were the same as above except with a
smaller radius of 10 a.u. for the minimum box shape, and no
absorbing boundary (because we are only computing a bound
state). Interestingly, we found that a large number of unoc-
cupied orbitals (160) were required to converge this excited
state. Those high-lying orbitals have a maximum energy of
12 eV past the ionization threshold, which is just beyond the
peak of the plasmon resonance in the photoionization cross
section [33], suggesting electron correlation mixes the bound
state with that resonance structure. This can be quantified by
examining the orbital contributions to the E1u excited state in

FIG. 1. Kohn-Sham orbitals which participate in the E1u ex-
cited state in benzene, their symmetries and energies (in a.u.). Both
HOMO and LUMO are doubly degenerate, while LUMO + 3 is not.

the form of occupied-unoccupied pairs:
(1) 68% HOMO → LUMO;
(2) 26% HOMO → LUMO + 3;
(3) 6% other.

Although the dominant contribution goes between the doubly
degenerate highest occupied molecular orbitals (HOMO ψ14

and ψ15) and doubly degenerate lowest unoccupied molecular
orbitals (LUMO ψ16 and ψ17), a significant percentage also
goes to LUMO + 3 (ψ21), and the remaining 6% is distributed
among a large number of continuum orbitals, presumably
corresponding to the plasmon resonance. We plot the relevant
field-free Kohn-Sham orbitals in Fig. 1. Since all of these
orbitals lie above and below the plane of the molecule, we
expect that most of the dynamics also happens outside the
plane of molecule.

B. Few-level model

First we consider the commonly used few-level model of
ring currents. In this model, the wave function is approxi-
mated as a linear combination of a small number of electronic
states |� j〉 with energy eigenvalues Ej ,

|�(t )〉 =
∑

j

c j (t )e−iE jt |� j〉. (5)

We emphasize the distinction between the Kohn-Sham or-
bitals ψn(r), which are single-electron wave functions and
the multielectron eigenstates |� j〉. We assume without loss
of generality that the wave functions associated with |� j〉 are
real-valued. The interaction of the molecule with a laser pulse
is modeled by the time-dependent Schrödinger equation in the
interaction picture

i
∂c j (t )

∂t
=

∑
k

ck (t )E (t )μ jkei(Ej−Ek )t , (6)
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FIG. 2. (a) Taking a cross section through the molecule of the current density. To make the result independent of how the cross section is
taken, we average over all possible orientations of the plane [see Eq. (11)]. (b) Angle-averaged cross sections of the persistent ring current
induced in a benzene molecule by laser pulses with different peak intensities. At low intensity the electron current (red) dominates, while
at high intensity the hole current (blue) dominates. The shape of the current (above and below the plane) is consistent with the HOMO and
LUMO orbitals from Fig. 6, and we note that the ring of carbon atoms at x = ±2.63 a.u. and the ring of hydrogen atoms is at x = ±4.69 a.u..

where μ jk is the transition dipole between |� j〉 and |�k〉.
Finally, the time-dependent charge and current densities can
be computed using the following expressions:

ρ(r, t ) = 2
∑
j�k

Re
[
c∗

j (t )ck (t )e−i(Ek−Ej )t
]
ρ jk (r), (7)

J(r, t ) = 2
∑
j<k

Im
[
c∗

j (t )ck (t )e−i(Ek−Ej )t
]
J jk (r), (8)

where

ρ jk (r) = 〈� j |ρ̂(r)|�k〉, (9)

J jk (r) = i〈� j |Ĵ(r)|�k〉, (10)

ρ̂(r) and Ĵ(r) are the usual charge and current density
operators. Note because we use a real-valued eigenbasis, time-
reversal symmetry implies ρ jk and J jk are real symmetric and
antisymmetric matrices, respectively, which leads to Eqs. (7)
and (8).

After the laser pulse ends the c j (t ) remain constant but
most terms in Eqs. (7) and (8) continue to oscillate with
frequencies corresponding to the energy differences between
states; this is an example of attosecond charge migration [34].
However, when two electronic states are degenerate Ej = Ek

those terms will not oscillate. Those degenerate terms produce
persistent ring currents which are divergenceless, and there-
fore do not correspond to any net motion of the charge density
(i.e., it can be shown that ∇ · J jk = 0 whenever Ej = Ek).

For benzene, we include three electronic states: the A1g

ground state |�0〉 and the doubly degenerate E1u excited states
|�1〉 and |�2〉 which were discussed in Sec. II A. The model
parameters Ej and μ jk were computed using linear response
TDDFT as described in that section and the charge and current

densities ρ jk and J jk were estimated using an extension of the
linear response formalism derived in Appendix A.

III. RESULTS

A. Charge and current densities

We begin by visualizing the charge and current densities
produced by both theoretical models. As discussed around
Eqs. (7) and (8), these densities contain both stationary and
oscillatory components.

The stationary component of the current density is best
visualized by computing an angle-averaged cross section de-
fined by the following integral [in cylindrical coordinates
(ρ, z, φ)]

J (x, z, t ) = 1

2π

∫ 2π

0
φ̂ · J(|x|, z, φ)dφ. (11)

As illustrated in Fig. 2(a), we take the component of the
current passing through a plane, then average over all ori-
entation angles φ of that plane. In the two-level model, the
cross-sectional current is constant for t > T , while in the full
TDDFT simulation that is only approximately true. These
integrated current densities are plotted in Fig. 2(b) at time
t = 200 a.u. ≈ T for several peak laser intensities, as well as
for the few-level model (for which the shape is independent of
laser intensity). The red parts of the current are corotating with
the laser field, while the blue parts are counterrotating. Within
each subplot the color scale is relative to the maximum ab-
solute value of the current density in that subplot because the
magnitude of the current increases rapidly with intensity, even
though the shape only changes gradually. At low intensities
the current is a combination of a strong electron current (red)
and a weak hole current (blue), while at high intensities the
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FIG. 3. Motion of charge density around the molecule near the
peak of the laser pulse, for both TDDFT and the few-level model.
Light areas are excess electrons (compared to the ground-state charge
distribution) while dark areas are holes. For both models, the cloud
of displaced charge circulates around the molecule with a period of
612 as, corresponding to the energy of the E1u excited state
(which is also the laser frequency). The peak laser intensity is
5 × 1012 W/cm2.

electron current disappears so that the hole current dominates.
The reason for this is explained in Sec. III B.

The oscillatory part, on the other hand, is best visualized
by plotting isosurfaces of the density difference


ρ(r, t ) = ρ(r, t ) − ρ(r, 0) (12)

(with isovalues ±2 × 10−3 a.u.) at several points in time.
Figure 3 shows snapshots of the density difference near the
peak of the laser pulse (t ≈ 0.5T ), while Fig. 4 shows snap-
shots long after the pulse ends (t ≈ 2T ), both for a peak
laser intensity of 5 × 1012 W/cm2. The light areas indicate
excess electrons (
ρ > 0) while the dark areas indicate holes
(
ρ < 0).

During the laser pulse (Fig. 3) the two models agree
very well, although TDDFT predicts additional involvement
of the hydrogen atoms. For both models, the cloud of dis-
placed charge circulates around the molecule with a period of
(612 as), which is both the laser frequency and the energy of
the excited state. After the laser pulse (Fig. 4) the shape of the

FIG. 4. Same as Fig. 3 except long after the pulse ends. The
charge continues to move around because the molecule is in a su-
perposition of multiple electronic states (here mostly the ground A1g

state and the excited E1u states. The two models gradually become
out of sync because the energy of the states within TDDFT is not
necessarily the same as the field-free energies. Nevertheless, the
shape of the displaced charge is remarkably similar between the two
models.

FIG. 5. Comparison of full TDDFT simulations (solid blue line)
to the commonly used few-level model for ring currents (orange
dashed line). At low intensity (below 1012 W/cm2) the two models
agree, but the few-level model is unable to explain the reversal at
high intensity. Because the ionization probability (dotted green line)
becomes significant around the same time as the reversal, these data
support our proposed explanation that resonant enhanced two-photon
ionization is responsible for the switch from electron to hole current.

charge density is similar for both models, but there appears to
be a phase offset between them. This suggests that the energy
of the excited state drifts slightly in the TDDFT model, which
gradually modifies the relative phase.

Another important observation about the density difference
is that the dark areas are generally larger than the light areas.
In the TDDFT model this indicates ionization. Strangely, the
few-level model also appears to have larger dark areas than
light areas even though it does not include ionization, and
in fact, the density difference must integrate to zero. This is
actually caused by excitation to LUMO + 3 which is very
diffuse (see Fig. 1) and so requires a much lower isovalue
to see. Therefore the excess of darker areas in the TDDFT
model is also likely a combination of both ionization and
excitation to diffuse orbitals (see Sec. III B and Fig. 7 for a
more quantitative answer).

The intensity dependence of these dynamics is illustrated
in Fig. 5. Here, the current is summarized by computing the
z component of the magnetic moment (or equivalently, the z
component of the electronic angular momentum)

Lz(t ) =
∫

(−yx̂ + xŷ)J(r, t )d3r. (13)

Since the domain of integration is the simulation box, ionized
electrons are not included. For this reason we plot Lz(2T )
so that the ionizing wavepacket has plenty of time to leave
the box. The results are interpolated over intensity to obtain
a smooth curve using the method discussed in Appendix B.
Whereas in the few-level model the magnetic moment in-
creases monotonically with the laser intensity (up to about
1013 W/cm2, after which the system Rabi oscillates back to
the ground state), in TDDFT the current starts to decrease
already around 1012 W/cm2, and eventually reverses sign
shortly after. We also plot the total ionization probability and
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FIG. 6. Schematic explaining the transition from electron to hole
current in terms of resonant two-photon ionization. First, an electron
is excited from HOMO to LUMO (and by selection rules for circu-
larly polarized light, this must be from m = +1 to m = +2). The
excited electron in LUMO circulates in a persistent current, but the
hole left behind in HOMO also contributes a (weaker) current with
opposite sign. At sufficiently high laser intensity, the excited LUMO
electron may absorb a second photon and ionize. This leaves behind
only the hole current and explains the sign change as a function of
intensity.

can from this conclude that the reversal occurs precisely when
the ionization probability becomes significant.

B. Explanation using complex orbitals

The results presented so far can be understood qualitatively
in terms of complex molecular orbitals, as illustrated schemat-
ically in Fig. 6. This simply involves a change of basis from
the real-valued orbitals shown earlier in Fig. 1

ψHOMO
± (r) = [ψ14(r) ± ψ15(r)]/

√
2, (14)

ψLUMO
± (r) = [ψ16(r) ± ψ17(r)]/

√
2, (15)

where the color in Fig. 6 indicates the complex phase. The
advantage of using complex orbitals is that they are eigen-
functions of the six-fold symmetry operator (rotation about
the molecular axis by 60◦)

exp

[
− iπ

3
L̂z

]
ψHOMO

± (r) = exp

[
∓ iπ

3

]
ψHOMO

± (r), (16)

exp

[
− iπ

3
L̂z

]
ψLUMO

± (r) = exp

[
∓2iπ

3

]
ψLUMO

± (r). (17)

In other words, the complex orbitals have magnetic quantum
numbers m defined modulo 6: ψHOMO

± have m = ±1 and
ψLUMO

± have m = ±2. Just as for atomic orbitals, the sign
of m indicates the direction the electron circulates around the
molecule, and the magnitude indicates more-or-less the angu-
lar speed. We chose our conventions such that m > 0 electrons
are corotating with the laser field and m < 0 electrons are
counterrotating.

Using this notation, we can now give the qualitative expla-
nation illustrated in Fig. 6. In the ground state, both ψHOMO

±
are doubly occupied, so there is zero net current. When the
benzene molecule is exposed to a circularly polarized laser
pulse, the usual selection rule 
m = 1 applies (we assume
for now that the molecules are oriented such that the laser is
polarized in the molecular plane, see Sec. III C for the more
general case), so that the only dipole-allowed transition is
ψHOMO

+ to ψLUMO
+ , which is the dominant component of the

E1u excited state discussed in Sec. II A. The electron excited
to LUMO contributes a strong corotating current (m = +2),
but the imbalance of electrons in the HOMO contributes a
weaker counterrotating current (m = −1). This can alterna-
tively be interpreted as a positively charged hole occupying
ψHOMO

+ producing a corotating hole current (rather than a
counterrotating electron current). This is precisely what we
see in the top row of Fig. 2(b), two components to the current
with opposite sign (red and blue).

To explain the reversal of the current at higher intensity
[bottom row of Fig. 2(b)], we simply recognize that the elec-
tron previously excited to ψLUMO

+ can absorb a second photon
from the same laser pulse, ionizing and leaving behind only
the hole current. The balance between the one-photon excita-
tion and the two-photon ionization processes can be controlled
by varying the laser intensity because the first scales with I
while the second scales with I2. Furthermore, it is apparent
that this sign reversal can be interpreted as a change in the
dominant charge carrier from electrons to holes.

To further validate the qualitative model, we compute the
distribution of final states for the HOMO electrons by project-
ing onto the field-free orbitals

P±→n =
∣∣∣∣
∫

ψ∗
n (r, 0)

[
ψ14(r, 2T ) ± iψ15(r, 2T )√

2

]
d3r

∣∣∣∣
2

,

(18)

Pionize
± = 1 −

∫ ∣∣∣∣ψ14(r, 2T ) ± iψ15(r, 2T )√
2

∣∣∣∣
2

d3r. (19)

Here P±→n should be thought of as the probability for the
electron that began in ψHOMO

± to end up in ψn and Pionize
±

should be thought of as the probability for that electron to
be ionized (i.e., leave the simulation box). Since the ψn are a
complete basis inside the simulation box, these probabilities
add up to 1 if enough unoccupied orbitals are included. We
emphasize that the probabilities are not physically observable
because they describe the artificial noninteracting Kohn-Sham
system. Nonetheless, this sort of analysis can be used to gain
some intuition about the physical mechanisms at work.

Results for the final state probabilities are plotted in Fig. 7
as a function of the laser intensity. On the left is the coro-
tating electron (P+→n and Pionize

+ ) while on the right is the
counterrotating electron (P−→n and Pionize

− ). The probabilities
for HOMO and LUMO are grouped together (i.e., [P+→14 +
P+→15] and [P+→16 + P+→17], respectively), and the “other”
line is the remaining probability such that the four lines in
each plot sum to 1. These results are consistent with the
qualitative explanation we proposed: the corotating can either
be excited or ionized and the relative probability of the two
outcomes can be controlled with the laser intensity. Inter-
estingly, the excitation probability appear to saturate around
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FIG. 7. Final-state probabilities of the co and counterrotating
HOMO electrons as a function of the laser intensity, from the TDDFT
simulations. The blue solid line is the probability for the HOMO
electron to end in either of the two HOMO orbitals, the yellow dashed
line is the probability to end in either of the two LUMO orbitals, the
green dotted line is the ionization probability for that electron, and
the red dash-dotted line is the remaining probability so that the total
is one. This last category includes excitation to other orbitals, as well
as the part of the outgoing wavepacket which has not left the box yet.

3 × 1012 W/cm2 while the ionization probability continues to
increase. The counterrotating electron, on the other hand, has
a very low ionization probability because it is not resonance-
enhanced. That electron is excited with some probability to
LUMO + 3, as we expect from the linear response calculation
(since LUMO + 3 has m = 0, selection rules imply that only
the counterrotating electron can excited into it).

C. Orientation dependence

In a real experiment, it may not be possible or conve-
nient to align the molecules as we have so far assumed. To
shed light on this situation, we repeated the highest intensity
TDDFT calculation (1013 W/cm2) several values of the align-
ment angle θ = 0, 22.5◦, 45◦, 67.5◦ by using ε̂ = (cos θ x̂ +
iŷ + sin θ ẑ)/

√
2 in Eq. (2). Symmetry and periodicity imply

that the θ dependence can be expanded in a Fourier series of
the form

Lz(t, θ ) =
∞∑

n=0

L(n)
z (t ) cos [(2n + 1)θ ]. (20)

We truncate this sum at four terms and solve for the coeffi-
cients L(n)

z to approximate Lz as a smooth function of θ . The
results of these calculations are shown in Fig. 8 for two differ-
ent laser intensities: 1.47 ×1012 W/cm2 (before reversal) and
1013 W/cm2 (after reversal). At the lower intensity, the current
is very robust to molecular orientation, essentially unchanged
up to 45◦ misalignment. At high intensity, the final magnitude
of the current depends more sensitively on alignment, but
the sign is uniformly negative, that is, the reversal always
occurs at high intensity no matter the orientation. Therefore,

FIG. 8. Orientation dependence of the induced magnetic moment
(in the molecular frame) long after the end of the laser pulse (t =
2T ). At low laser intensity, the magnetic moment is relatively flat
even out to 45◦ misalignment. At higher intensity, the strength of
the magnetic moment is somewhat more sensitive to the orientation,
but the sign is not. That is, the reversal of the current occurs for any
orientation. The black x’s mark the sampled angles for which we
ran the simulation, and the lines are interpolated between those data
points using Eq. (20).

the reversal we predicted will still be observable under typical
experimental conditions even without aligning the molecules.

IV. CONCLUSION

In conclusion, we showed that both electron and hole
currents are present during resonance-enhanced two-photon
ionization of benzene. This enables a control scheme, wherein
the balance of the two types of currents is controlled by
varying the laser intensity. We proposed a simple qualitative
description for the effect in terms of molecular orbitals, which
was consistent with the results of full TDDFT simulations.
Our results also suggest that the few-level model typically
used to study photoinduced ring currents may be insuffi-
cient even for moderate laser intensities around 1012 W/cm2.
Lastly, we showed that the effect and the control scheme are
robust with respect to the orientation of the molecules, mak-
ing it more practical to implement in realistic experimental
conditions.
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APPENDIX A: LINEAR RESPONSE TDDFT

In this Appendix we propose a simple method to es-
timate the matrix elements for charge and current density
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ρ jk and J jk [defined in Eqs. (7) and (8)] from the Casida
formulation of linear response TDDFT [32]. Although this
task goes beyond the range of validity of linear response
when both |� j〉 and |�k〉 are excited states (because the
observable is then quadratic in the field strength), we would
argue that the method at least provides a well-defined pre-
scription for approximating these quantities. Furthermore,
the results presented in the text (Figs. 2 to 5) suggest
that this approach agrees fairly well with the full TDDFT
calculations at low intensities and that at higher inten-
sities the discrepancy is more due to the inability of
the few-level model to describe ionization rather than a
problem with the matrix elements for charge and current
density.

The solution to Casida’s equation essentially produces a
multielectron wave function for each excited state, expanded
in the basis of occupied-unoccupied orbital pairs, which can
be understood to approximate the exact multielectron wave
function in the same sense that the Slater determinant of
the Kohn-Sham orbitals approximates the exact multielec-
tron ground state. We use fermion creation and annihilation
operators a†

uσ , aoσ where o ranges over all occupied orbitals
(o = 1, . . . , 15), u ranges over all unoccupied orbitals (u =
16, . . . , 175), and σ =↑,↓ is the spin index. In that notation,
the multielectron wave function for the jth excited state is
approximated by

|� j〉 ≈ ∣∣�Cas
j

〉 = 1√
2

∑
o,u,σ

c jouâ†
uσ âoσ

∣∣�KS
0

〉
, (A1)

where c jou are the coefficients determined from Casida’s equa-
tion

∣∣�KS
0

〉 =
⎛
⎝∏

o,σ

a†
oσ

⎞
⎠|0〉, (A2)

is the Kohn-Sham ground state, and |0〉 is the vacuum state
(no electrons). Any spin-independent one-body operator can
be represented in the basis of Kohn-Sham orbitals as

Ô =
∑
mnσ

O1B
mnâ†

mσ ânσ . (A3)

Applying commutation relations, the matrix element between
two excited states is

〈� j |Ô|�k〉 =
∑
o,u,u′

c jouckou′O1B
uu′ −

∑
o,o′,u

c joucko′uO1B
o′o

+ 2δ jk

∑
o

O1B
oo , (A4)

and between the ground state and an excited state is

〈�0|Ô|� j〉 = √
2

∑
o,u c jouO1B

ou .

The one-body matrices for the charge and current densities are

ρ1B
mn(r) = ψ∗

m(r)ψn(r), (A5)

J1B
mn(r) = 1

2i
[ψ∗

m(r)∇ψn(r) − ψn(r)∇ψ∗
m(r)]. (A6)

APPENDIX B: INTERPOLATION

In this section we describe the interpolation method used in
the main text. Given some observable f (E ) that is a function
of the peak electric field strength E (with all other parameters
fixed), we would like to approximate it by a smooth function
on the interval [0, Emax] using as few sample values f (E j ) as
possible. In all cases we considered, f is either an even or
odd function of E and the value of f (0) is known, meaning
we can extend the interval to [−Emax, Emax] for free. Then a
particularly efficient choice of sample field strengths is the
Chebyshev nodes of the second kind

E j = Emax cos

(
jπ

2N

)
, j = 0, . . . , 2N. (B1)

For the symmetry reasons discussed above, we only need
to evaluate f (E j ) at the first N field strengths (which have
E j > 0) to obtain the function value at the remaining N + 1
strengths.

Next, we interpolate a polynomial of degree 2N through
the 2N + 1 sample points. In barycentric form [35], that is,

f (E ) ≈
∑2N

j=0 w j f (E j )(E − E j )−1∑2N
j=0 w j (E − E j )−1

, (B2)

where

w j =
{

0.5(−1) j, j = 0, 2N,

(−1) j, j = 1, . . . , 2N − 1.
(B3)
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