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Os16+ and Ir17+ ions as candidates for accurate optical clocks
sensitive to physics beyond the standard model
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We perform detailed calculations of the electronic structure of the Os16+ ion and demonstrate that it has
several metastable states which can be used for very accurate optical clocks. The clocks are highly sensitive to
manifestations of the physics beyond the standard model, such as time variation of the fine-structure constant α,
interaction with scalar and pseudoscalar (axion) dark matter fields, local Lorentz invariance and local position
invariance violations, and interaction of atomic electrons with a nucleus mediated by a new boson. The latter
can be studied by analyzing the King plot for isotope shifts and its possible nonlinearities since Os has five
stable isotopes with zero nuclear spin. Similar calculations for the Ir17+ ion spectra demonstrate good agreement
between theory and experiment. This helps to validate the method of the calculations and demonstrate that both
ions are excellent candidates for the search for new physics.
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I. INTRODUCTION

It was suggested in Refs. [1] to use highly charged ions
(HCIs) to search for optical transitions highly sensitive to the
time variation of the fine-structure constant α. The idea is
based on the fact of the level crossing [2]. Usually intervals be-
tween electron energy levels are very large in HCIs compared
to neutral atoms. However, due to different level ordering in
neutral atoms and hydrogenlike ions, the energy interval be-
tween states of different configurations, drawn as a function of
the ionization degree Zi, must cross at some point, bringing the
energy interval into the optical region. Since states of different
configurations have different dependencies on the value of the
fine-structure constant α, the energy intervals are very sen-
sitive to the variation of α. The sensitivity is proportional to
Z2(Zi + 1)2 and strongly depends on the electron orbital angu-
lar momentum. The largest sensitivity can be found in electron
transitions in heavy ions which in the single-electron approx-
imation can be described as s1/2- f5/2, f7/2 or p1/2- f5/2, f7/2

(s- f or p- f ) transitions [1–3]. Use of metastable states brings
the additional advantage of potentially very high accuracy of
the measurements typical for atomic optical clocks. The accu-
racy for HCI clocks can be even higher than that for optical
clocks in neural atoms due to the fact that states of HCIs are
less sensitive to perturbations due to the compact size of HCIs,
small polarizability, and large energies of excitations [4].

A number of candidate systems were suggested in earlier
works [4–7] (see also reviews [8,9] and references therein).
Experimental studies were performed for Ho14+ [10,11] and
Ir17+ [12] ions. Further work is in progress [8,9]. In the present
work we study the Os16+ ion. It has some important features
which make it an attractive candidate for experimental study.
It has several metastable states which can be used for clock
transitions. At least one transition is the s- f transition, so
that it is very sensitive to the variation of the fine-structure
constant α and the dark matter field which may be a source of

such variation [13–15]. Other transitions are less sensitive to
α variation and can serve as anchor lines. In addition, they are
sensitive to other manifestations of new physics such as local
Lorentz invariance and local position invariance violations,
etc. The energy diagram for the Os16+ ion is presented in
Fig. 1. This diagram is the result of the calculations in the
present work. Experimental energy intervals between states
of different configurations are not known,

The Os16+ ion is similar to the Ir17+ ion studied before
[12,16]. However, it has the important advantage of having
five stable isotopes with zero nuclear spin (Ir has none). It
makes this ion suitable for searching for new interactions via
looking at possible nonlinearities of the King plot [18,19].
The minimum requirements for such study include having two
clock transitions and four stable isotopes. Isotopes with zero
nuclear spin have the further advantage of having no hyperfine
structure which complicates the analysis of the isotope shift.
Table I lists five stable isotopes of Os, which have zero nuclear
spin. It also presents the β parameters of nuclear quadrupole
deformation. These parameters come from nuclear calcula-
tions [17]. Nuclear deformation can lead to the nonlinearities
of the King plot [20,21], presenting an important system-
atic effect in the search for new interactions. Note, however,
that the parameters of deformation have similar values for
all stable isotopes (see Table I). This means that significant
cancellation of the effect of deformation is possible in the
isotope shift.

Finally, the Os16+ and Ir17+ ions are suitable for searching
the effects of local Lorentz invariance (LLI) and local position
invariance (LPI) violation, since these effects are strongly
enhanced in HCIs [22]. It was argued in Refs. [22,23] that to
have an enhanced value of the LLI violation one needs to have
a long-living state (e.g., ground) with a large value of the total
electron momentum J (J � 2) and large values of the matrix
element for the LLI violating operator. Such states can often
be found in open 4 f shells. All these conditions are satisfied
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FIG. 1. Energy level diagram for the Os16+ ion. Possible clock
transitions within the even configuration and the s- f transition are
shown as red double arrows.

for metastable states of the Os16+ and Ir17+ ions, including
the ground state. The situation with the LPI violating effect in
HCIs is similar to that of the LLI violating effect.

II. METHOD OF CALCULATIONS

The Os16+ ion has an open 4 f shell. Its ground-state
configuration is [Pd]4 f 125s2, while we study also the states
of the [Pd]4 f 135s configuration. The ion has 14 electrons
in open shells. This number is too large for standard con-
figuration interaction (CI) calculations. In the present work,
we use the configuration interaction with perturbation theory
(CIPT) method [24] especially developed for such systems.
The method was used for many atoms and ions with open
d or f shells (see, e.g., Refs. [25–27]) and it has been proven
to be very useful. The best results are achieved for systems
with almost empty or almost full open shells. On the other
hand, the systems with half-filled d or f shells are the most
difficult for calculations. Since the accuracy for different sys-
tems is different, it is always useful to do some additional tests
for similar systems where experimental data or other calcula-
tions are available. In this work we study the Os16+ and Ir17+

ions. Both ions have similar electronic structure (the configu-
rations are the same but the states go in different order). There
are experimental data on a number of transition energies for
both ions [12]. The same paper also presents several differ-
ent calculations. However, the data on the Ir17+ ion is more

TABLE I. A list of stable isotopes of Os with zero nuclear spin.
The β parameters of the quadrupole deformation of proton distribu-
tion are taken from Ref. [17].

A 184 186 188 190 192
β 0.281 0.257 0.223 0.185 0.164

complete. Experimental data include energies for some E1
transitions between states of different configurations, while
the data for Os16+ contains only energies of M1 transitions
between states of the same configuration. The E1 transitions
present a special interest because of their sensitivity to the
variation of the fine-structure constant. The initial idea of
using the Ir17+ ion comes from the finding that the energy
of the E1 transition is in the optical region [5]. Very advanced
calculations by a different method [16] are also available for
Ir17+. Therefore, we use calculations for Ir17+ to check the
accuracy and applicability of the CIPT method to the Os16+

ion.

A. Calculation of energies

The wave function for 14 external electrons of the Os16+

ion in the CIPT method is presented as an expansion over
single-determinant many-electron basis functions:

�(r1, . . . , rNe ) =
N1∑

i=1

ci�i(r1, . . . , rNe )

+
N2∑

i=N1+1

ci�i(r1, . . . , rNe ). (1)

Here Ne is the number of external electrons (Ne = 14 in our
case). The expansion is divided into two parts. It is assumed
that first few low-energy (the energy is related to the basis
state by Ei = 〈�i|ĤCI|�i〉) terms present good approximation
for the wave function, while the huge number (N2 � N1) of
remaining high-energy terms is just a small correction. Calcu-
lations start from the relativistic Hartree-Fock (RHF) method
applied to the open-shell ion. To make sure that the first part
of expansion (1) presents a good approximation for the wave
function, the electron configuration in the RHF calculations
should coincide with one of the configurations of interest.
In our case, these are the 4 f 125s2 and 4 f 135s configurations.
Changing the initial choice from one configuration to another
changes the energy intervals between states of different con-
figurations by a few thousand cm−1 without changing the
order of the states. We have chosen the 4 f 135s configuration
in the RHF because this gives good results for Ir17+ (see the
next section). The RHF Hamiltonian has the form

ĤRHF = cα · p + (β − 1)mc2 + Vnuc + VBreit + VQED + Ve,

(2)

where c is speed of light, α and β are Dirac matrices, p is
the electron momentum, Vnuc is the nuclear potential obtained
by integrating the Fermi distribution of the nuclear charge,
VBreit is the operator of the Breit interaction which includes
magnetic interaction and retardation [28] in a zero-frequency
approximation (see, e.g., Ref. [29]), VQED is the potential
which simulates quantum electrodynamic corrections [30],
and Ve is the electron self-consistent RHF potential with con-
tributions from all 60 electrons of the Os16+ ion including the
electrons of the 4 f 135s configuration. At the next stage the
single-electron basis is calculated in the field of the frozen
core using the B-spline technique [31].

Then, applying the standard CI technique and neglecting
the off-diagonal matrix elements between high-energy states,
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TABLE II. Parameters of the CIPT calculations for the Os16+

ion. J p stands for the total angular momentum and parity. One
even configuration (4 f 125s2) and two odd configurations (4 f 135s and
4 f 125s5p) are used to generate states in the effective CI matrix. The
second odd configuration is added to allow electric dipole transitions
between states of even and odd configurations (see Fig. 2). Nc is
the corresponding number of relativistic configurations; N1 is the
corresponding number of states with given J p; N1 × N1 is the size
of the effective CI matrix; and N2 is the number of terms in the
second-order correction [second term in Eq. (3)].

J p Nc N1 N2

3− 8 26 ∼3 × 105

4− 7 24 ∼3 × 105

2+ 3 3 ∼6 × 106

3+ 3 1 ∼1.5 × 107

4+ 3 3 ∼4 × 106

5+ 3 1 ∼1.0 × 107

6+ 3 2 ∼4 × 106

one gets the CIPT equation

[
〈i|ĤCI| j〉 +

N2∑
m

〈i|ĤCI|m〉〈m|ĤCI| j〉
E − Em

]
X = EX. (3)

Here X is the vector of unknown expansion coefficients, X =
(c1, . . . , cN1 ). Indexes i, j, and m numerate many-electron
basis states |�〉, indexes i and j run from 1 to N1, and index m
runs from N1 + 1 to N2. Operator ĤCI is the CI Hamiltonian

ĤCI =
Ne∑

i=1

Ĥ1i +
Ne∑

i> j

e2

|ri − r j | , (4)

where Ĥ1i is the single-electron part of the Hamiltonian simi-
lar to Eq. (2) but with Ve replaced by Vcore. Only core electrons
(up to the 4d shell) contribute the the Vcore potential, while
all ionic electrons (including the 4 f 135s configuration) con-
tribute the Ve potential. We do not include VBreit in the CI
Hamiltonian because the Breit interaction between valence
electrons is a small correction which is much smaller than the
uncertainty coming from other sources. The inclusion of Breit
and QED corrections is important in the RHF stage only since
it involves all atomic electrons including innershell relativistic
electrons.

The typical values of the N1 and N2 parameters for different
states of Os16+ are presented in Table II. The value of N1 is the
size of the effective CI matrix. Note that it is always small.
The main challenge of the method is the calculation of the
second-order correction containing the huge number of terms
(N1 × N2, see Table II for the values).

The energy E in Eq. (3) is the energy of the state to be
found from solving the CIPT equations. It presents in both
left- and right-hand sides of the equation. This means that
iterations are needed to solve the equations. Iterations can start
from solving the CIPT equations (3) without the second-order
correction. In most cases less than ten iterations are sufficient
for full convergence.

FIG. 2. Dominating contributions to the electric dipole (E1)
transition between states of even (4 f 125s2) and odd (4 f 135s) con-
figurations. The transition is due to the mixing of the odd states of
the 4 f 135s and 4 f 125s5p configurations.

B. Calculation of matrix elements

To calculate matrix elements of transitions between states
and energy shifts due to different effects which were not
included in the calculations of energy, we use the time-
dependent Hartree-Fock (TDHF) method [32] which is
equivalent to the well-known random-phase approximation
(RPA). The RPA equations have the form

(ĤRHF − εc)δψc = −(
F̂ + δV F

e

)
ψc. (5)

Here ĤRHF is given by Eq. (2), index c numerates the
single-electron states of the ion (the same as in the RHF
calculations), F̂ is the operator of external field, δψc is the
correction to the wave function due to the external field, and
δV F

e is the correction to the self-consistent RHF potential
caused by the change of all ionic states.

The RPA equations are solved self-consistently for all RHF
states of the ion. Then the transition amplitude is given by

Ti j = 〈�i|
Ne∑

m=1

(
F̂ + δV F

e

)
m|� j〉, (6)

where |�i〉 and |� j〉 come from solving the CIPT equa-
tions (3). For energy shifts, i = j in Eq. (6).

Note that in some cases one needs to include more terms
in the first part of the wave function expansion (1) to allow
for nonzero values of the transition amplitudes. For example,
the electric dipole (E1) transition cannot go directly between
states of the 4 f 135s and 4 f 125s2 configurations because in this
case it would correspond to the s- f single-electron transition
which is forbidden by the selection rules. One needs to add
at least the 4 f 125s5p configuration to mix with the 4 f 135s
configuration. Then the E1 transition amplitude is given by
Fig. 2.

C. Energy levels of Ir17+: Discussion of accuracy

The Ir17+ ion was proposed for the measurements in
Ref. [5] and studied both experimentally and theoretically
(see Refs. [12,16] and references therein). It is very similar
to the Os16+ ion studied in the present work. It has the same
number of external electrons forming the same configurations
and many other similarities. It is natural to expect that the
accuracy of the calculations for both ions is very similar too.
Therefore, we perform exactly the same calculations for both
ions and compare our results with experiment and previous
calculations. Our first calculations for the Ir17+ ion [5] used a
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TABLE III. Energy levels and g factors of the Ir17+ ion. Com-
parison with previous calculations and experiment. Experimental
energies are obtained from measured transition energies [12]; see
also Tables IV and V.

Energies (cm−1) g factors

Configuration Term Ref. [5] Ref. [16] Expt. Present work

Odd states

4 f 135s 3F o
4 0 0 0 1.2500

3F o
3 4838 4777 4647 1.0515

3F o
2 26272 25186 25198 0.6667

1F o
3 31492 30395 30359 30167 1.0318

Even states

4 f 14 1S0 5055 12382 7424 0.0000

4 f 125s2 3H6 35285 30283 29695 1.1641
3F4 45214 39564 41639 39563 1.1377
3H5 59727 53798 53668 1.0333
3F2 68538 61429 62930 62140 0.8331
1G4 68885 62261 64588 62380 0.9902
3F3 71917 65180 67154 65438 1.0833
3H4 92224 84524 84662 0.9221
1D2 98067 89273 90317 91341 1.1315
1J6 110065 101136 103487 1.0026

different method which was less accurate, especially for the
energy intervals between states of different configurations.
It had fitting parameters which would allow one to fix the
interval when the experimental value is known. However, in
the absence of the experimental data the predictions were
not very accurate. In contrast, our present method is fully
ab initio and produces more accurate results. There were many
other calculations (see Ref. [12] and references therein). The
most sophisticated and accurate calculations were reported in
Ref. [16]. The agreement with experiment was very good.
Therefore, we compare our present results only with exper-
iment and calculations of Ref. [16].

Energy levels of the Ir17+ ion are presented in Table III,
M1 transition energies are presented in Table IV, and E1

TABLE IV. M1 transition energies in the Ir17+ ion (in cm−1).
Comparison with previous calculations and experiment. 	E/E
is the relative deviation of our results from the experimental
energies (in %).

Expt. Theory

Configuration Terms Ref. [12] Ref. [16] Present 	E/E

4 f 135s 3F o
2 − 3F o

3 20711 20409 20551 −0.8
1F o

3 − 3F o
4 30359 30395 30168 −0.6

4 f 125s2 3H5 − 3H6 23640 23515 23973 1.4
3H4 − 1G4 22430 22263 22282 −0.7
1G4 − 3F4 22949 22697 22817 1.7
1D2 − 3F3 23163 24093 25903 12
3F3 − 3F4 25515 25616 25875 1.4
1D2 − 3F2 27387 27844 29201 6.6
3H4 − 3H5 30798 30726 30994 0.6

TABLE V. E1 transition energies in the Ir17+ ion (in cm−1).
Comparison with the previous calculations and experiment.

Expt. [12]

Terms Ref. [16] Present Version 1 Version 2

3F4 − 3F o
4 39568 39563 41639

3F3 − 1F o
3 34785 35271 36796 41639

1G4 − 1F o
3 31866 32213 39072

transition energies are presented in Table V. In all these
tables, our results are compared with previous calculations
and experiment. Note that experimental work [12] presents
only transition energies which are not translated into energy
levels. This is because the interpretation of the E1 transi-
tion energies was ambiguous. Table V gives two alternative
interpretations given in Ref. [12]. Both calculations, present
work and Ref. [16], support the first version. Using this inter-
pretation of the experimental data allows one to reconstruct
some experimental energy levels. The results are presented in
Table III. Note good agreement between the latest calculations
and between theory and experiment, while our old results
[5] are less accurate. There is one state (3F3) for which the
agreement between theory and experiment is poor. This leads
to poor agreement for the transition energy involving this state
(the 1D2 - 3F3 transition, see Table IV). It is interesting to note
that both theoretical results for this state agree well with each
other but not with experiment. It was noted in Ref. [16] that
one possible reason for this might be the wrong interpretation
of experimental data. However, we do not see any alternative
interpretation. In the end, the reason for poor accuracy is not
clear.

Another large deviation between theory and experiment
is for the 1D2 - 3F2 transition (6.6%). Note, however, that the
accuracy for each state is good, ∼1% (see Table III). But it
is −1% for the lower state and +1% for the upper state. This
leads to a larger relative deviation in the difference.

In the end, the agreement between theory and experiment is
within 3% for all states and most energy intervals. We expect
similar accuracy for the Os16+ ion.

III. CALCULATIONS FOR THE Os16+ ION:
IDENTIFICATION OF THE CLOCK TRANSITIONS

We have calculated energies, g factors, lifetimes, and other
characteristics of the low-lying states of Os16+. The results are
presented in Table VI. The list of states is very similar to that
of the Ir17+ ion (see previous section), but the states go in a
different order.

Lifetimes (τ ) of even states are calculated by including all
possible M1 and E2 transitions to low states. Lifetimes of odd
states are calculated by taking into account E1 transitions to
lower even states. We see at least two metastable states, the
first excited state at E = 9853 cm−1 and τ = 1400s, and the
3F2 state at E = 30 675 cm−1 and τ = 156s. The first odd state
at E = 32 908 cm−1 is also relatively long-living, τ = 96 ms.
In principle, all these states can be used for high-precision
measurements. Corresponding clock transitions within the
even configuration and the s- f transition are shown in Fig. 1.
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TABLE VI. Excitation energies (E ), g factors, and other char-
acteristics of low-lying states of the Os16+ ion. The numbers in the
second column are experimental energies reconstructed from transi-
tion energies presented in the Supplemental Material of Ref. [12]. τ

is the lifetime, α0 and α2 are the static scalar and tensor polarizabili-
ties, and Q is the electric quadrupole moment.

E (cm−1) τ α0 α2 Q

Term [12] Present g s a3
0 a3

0 a.u.

Even states, 4 f 125s2

3H6 0 0 1.164 0.5310 −0.0085 0.194
3F4 9049 9583 1.137 1.4[+4] 0.5307 0.0006 −0.018
3H5 21176 22433 1.033 4.0[−3] 0.5309 −0.0074 0.171
3F2 28951 30675 0.824 156 0.5304 0.0036 −0.087
1G4 29109 30643 0.989 10[−3] 0.5307 −0.0033 0.075
3F3 31931 33525 1.083 5.2[−3] 0.5305 0.0018 −0.047
3H4 49240 50086 0.927
3F2 54221 58036 1.130

Odd states, 4 f 135s
3F o

4 32908 1.2500 96[−3] 0.0450 1.2[−5] 0.191
3F o

3 37432 1.0524 38[−3] 0.0450 8.4[−5] 0.161

The E1 amplitude 〈3Fo
4||E1||3F4〉 = 1.91 × 10−3aB is

small due to the configuration mixing and the compact ion
size. The values of the E1 transition amplitudes for Ir17+

are similar. For example, for three transitions presented in
Table V, the values are 2.3 × 10−3aB, 7.6 × 10−4aB, and
3.1 × 10−3aB, respectively.

To find the effect of black-body radiation (BBR) on clock
transitions we have calculated static dipole polarizabilities of
the low states of Os16+. The calculations were performed by
a method especially developed in our earlier work [33] for
atoms with open shells. The results are presented in Table VI
(static tensor polarizabilities α2 are also included). The BBR
shift (in Hz) is given by (see, e.g., Ref. [34])

δνBBR = −8.611 × 10−3

(
T

300 K

)4

	α0. (7)

Using numbers from Table VI, one gets δν/ν ∼ 10−20 for the
E2 clock transitions and δν/ν ∼ 10−17 for the s- f transition.

All clock states of the Os16+ ion have a relatively large
total angular momentum J . This means that the states might be
sensitive to the gradient of the electric field ε via quadrupole
interaction. The corresponding energy shift is given by

	EQ = J2
z − J (J + 1)

2J (2J − 1)
Q

∂εz

∂z
, (8)

where Q is atomic quadrupole moment defined as the doubled
expectation value of the E2 operator in the stretched state:

Q = 2〈J, Jz = J|E2|J, Jz = J〉. (9)

The calculated values of the quadrupole moment Q for low
states of Os16+ are presented in Table VI.

IV. SEARCH FOR NEW PHYSICS

A. Time variation of the fine-structure constant

High sensitivity to the variation of the fine-structure con-
stant α (α = e2/h̄c) was the primary reason for suggesting the
ions like Os16+, Ir17+, and others for the measurements [1,5].
The largest sensitivity corresponds to the largest change of
the total electron angular momentum j in the single-electron
approximation for atomic transition [1]. Both ions, Os16+ and
Ir17+, have optical transition between states of the 4 f 125s2 and
4 f 135s configurations, which correspond to the s- f single-
electron transition (	 j = 2 or 3).

To find the sensitivity of atomic transitions to the variation
of α, we write the frequencies of the transitions in the form

ωa(x) = ωa0 + qax, (10)

where x = [(α/α0)2 − 1], α0 is physical value of α, and q is
the sensitivity coefficient to be found from calculations. To
find q we vary the value of α in computer codes and calculate
the numerical derivative

qa = ωa(δ) − ωa(−δ)

2δ
. (11)

Usually, we take δ = 0.01. Varying δ is useful for checking
the stability of the results.

To search the manifestation of the variation of the fine-
structure constant, we need at least two atomic transitions
and we measure one frequency against the other over a long
period of time. Then the relative change of frequencies can be
written as

δωa

ωa
− δωb

ωb
=

(
2qa

ωa
− 2qb

ωb

)
δα

α
≡ (Ka − Kb)

δα

α
, (12)

where the dimensionless parameter K (K = 2q/ω) is called
the enhancement factor. It is obvious from Eq. (12) that for
the highest sensitivity one needs two transitions with very
different values of K ; e.g., one is large and another is small
or has the opposite sign. The calculated values of q and K
are presented in Table VII. The results for Os16+ have been
obtained in the present work while the results for Ir17+ are
taken from Ref. [5]. One can see that 	K ∼ 20 for transitions
between different configurations, and 	K ∼ 1 for transitions
within one configuration. For example, for two clock transi-
tions of Os16+ (3H6 - 3F4 and 3F4 - 3F o

4 ),

δωa

ωa
− δωb

ωb
≈ 25

δα

α
. (13)

Note that it looks beneficial to search for transitions with
small ω for the sake of having a large enhancement factor
(K = 2q/ω). However, sometimes such transitions have no
advantage since the accuracy of the measurements is equally
important and the ratio of the relative experimental uncer-
tainty to the relative change of ω due to variation of α often
does not depend on ω [(δωexpt/ω)/(δωα/ω) = δωexpt/δωα]—
see Ref. [25] for a detailed discussion. Large values of q in
HCIs give a real advantage.

B. Einstein equivalence principle violation

Local position invariance (LPI), local Lorentz invariance
(LLI), and the weak equivalence principle form the Einstein
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TABLE VII. Parameters of the Os16+ and Ir17+ ions relevant to
the search for the variation of α. The values of the q coefficients for
the Ir17+ ion are taken from Ref. [5]. The enhancement factor K is
given by K = 2q/E .

E q
State (cm−1) (cm−1) K

Os16+, even states

4 f 125s2 3H6 0 0 0
3F4 9583 −1427 −0.30
3H5 22433 19401 1.73
1G4 30643 20900 1.36
3F2 30675 6870 0.45
3F3 33525 19300 1.15

Os16+, odd states

4 f 135s 3F o
4 32908 337726 23.9

3F o
3 37432 339746 20.8

Ir17+, odd states

4 f 135s 3F o
4 0 0 0

3F o
3 4647 2065 0.9

3F o
2 25198 24183 1.9

1F o
3 30167 25052 1.7

Ir17+, even states

4 f 125s2 3H6 29695 −385367 −26
3F4 39563 −387086 −20
3H5 53668 −362127 −13
3F2 62140 −378554 −12
1G4 62380 −360678 −12
3F3 65438 −362313 −11
3H4 84662 −339253 −8
1D2 91341 −363983 −8
1J6 103487 −364732 −7

equivalence principle, which is the foundation of general
relativity. Some extensions of the standard model allow for
violation of these invariances. The LPI violating term can be
written as (see, e.g., Ref. [35] and references therein)

ĤLPI = C00
2

3

U

c2
K̂, (14)

where C00 is an unknown constant, U is the gravitation po-
tential, c is the speed of light, and K̂ is the operator of the
kinetic energy, which in the relativistic case can be writ-
ten as K̂ = cγ0γ

i pi/2, p = −ih̄∇ is the operator of electron
momentum.

The presence of term (14) in the Hamiltonian causes the
change of the atomic frequencies due to the change of the
gravitation potential U (e.g., due to the annual variation of
the Sun-Earth distance). It can be shown using the virial
theorem that in the nonrelativistic limit all atomic frequencies
change at the same rate and the effect is not detectable [36].
Therefore, it is convenient to describe the effect in terms of
the so-called relativistic factor R, which indicates the devia-
tion from the nonrelativistic virial theorem in the relativistic

case [36],

Rab = −EKa − EKb

Ea − Eb
, (15)

where EKa is the kinetic part of the energy of the atomic state
a and Ea is its full energy. Then the relative change of two
atomic frequencies can be written as

	ωab

ωab
− 	ωcd

ωcd
= −(Rab − Rcd )

2

3
c00

	U

c2
. (16)

The highest sensitivity of atomic frequencies to the variation
of the gravitation potential U can be achieved for transitions
between states with very different values of the relativistic
factor R. It turns out that, similar to the case of variation of
α, the highest sensitivity is for the transitions between states
of different configurations.

To calculate the values of R, one needs to calculate ki-
netic energies EK caused by the kinetic energy operator K̂ .
In principle, one can use the standard approach based on
the RPA equations (5) and calculating matrix elements (6).
However, calculations of the matrix elements of the kinetic
energy operator are very sensitive to the correlation effects
and one needs to include many minor contributions for stable
results. It is more practical to use the so-called finite-field
approach in which the calculation of the energy shift caused
by a scalar operator is reduced to the calculation of the energy.
The operator is added to the Dirac equations with a rescaling
parameter s, calculations are repeated several times for differ-
ent but small values of s and then extrapolated to s = 1. In our
case, the Dirac equations with a rescaled operator of kinetic
energy can be written as(

∂ f

∂r
+ κ

r
f

)
(1 + s) − [1 + α2(ε − V̂ )]g = 0,

(
∂g

∂r
− κ

r
g

)
(1 + s) + (ε − V̂ ) f = 0. (17)

We perform calculations for several values of s from s =
0 to s = 10−5, extrapolate the results to s = 1 to get the
kinetic energies EK , and use Eq. (15) to get the values of
R. The results for the Os16+ and Ir17+ ions are presented in
Table VIII. Calculations show that the energy shift caused by
the kinetic energy operator K̂ is similar for all states of the
same configuration. Different values of R are mostly due to
different energy intervals in the denominator of Eq. (15). The
values of 	R are presented with respect to the ground state.
Therefore, the values are relatively small for all states of the
ground-state configuration. On the other hand, the values of
	R are large for the transitions between states of different
configurations. Here R � 1, which is probably common for
all HCI. In contrast, R ∼ 1 for neutral atoms [27]. Note also
that 	R for transitions between states of different configu-
rations of Os16+ and Ir17+ ions have different signs. This is
because of the different order of states in the two ions.

The LLI violating term can be written as

ĤLLI = − 1
6C(2)

0 T (2)
0 , (18)

where T (2)
0 is a tensor operator T (2)

0 = cγ0(γ j p j − 3γ 3 p3).
The presence of term (18) in the Hamiltonian leads to the
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TABLE VIII. Parameters of the Os16+ and Ir17+ ions relevant to
the search for the Einstein equivalence principle violation. The values
of the relativistic factors R are presented with respect to the ground
state (	Rag = Ra − Rg).

E 〈v||T (2)||v〉
State (cm−1) 	R (a.u.)

Os16+, even states

4 f 125s2 3H6 0 0 −299
3F4 9583 0.2 24
3H5 22433 7 −256
1G4 30643 5 −106
3F2 30675 2 122
3F3 33525 5 68

Os16+, odd states

4 f 135s 3F o
4 32908 18 −272

3F o
3 37432 17 −223

Ir17+, odd states

4 f 135s 3F o
4 0 0 −283

3F o
3 4647 3 −233

3F o
2 25198 3 −197

1F o
3 30167 3 −254

Ir17+, even states

4 f 125s2 3H6 29695 −30 −311
3F4 39563 −20 26
3H5 53668 −13 −266
3F2 62140 −11 131
1G4 62380 −11 −107
3F3 65438 −10 71
3H4 84662 −7 −138
1D2 91341 −7 95
1J6 103487 −5 −612

dependence of atomic frequencies on the orientation of the ap-
paratus in space. For the interpretation of the measurements,
one needs to know the values of the reduced matrix elements
of the operator T (2)

0 . We perform the calculations for the
Os16+ and Ir17+ ions using the standard approach described
in Sec. II B. The results are presented in Table VIII.

It was stated in Refs. [22,23] that to study the LLI violation
one could measure the frequency of the transitions between
states with different values of the projection of the total elec-
tron momentum Jz within one metastable state. A large value
of the matrix element of the T (2)

0 operator and a long lifetime
of the state are needed for high sensitivity. In Os16+ and Ir17+

we have large values of the matrix element in many states,
including the ground state. In both ions the values are larger
than those in the Yb+ ion suggested for the most sensitive
measurements in Ref. [23]. This makes the ions attractive
candidates for the study of the LLI violation.

C. Search for new bosons using nonlinearities of the King plot

It was suggested in Refs. [18,19] that nonlinearities of the
King plot can be used to put limits on new interactions. The

TABLE IX. Field shift constants F and energy shifts D due to the
Yukawa-type electron-nucleon interaction. D1 is calculated at mφ =
3 MeV, and D2 is calculated at mφ = 0.3 MeV. All values are given
with respect to the ground state.

E F D1 D2

State (cm−1) (MHz/fm2) (GHz)

Even states

4 f 125s2 3H6 0 0 0 0
3F4 9583 93 −0.010 −0.177
3H5 22433 −1487 0.157 2.86
1G4 30643 −1612
3F2 30675 −564 0.047 0.879
3F3 33525 −1487 0.157 2.86

Odd states

4 f 135s 3F o
4 32908 5.32[+5] −52.3 −490

3F o
3 37432 5.32[+5] −52.3 −490

isotope shift ν for a specific atomic transition a can be written
in the simplest form as

νa = Faδ〈r2〉i j + Kaμi j . (19)

Here Fa is the field shift constant, Ka is the mass shift con-
stant, δ〈r2〉i j is the change of the root-mean-square nuclear
radius between isotopes i and j, and μi j = 1/mi − 1/mj is
the reduced mass of the two isotopes. Here we neglect the
higher-order in nuclear structure terms (e.g., terms ∼δ〈r2〉2

i j ,
δ〈r4〉i j , etc.). If we have two transitions, then finding δ〈r2〉i j

from Eq. (19) and substituting it into a similar equation for
another transition leads to

ν̃ai j = Fa

Fb
ν̃bi j − Fa

Fb
Kb + Ka, (20)

where ν̃ = ν/μ. This equation presents a straight line on the
(ν̃a, ν̃b) plane (the King plot). At least two transitions and four
isotopes are needed to see deviations from the straight line.
These conditions are satisfied for the Os16+ ion. Extra terms
in Eq. (19) can lead to nonlinearities of the King plot. For ex-
ample, if we have extra electron-neutron interaction mediated
by a scalar boson of mass mφ via a Yukawa-type interaction,
then there is a contribution to the isotope shift due to different
number of neutrons in two isotopes. The corresponding extra
term can be written as αNP

α
	Ni jDa, where αNP is a dimension-

less constant of the strength of the new interaction, α is the
fine-structure constant, 	Ni j is the difference in the number
of neutrons in isotopes i and j, and D = 〈exp (−mφcr/h̄)/r〉.
Then Eq. (20) becomes

ν̃ai j = Fa

Fb
ν̃bi j − Fa

Fb
Kb + Ka + Dbγi j

(
Fa

Fb
− Da

Db

)
. (21)

Here γi j = αNP
α

	N/μi j . The last term in Eq. (21) depends on
the isotopes and, therefore, may break the linearity of the King
plot. Studying possible nonlinearities puts limit on the value
of αNP if the values of F and D are known. We calculate
these values for different states of Os16+ using the technique
described in Sec. II B. The results are presented in Table IX.
The value of D depends on the mass of the extra boson mφ .
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For mass mφ > 30 MeV, the radius of the new interaction
h̄/mφc is smaller than the nuclear radius RN = 6.5 fm and
the new interaction is indistinguishable from the field shift.
In this case Da/Db = Fa/Fb and the last term in Eq. (20)
vanishes. We calculate D for two values of mφ , 3 and 0.3 MeV,
which correspond to the new interaction radii r = 10RN and
r = 100RN . For these values of D the last term in Eq. (20) is
not zero and can be used to put limits on αNP at given mφ .

Note that higher-order nuclear structure terms can also lead
to the nonlinearities of the King plot. For example, it was
demonstrated in Ref. [21] that observed nonlinearities of the
King plot in Yb+ can be explained by significant variation
of the nuclear deformation between Yb isotopes (which pro-
duces terms ∼δ〈r4〉). Unfortunately, these higher-order terms
cannot be calculated with the accuracy exceeding the accuracy
of the measurements of the King plot nonlinearity in Yb+. As
a result, the limits on the new interaction have been obtained
under the assumption that this new interaction is the only
source of nonlinearities. Therefore, we do not consider higher-
order terms in this work since their calculations are unreliable
and they will be neglected anyway. However, corresponding
nonlinearities are likely to be smaller for Os than those for Yb.
This is because nuclear calculations suggest that the nuclear
deformation for all stable even isotopes of Os are about the
same (see Table I and Ref. [17]). Equal values of the nuclear
quadrupole deformation β produce equal energy shifts and no
nonlinearities [21].

V. CONCLUSION

We have studied in detail the electronic structure of the
Ir17+ and Os16+ ions using advanced theoretical techniques.
Good agreement with available experimental data and earlier
most advanced calculations is achieved. Calculations reveal
many useful features of both ions relevant to their use for
very accurate optical clocks sensitive to new physics. The
Os16+ ion has at least three long-living states and three tran-
sitions which are good candidates for clock transitions. One
of the transitions is very sensitive to the variation of the
fine-structure constant. Many states of the ion, including the
ground state, are sensitive to the local Lorentz invariance and
local position invariance violation. The latter feature is likely
to be common for all HCIs with open 4 f or 5 f shells. In
addition, the Os16+ ion can be used to study new electron-
neutron interactions using the King plot and its possible
nonlinearities.
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