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Nuclear electric resonance for spatially resolved spin control via pulsed optical excitation
in the UV-visible spectrum
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Nuclear electric resonance (NER) spectroscopy is currently experiencing a revival as a tool for nuclear
spin-based quantum computing. Compared to magnetic or electric fields, local electron density fluctuations
caused by changes in the atomic environment provide a much higher spatial resolution for the addressing of
nuclear spins in qubit registers or within a single molecule. In this article we investigate the possibility of
coherent spin control in atoms or molecules via nuclear quadrupole resonance from first principles. An abstract,
time-dependent description is provided which entails and reflects on commonly applied approximations. This
formalism is then used to propose a method we refer to as “optical” nuclear electric resonance (ONER). It
employs pulsed optical excitations in the UV-visible light spectrum to modulate the electric field gradient at
the position of a specific nucleus of interest by periodic changes of the surrounding electron density. Possible
realizations and limitations of ONER for atomically resolved spin manipulation are discussed and tested on 9Be
as an atomic benchmark system via electronic structure theory.
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I. INTRODUCTION

Quantum technologies have been attracting increasing
attention in recent years, above all the field of quantum com-
puting. This interest stems from the potential of quantum
systems to outperform classical computers in tasks such as the
simulation of complex quantum systems, optimization prob-
lems, or cryptography [1–5]. Current paradigms of quantum
computers are superconducting circuits [6,7], trapped ions
[8,9] or atoms [10,11], solid-state systems such as semicon-
ductors [12,13] or topological qubits [14,15], and nuclear
spin-based quantum systems [16–18].

A critical factor for the realization of quantum computers is
the coherence time of a single qubit. Among the many systems
being studied, nuclear spins are of particular interest due to
their comparably large coherence time. In large ensembles,
their control and detection via magnetic resonance is widely
exploited. Early proposals for solid-state quantum computers
utilized nuclear magnetic resonance to realize quantum search
and factoring algorithms [19–21]. However, despite the suc-
cess, possible applications are intrinsically limited by the fact
that oscillating magnetic fields cannot be easily confined or
screened at the nanoscale. As a consequence, identical nuclear
spins within a large region respond to the same signal and
cannot be addressed individually. This presents a challenge
for the up-scaling and the integration of nuclear systems into
multispin devices based on magnetic control only.

Control via electric fields, on the other hand, would resolve
this problem, since electric fields can be efficiently routed and
confined via industrial standard procedures. Recently, there
has been significant progress in using the electron-nuclear
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hyperfine interaction to transduce electric signals into mag-
netic fields for nuclear spin control [11,22], and first universal
gates have been realized in this way for trapped ytterbium
atoms [11]. Yet, although working in principle, this type of
coupling also opens a channel for nuclear spin decoherence.
To maintain maximum coherence and allow for individual
control of the nuclear spins, a direct, exclusively electrical
control over spin states might turn out to be a viable solution.
Here the use of radio frequency electric fields is believed to be
suitable for an up-scaling of nuclear spin-based quantum de-
vices, taking advantage of the nuclear quadrupole interaction
(NQI), a well-known effect leading to line shifts of nuclear
magnetic resonance (NMR) signals. Despite much earlier
suggestions of coherent quadrupole coupling [23], a first ex-
perimental demonstration of a controlled spin manipulation
succeeded only very recently: Avoiding the mediation via a
magnetic field, a coherence time of 0.1 s could be achieved
for a high-spin nucleus in silicon [16]. Motivated by these
findings, we provide a comprehensive theoretical analysis and
discuss commonly applied phenomenological approximations
that have been used to describe either nuclear electric reso-
nance (NER) or nuclear acoustic resonance (NAR) [16,24,25].
Based on this theoretical framework, we then propose a pro-
tocol of nuclear spin control using electric fields in the visible
regime, a technique we refer to as optical nuclear electric
resonance (ONER). Bringing optical excitation into play, the
entire field of optoelectronics and nanophotonics might enter
the quest for viable quantum computing technologies based
on nuclear spin processes.

Our article is structured as follows. In a first step, we
introduce a nuclear quadrupole Hamiltonian for a molecular
system and describe the interaction of the nuclear quadrupole
moment with the electric field gradient (EFG). Relevant prop-
erties, such as energy correction terms and transition elements
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of the quadrupole Hamiltonian, are investigated for an open
two-level system. Second, we derive an abstract description
of time-dependent nuclear quadrupole interaction for NER
and NAR from quantum mechanical principles. In a third
step, we use our formalism to propose a protocol for ONER
as a paradigm and apply it to a single beryllium atom in a
benchmark study.

II. METHODS

A. Nuclear quadrupole Hamiltonian

Atomic nuclei consist of protons and neutrons and there-
fore exhibit a charge distribution. The latter has a vanishing
dipole moment with respect to the center of charge of the
nucleus, but might feature a nonvanishing quadrupole mo-
ment, which is related to the nuclear spin I and interacts
with the electric field gradient (EFG), the second derivative
of the electric potential, at the position of the nucleus. The
corresponding Hamiltonian can be written as

HQ = IμQμνIν, (1)

with Qμν = q
2I (2I−1)�μν , where �μν is the EFG tensor and

q is the scalar quadrupole moment of the nucleus. Note that
we implicitly sum over double appearing Greek indices in
this expression, a convention we keep throughout the paper.
A detailed derivation of this Hamiltonian can be found in
Appendix B. The numerical values of the scalar quadrupole
moments of different nuclei are tabulated in Refs. [26,27].
Note that only nuclei with nuclear spin I > 1

2 can have a
nonvanishing quadrupole tensor, as indicated by the propor-
tionality constant. We will refer to the tensor Q as the NQI
tensor in the further discussion.

1. Quadrupole energy splitting

Before continuing with the derivation of a suitable model,
it is convenient to investigate a few properties of the spin
quadrupole Hamiltonian. Although quadrupole splitting also
occurs if no external magnetic field is present, it is reasonable
to apply an external magnetic field to the nucleus of interest
in order to obtain a sufficiently large splitting of the nuclear
spin states. In an external magnetic field B = B0ez, the spin
Hamiltonian for a quadrupolar nucleus reads

H = HB + HQ = −γnB0Iz + IμQμνIν, (2)

with γn denoting the gyromagnetic moment of the nucleus. If
the energy splitting due to the magnetic field is large compared
to the quadrupole line splitting, the energy correction due to
NQI can be treated perturbatively. In good approximation,
the eigenstates of the total Hamiltonian can be described by
the eigenstates of the Zeeman Hamiltonian, which are just
the orientational nuclear spin states |mI〉 for a fixed spin
quantum number I . In first order, the corrected energies are
given by

E (1)
mI

= 〈mI |H |mI〉

= −γnB0mI +
(

3m2
I

2
− I (I + 1)

2

)
Qzz. (3)

This leads to corrected transition energies of

�E (mI − 1 → mI ) = −γnB0 + 3
2 (2mI − 1)Qzz,

�E (mI − 2 → mI ) = −2γnB0 + 3
2 (4mI − 4)Qzz. (4)

Note that this correction opens the possibility to address
specific transitions individually, which is not possible in the
case of equidistant Zeeman splitting alone. These corrected
transition energies become relevant when choosing a suitable
driving frequency for the nuclear spin system.

2. Transition elements and time-dependent couplings

In order to drive transitions between different spin states
|mI〉 via direct quadrupole coupling a time-dependent vari-
ation of the EFG tensor is necessary. In the following, we
calculate the transition elements for a quadrupolar nucleus in
an external, constant magnetic field B = B0ez, similar to the
situation discussed in the supplementary material of Ref. [16].
The spin Hamiltonian for a nucleus of spin I , subject to a
time-dependent NQI tensor Qμν (t ), is given by Eq. (2). The
time dependence is inherited from the EFG tensor, which can
be manipulated. The Rabi frequency for transitions from some
mI to m′

I is mainly determined by the transition amplitudes,
denoted as gmI →m′

I
below.

Any quadratic combination of x, y, z components of the
spin operators can appear in the interaction Hamiltonian, but
it is immediately clear that only transitions mI → mI ± 1 and
mI → mI ± 2 are possible since the interaction is quadratic
in the spin operators. Transitions with �mI = ±1 are driven
by the terms IxIz, IyIz and their corresponding adjoints. Since
the quadrupole interaction is symmetric, we can combine
the terms to derive the proportionality factor of Qxz(t ). For
mI → mI − 1 transitions one obtains the transition amplitude

gmI →mI −1(t ) = αmI −1↔mI (Qxz(t ) + iQyz(t )),

αmI −1↔mI = 1
2 |2mI − 1|

√
I (I + 1) − mI (mI − 1). (5)

Transitions with �mI = ±2 are driven by the terms quadratic
in the x and y spin operators, I2

x , I2
y , IxIy, and IyIx. Calculating

the transition amplitude for the corresponding mI → mI − 2
transitions yields

gmI →mI −2(t ) = βmI −2↔mI [Qxx(t ) − Qyy(t ) + 2iQyx(t )],

βmI −2↔mI = 1
4

√
[I (I + 1) − (mI − 1)(mI − 2)]

×
√

[I (I + 1) − mI (mI − 1)]. (6)

Note that the modulus of these transition amplitudes will
determine the Rabi frequency of the respective spin-level tran-
sitions in the dynamics simulations later.

B. The open two-level system

In order to derive a protocol for ONER we consider pulsed
excitations of a two-level system to drive the nuclear transi-
tions. The energy of the ground state |g〉 is set to zero, and the
energy of the excited state |e〉 is denoted as ω0. We model
the interaction in the presence of an external electric field
E (t ) = E0 cos(ωt )ε̂ of amplitude E0 and linear polarization ε̂.
The detuning of the electric field is denoted as � = ω − ω0.
Within the dipole approximation, the dynamics is described
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by the Hamiltonian

H2L = ω0σ
†σ − P · E (t ), (7)

with P = (μσ + μ∗σ †) as the dipole transition operator, with
σ = |g〉〈e| as the lowering operator and μ as the correspond-
ing dipole transition matrix element. It is standard practice
to perform the rotating wave approximation, neglecting fast
oscillating terms in the Hamiltonian, and to transform the
system in the rotating frame by a unitary transformation [28].
This yields a time-independent Hamiltonian

H ′ = −�σ †σ + �

2
σ + �∗

2
σ †, (8)

with � = −〈g|P · ε̂|e〉E0 denoting the Rabi frequency, which
depends on the relative orientation of the dipole moment and
the polarization of the electric field.

If interactions with an environment are taken into account,
decay and dephasing terms may enter through a Linblad mas-
ter equation (a brief introduction to open quantum systems and
density operators can be found in Appendix C). Switching to
the density operator formalism, the general form reads

ih̄∂tρ = [H ′, ρ] + ih̄�L[σ ]ρ + ih̄
γc

2
L[σz]ρ, (9)

with σ inducing decays with rate � from the excited state to
the ground state and σz = |e〉〈e| − |g〉〈g| inducing coherence
loss, quantified by the decay rate γc. The superoperator L is
defined as

L[c]ρ = cρc† − 1
2 (c†cρ + ρc†c), (10)

for some collapse operator c.
The representation as master equation is convenient for

a general numerical implementation and generalizations to
more complicated systems. Possible solutions can be obtained
numerically, e.g., via the Python library QuTiP [29,30].

Whereas the isolated system does not have any steady-
state solutions, the open system tends toward an equilibrium
for t → ∞. Demanding ∂tρ = 0 and solving the remaining
homogeneous linear equation, one obtains the steady-state
solutions for the density operator matrix elements

ρee(t → ∞) = �2

2γ⊥�

1

1 + �2

γ 2
⊥

+ �2

γ⊥�

,

ρeg(t → ∞) = i�

2γ⊥

1 + i�
γ⊥

1 + �2

γ 2
⊥

+ �2

γ⊥�

, (11)

with the definition γ⊥ = �
2 + γc. These solutions, and thus the

dynamics of the system, depend on the ratio of Rabi frequency
and the decay rate. The higher the decay rate, the faster the
convergence to the steady-state solution.

III. RESULTS AND DISCUSSION

A. Nuclear electric resonance

Having established the interaction principles of a
quadrupolar nucleus and the EFG, we are now interested in
the possibility of controlling the nuclear spin coherently. This
will be achieved through a modulation of the EFG at the po-
sition of the nucleus we aim to address. We start by a general

formulation of the quantum mechanical equations and derive
an evolution equation for the spin system. For the sake of a
reduced formalism, only a single nucleus will be assumed; a
generalization of this interaction to systems containing several
nuclei is straightforward.

1. General description

We consider a generic molecular system exposed either to
external strain in case of NAR or to external fields in the case
of NER. All nonspin-related contributions to the Hamiltonian
are collected in a “molecular” part, i.e., kinetic energies of
all particles and Coulomb interactions plus external strain
or external electric field effects, and a “spin” part including
spin interactions with the external magnetic field and with the
electric field gradient. In compact form, the total Hamiltonian
reads

H (t ) = HM (t ) ⊗ 1 + 1 ⊗ HB + Qμν ⊗ IμIν, (12)

with HM (t ) denoting the molecular Hamiltonian, HB denoting
the Zeeman interaction Hamiltonian of the nuclear spin, and
Qμν as the NQI tensor derived in Sec. II A. The molecular part
might also contain coupling terms to the environment in form
of Lindblad superoperators that act only on the molecular
system. This accounts for the fact that decay rates of electronic
states are typically very fast compared to timescales of the
nuclear spin system. Note that the two separate Hilbert spaces
are coupled only through the nuclear quadrupole interaction.
For the purpose of this work, we assume that additional spin
interactions, such as hyperfine coupling or spin-spin coupling
with neighboring atoms, are negligible, and will choose our
benchmark system accordingly. A similar analysis might be
possible considering additional interactions; however, this is
much more involved and might even hinder coherent control
via quadrupole interaction, as was suggested by Ref. [16].
Since the coupling between molecular system and spin sys-
tem is small, we will further neglect any reverse impact of
the spin system onto the molecular system in the time evo-
lution of the molecular system. This step greatly simplifies
the computational treatment, since all relevant properties of
the isolated molecular system become accessible via standard
computational chemistry packages. In this work, we will use
the Molpro suite of programs [31–33] for the computation of
EFG fluctuations caused by electronic excitation.

Since the coupled system obeys the von Neumann equa-
tion, we have to take partial traces to obtain dynamical
equations for the molecular system and the spin system, re-
spectively. For details, we refer to Appendix C. Supposing
a weak coupling due to only quadrupole interaction, i.e.,
‖Q‖ := maxμν |Qμν |, we may assume that the total density
operator remains decomposable over time, i.e., that the Born
approximation

ρ(t ) = ρM (t ) ⊗ ρS (t ) (13)

holds throughout time evolution, where ρM and ρS are the
partial density operators of the molecular system and the spin
system, respectively. This approximation is reasonable since
the coupling strength of the spin system is negligibly small
compared to the energy scale of the molecular Hamiltonian.
With these approximations in place, we obtain an evolution
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equation for the molecular part of the form

i∂tρM = i∂t trS{ρ} = trS{[H, ρ]}

≈ [HM (t ), ρM]

=1︷ ︸︸ ︷
trS{ρS} +ρM

=0︷ ︸︸ ︷
trS{[HB, ρS]}

+ [Qμν, ρM]trS{IμIνρS}
= [HM (t ), ρM] + O(‖Q‖). (14)

Note that the error of the molecular density operator of the iso-
lated system with respect to the coupled system is of the order
of O(‖Q‖). Furthermore, we obtain an evolution equation for
the spin part by taking the partial trace over the molecular part,
trM , which yields

i∂tρS = i∂t trM{ρ} = trM{[H, ρ]}

= ρS

=0︷ ︸︸ ︷
trM{[HM (t ), ρM]} +[HB, ρS]

=1︷ ︸︸ ︷
trM{ρM}

+ [IμIν, ρS] trM{QμνρM}︸ ︷︷ ︸
=〈Qμν 〉(t )

= [HB + 〈Qμν〉(t )IμIν, ρS]. (15)

Hence, we are left with the two dynamical equations

i∂tρM = [HM (t ), ρM ] + O(‖Q‖),

i∂tρS = [HB + 〈Qμν〉(t )IμIν, ρS], (16)

with

〈Qμν〉(t ) = trM{ρM (t )Qμν} + O(‖Q‖2). (17)

Both can be solved via pure states, i.e., via a Schrödinger
equation instead of the von Neumann ansatz for density op-
erators.

2. Solution for the molecular system

According to Eqs. (16) and (17), the molecular equa-
tion needs to be solved first, since the spin part can be solved
only once the time dependence of the NQI tensor is known.
Depending on the actual problem setting the solution of the
molecular system necessitates further approximations. Since
the time dependence of the external field in the molecular
Hamiltonian in NER as well as NAR is slow compared to
the characteristic time of electron movement, an adiabatic
behavior may be assumed to obtain the time dependence of
the molecular system. A discussion of the units and orders
of magnitude of NQI parameters is given in Appendix D.
Employing the adiabatic theorem [34], the wave function of
the molecular system can be written as

|ψM (t )〉 = e−iγ (t )e−i
∫ t

0 E (τ ) dτ |φM (t )〉, (18)

with γ (t ) as a time-dependent phase and |φM (t )〉, E (t ) as
eigenfunction and eigenvalue, respectively, of the adiabatic
Hamiltonian equation

HM (t )|φM (t )〉 = E (t )|φM (t )〉. (19)

Choosing the adiabatic ground state due to environmental
coupling and short relaxation times in comparison to the long
timescale of the nuclear quadrupole interaction, the time de-
pendence of the NQI tensor may be written as an expectation

value of the corresponding electronic wave function,

〈Qμν〉(t ) = 〈ψM (t )|Qμν |ψM (t )〉, (20)

which can be easily calculated via common electronic struc-
ture methods, which provide the EFG tensor components �μν

[see Eq. (1)] at the position of the nucleus.

B. Optical nuclear electric resonance

With all prerequisites in place, we are now in the posi-
tion to propose our protocol for an optical stimulation of
nuclear spin processes via pulsed light. As a special case of
the above, we consider an electronic two-level system cou-
pled to a nuclear spin system via quadrupole interaction. The
environment needs to be taken into account, since typical
lifetimes of electronically excited states of atoms are in the
range of 10−9 seconds, i.e., are much smaller than the typical
timescales for nuclear spin control via quadrupole interaction
(10−3 to 10−6 s).

1. General derivation of ONER

The Hamiltonian of a two-level system coupled to a nuclear
spin in an external constant magnetic field B = B0ez and time-
dependent electric field E (t ) is given by

H = [H2L + HE (t )] ⊗ 1 + 1 ⊗ HB + HQ

= [ω0|e〉〈e| − P · E (t )] ⊗ 1

− 1 ⊗ γnB0Iz + Qμν ⊗ IμIν, (21)

with all constants defined as above. Note that the electric field
gradient, and thus the quadrupole coupling tensor Q, is an
operator in the Hilbert space of the two-level system, i.e., a
2×2 matrix in the basis {|g〉, |e〉} containing blocks of EFG
tensors for the spin system. Only the last term in Eq. (21)
couples the two-level system and the nuclear spin system. The
dynamics of the two-level system is mainly influenced by the
time-dependent (dipole) Hamiltonian, inducing transitions of
the two-level system. It will be treated via a Born-Markov
master equation with a decay constant �  |γnB0|, ‖Q‖; see
Sec. II B for details. This is reasonable since the decay fre-
quency lies in the range of GHz for nonmetastable excited
states of isolated or weakly interacting atoms, whereas the
Zeeman splitting and the quadrupole splitting are in the MHz
and kHz regime, respectively. The Rabi frequency of the two-
level system is chosen to be of the order of GHz, which can be
adjusted by the intensity of the laser field. The energy range
of the electronic excitation lies on the order of PHz. Thus, we
have established the necessary conditions for our protocol,

ω ≈ ω0  � ∼ �  |γnB0|, ‖Q‖. (22)

The effect of the spin system on the two-level system is
negligible, as the dominant decay channel � of the two-level
system is governed by the interaction with the environment
and the dynamics of the two-level system is much faster than
the dynamics of the spin system. This also justifies the Born-
like assumption that the total density matrix of the two-level
system and the spin system remains decomposable throughout
time-evolution. Thus, the same derivation as above is applica-
ble, and by taking the respective partial traces we obtain the
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FIG. 1. Schematic illustration of a pulsed excitation of a two-level system {|g〉, |e〉} with frequency ω0, decay rate �, external pulse duration
τ , and external field frequency ω. For visibility, the frequency of the driving field is scaled. The EFG tensors of ground and excited state are
illustrated at the respective state level. More information on the visualization of EFG tensors can be found in Appendix E.

dynamical equations

i∂tρ2L ≈ [H2L + HE (t ), ρ2L] + i�L[σ ]ρ2L + O(‖Q‖),

〈Qμν〉(t ) = tr2L{ρ2L(t )Qμν} + O(‖Q‖2), (23)

i∂tρS = [HB + 〈Qμν〉(t )IμIν, ρS],

where we are denoting the density operator of the electronic
two-level system and of the spin system as ρ2L and ρS , re-
spectively. The interaction of the open two-level system with
an external electric field will lead to damped oscillations [see
Sec. II B and Figs. 2(a) and 2(b)], asymptotically approaching
the steady-state solution Eq. (11) with a decay rate of �. If
the external electric field is turned off, the two-level system
will decay to its ground state. The key feature of our proposed
protocol is now the following: Enforcing a periodic repetition
of this process via a pulsed excitation, the nuclear spin sys-
tem can be controlled by its quadrupole-mediated interaction
with the electronic two-level system, which features different
EFG tensor values in different electronic states. A graphical
illustration of the proposed scheme is given in Fig. 1, where
the pulse duration τ , the frequency of the external undetuned
field ω ≈ ω0, the decay rate �, as well as the EFG tensors
of ground and excited state are illustrated. This is the basic
principle of ONER.

Formally, we introduce a pulsed external electric field,
corresponding to a cosine modulated with a square pulse,
i.e., E (t ) = E0 �(t mod τ ∈ (0, τ/2)) cos(ωt ), with t mod τ

denoting the fraction of t that is in an interval (nτ, (n + 1)τ )
for some n ∈ N. In this way, a pulsed modulation of the
population of the excited state can be achieved, as illustrated
in Figs. 2(a) and 2(b). It shows one period of the square pulse
enveloping function of E (t ) (red dashed line) and the resulting
population of the excited state of the two-level system (blue
solid line). The repetition rate τ−1 of the square pulse is
chosen such that it matches the transition energy of the spin

system for a specific transition. Note that 1
τ

� � = O(GHz),
since the Zeeman energy splitting of the spin system is of the
order of MHz. As long as Eq. (22) is satisfied, the general
analysis does not change since exp(−�τ/2) � 1. This means
that the excited state fully decays into the ground state after
half a period of the pulse sequence. In this way, a period-
ically pulsed modulation of the excited state population is
achieved, which translates into a corresponding modulation of
the EFG tensor and therefore also the NQI tensor quantities.
For a sufficiently large decay rate, the steady-state solution
is reached quickly, and the population of the excited state
resembles a pulsed square function in good approximation.
For lower decay rates, more Rabi oscillations appear before a
steady-state is reached and the edge decays more slowly after
the signal has been turned off, as is illustrated in Fig. 2.

In any case, the density matrix of the two-level system
is periodically modulated with period τ . For convenience,
the Fourier coefficients of the excited state population are
compared in Figs. 2(c) and 2(d). The zeroth and first Fourier
component are well approximated by the Fourier components
of a square pulse, i.e., the steady-state solution.

From Eq. (23) it follows that the time dependence of the
quadrupole interaction is directly inherited from the time de-
pendence of the two-level density matrix. This can be used to
determine the effective energy splitting of the spin system and
the corresponding Rabi frequencies for specific transitions. In
order to obtain analytical results of these quantities we inves-
tigate the effective quadrupole coupling tensor 〈Q〉. Since the
quadrupole interaction tensor is real and symmetric, and the
two-level density operator is Hermitian with trace one, we get

〈Q〉(t ) = tr2L{ρ2L(t )Q}
= ρ2L,ee(t )〈e|Q|e〉 + [1 − ρ2L,ee(t )]〈g|Q|g〉

+ 2Re{ρ2L,eg(t )〈e|Q|g〉}. (24)
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(a) (b)

(c) (d)

FIG. 2. Population of the excited state of a two-level system under pulsed excitation with decay with Rabi frequency �  1
τ

. The dashed
red line in panels (a) and (b) indicates the enveloping function of the laser pulse. The x axis shows one pulse duration τ . Panel (a) shows the
case of a large decay rate, �  1

τ
, whereas a moderate decay rate is shown in panel (b). In both cases the steady-state solution is reached. In

panel (b) the excited-state population oscillates in the beginning. After turning off the external pulse, the system relaxes into the ground state,
according to the respective decay rate. The Fourier analysis of the respective populations and a comparison with the steady-state solution, i.e.,
a perfect square signal, is shown in panels (c) and (d). The x axis refers to the Fourier component n, with corresponding frequency ωn = 2πn

τ
.

It can be seen that the steady-state solution is a good approximation for the dominant Fourier modes in both cases. This becomes relevant in
the theoretical analysis of the ONER protocol.

Note that the off-diagonal elements of the quadrupole cou-
pling tensor, i.e., 〈e|Q|g〉 and 〈g|Q|e〉, can be chosen to be
real and can therefore be pulled out of the real part in the
last term. Furthermore, as can be seen from Eq. (11), the
off-diagonal steady-state components of the two-level density
operator in the rotating frame, ρ ′

2L,eg and ρ ′
2L,ge, are (mainly)

imaginary and thus cancel effectively when taking the real part
and time average over a relevant timescale of the spin system.
The time average vanishes since the off-diagonal elements of
the density matrix in the nonrotating frame can be written
as ρ2L,eg(t ) = ρ ′

2L,ege−iωt , with ω ≈ ω0 the frequency of the
driving field. Thus, on the timescale of the spin system, we
find

Re{ρ2L,eg(t )} = Re

{
1

T

∫ t+T

t
ρ2L,eg(t ′) dt ′

}
≈ 0, (25)

where 2π
ω

� T � τ is some averaging time. This is even
more the case if dephasing terms are added for the two-
level system, since the off-diagonal density matrix elements
will decay even faster. This implies that only the diago-
nal NQI tensor components, i.e., the quadrupole coupling
tensor of the ground and excited state, are relevant for
the time dependence of the effective quadrupole cou-
pling in the spin system. Both can be expressed via the
excited state population of the two-level system, as is
immediately clear from Eq. (24) by neglecting the last
term.

In order to extract the relevant time dependency of the
excited state population we investigate its Fourier expansion,
which is also illustrated in Figs. 2(c) and 2(d). Since the
excited state population is real, we may also use an expansion
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in a real Fourier series, which yields

ρ2L,ee(t ) = a(0)

2
+

∑
n

[b(n) sin(ωnt ) + a(n) cos(ωnt )], (26)

with ωn = 2πn/τ and a(n) = 2
τ

∫ τ

0 ρ2L,ee cos(ωnt ) dt and
b(n) = 2

τ

∫ τ

0 ρ2L,ee sin(ωnt ) dt . Due to the time symmetry of
the square pulse the sine coefficients are clearly dominating,
and the cosine part can be neglected except for a constant
contribution. If the conditions Eq. (22) hold, the steady-state
approximation can be applied [see also Figs. 2(c) and 2(d)]
and the coefficients are well approximated by the coefficients
of the step function with height ρ∞

2L,ee, which are given by

a(0) = ρ∞
2L,ee,

a(n) = 0, for n > 0, (27)

b(n) =
{

2ρ∞
2L,ee / πn, n odd,

0, n even.
.

Since the repetition frequency τ−1 of the pulse is adjusted
to the transition energy of the spin system, the zeroth- and
first-order contributions are most relevant. Higher frequencies
of the Fourier decomposition of the excited state population
have negligible influence on spin-level transitions due to large
detuning. Therefore, we may write

〈Q〉(t ) ≈ ρ2L,ee(t )〈e|Q|e〉 + [1 − ρ2L,ee(t )]〈g|Q|g〉
≈ 〈g|Q|g〉 + (〈e|Q|e〉 − 〈g|Q|g〉)ρ2L,ee(t )

≈ 〈g|Q|g〉 + �Q(e, g)

[
a(0)

2
+ b(1) sin

(
2πt

τ

)]
, (28)

with �Q(e, g) := 〈e|Q|e〉 − 〈g|Q|g〉, by applying the steady-
state approximation and neglecting high-frequency contribu-
tions. For given NQI tensors in the ground state and the
excited state of the two-level system, respectively, it is then
easy to obtain the actual dynamics of the spin system by solv-
ing the respective evolution Eq. (23). Within the steady-state
approximation, the spin Hamiltonian in an external magnetic
field B = B0ez can then be written as

H ≈ −γnB0Iz + IμIν Q(0)
μν (e, g)

+ IμIν Q(1)
μν (e, g) sin

(
2πt

τ

)
, (29)

where the constant quadrupole interaction term

Q(0)(e, g) = 〈g|Q|g〉 + ρ∞
2L,ee

2
�Q(e, g) (30)

determines the quadrupole energy splitting [see Sec. II A 1
Eq. (4)] and the harmonically modulated quadrupole tensor

Q(1)(e, g) = 2ρ∞
2L,ee

π
�Q(e, g) (31)

determines the magnitude of the Rabi frequency of the spin
system [see Sec. II A 2 Eqs. (5) and (6)]. The EFG tensor
of the ground state and the excited state of the two-level
system can be obtained via ab initio methods. The repetition
rate (i.e., the energy splitting between spin states of interest)

and the resulting Rabi frequency of the spin-level transitions
can then be calculated analogously to Secs. II A 1 and II A 2,
respectively.

Note that it is important to include the quadrupole splitting
which stems from Q(0) into the calculation of the repeti-
tion rate τ−1 in order to avoid detuning. Furthermore, the
quadrupole splitting and the spin-level Rabi frequency depend
only on �/� via the steady-state population of the excited
state ρ∞

2L,ee if the conditions Eq. (22) are satisfied. Thus, the
intensity of the laser field should be chosen such that the Rabi
frequency of the two-level system lies in the range of GHz.
For a dipole moment of approximately 1 D, this corresponds
to an electric field amplitude on the order of 105 V

m .

2. Numerical simulation for 9Be

We pick a single 9Be atom for a first numerical simulation
of ONER, using the Molpro program package [31–33] to
calculate the relevant parameters, i.e., the 1Po ← 1S transition
energy as well as the electric field gradient �μν of both states
as a function of an applied external, electric field. The choice
of beryllium is motivated by the fact that it features optical
excitations in the UV-visible regime and a singlet electronic
ground state; the total electron spin is zero, and hyperfine
coupling effects, most noteworthy the substantial contribu-
tions stemming from the Fermi contact term for s orbitals,
are not relevant. Employing the aug-cc-pVTZ basis set [35],
we combine a multiconfigurational self-consistent field cal-
culation (MCSCF [36,37]) with a follow-up multireference
configuration interaction approach (MRCI [38,39]) to account
for dynamic correlation. For computational efficiency, the
atom is treated within the C2v molecular symmetry group.
A symmetrically balanced active space involving the orbitals
6/3/3/0 has been chosen with respect to the internal ordering
A1/B1/B2/A2. With this setup, a perfect degeneracy of the
three sublevels of the P state is preserved at zero electric
field, and an excellent excitation energy of 5.30 eV is ob-
tained for the 1Po ← 1S transition, which deviates from the
experimental value of 5.28 eV tabulated at NIST by less than
0.5% [40]. An evaluation of the electric field gradient of Be
in its well-studied 3Po lowest triplet state, calculated with the
same settings, produces a value of −0.1199 a.u., which agrees
well (about 4% deviation) with earlier calculated values from
the literature [41]. Sternheimer shielding effects lie within
this uncertainty [42]. Note that a single value is sufficient
to characterize the EFG tensor in this case due to spherical
symmetry [43].

9Be has a nonzero scalar quadrupole moment of 0.0529(4)
barn [26,27]. Its gyromagnetic moment is given by γ

9Be
n =

−1.17749(2) μN ≈ 8.9755 MHz
T as given in Ref. [26], where

μN = 7.622593285(47) MHz
T is the nuclear magneton. 9Be has

a total nuclear spin quantum number of I = 3/2, leading to an
energy scale of several MHz for the Zeeman Hamiltonian of
the spin system. We assume that the 9Be atom is subject to
a constant magnetic field B. The direction of the latter will
be used to define a reference axis of the spin system, as the
Zeeman splitting is dominant for the nuclear spin. Also, a
constant electric field E is applied to set a reference axis for
the two-level system and to tune the Rabi frequency of the spin
transitions. An illustration of the coordinate frames is given in
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FIG. 3. Orientations of the external magnetic field B, the electric
field E , the propagation direction of the pulsed signal kx , and the
three sublevels (pE

x , pE
y , pE

z ) of the 1Po electronically excited state
of the 9Be atom. The angle between the zB axis and the zE axis is
denoted as θ .

Fig. 3. Quantities which are frame-dependent will be marked
with a superscript E or B for the coordinate frame being either
aligned with the electric or the magnetic field, respectively.
Both frames have the same x axis, which we choose to be the
direction of propagation of the laser field. The angle between
the zB axis and the zE axis is denoted as θ .

In Fig. 4 the nonzero components of the NQI tensor are
shown in the E frame. The energy splitting of the NQI lies
in the range of several kHz, which justifies the treatment of
the energy correction via perturbation theory as discussed in
Sec. II A 1.

In more detail, Fig. 4 compares the electric field-dependent
NQI tensors for the sE ground state 〈sE |QE |sE 〉, the pE

y ex-
cited state 〈pE

y |QE |pE
y 〉, and the pE

z excited state 〈pE
z |QE |pE

z 〉.
Note that the NQI for the pE

x excited state is identical with
〈pE

y |QE |pE
y 〉 but with xx and yy components swapped. The

shapes of the respective NQI tensors of the ground state and
excited state, shown in Fig. 4, are crucial for the calculation
of the repetition rate and the obtained Rabi frequency of the
spin-level transitions. Due to spherical symmetry of the sE

ground state it has a vanishing NQI at zero field. Also, for
a finite field strength, the respective NQI lies in the range
of a few kHz and is thus negligibly small compared to the
NQI of the excited states. The pE excited states have a non-
vanishing quadrupole interaction of the same magnitude at
zero field but with interchanged axis. This is the expected
behavior, since p orbitals have a nonvanishing EFG tensor
at the origin. The different behavior of pE

z excited state and
pE

y excited state is caused by the constant electric field in zE

direction.
The corresponding electronic excitation energies of the

1Po ← 1S transition are illustrated in Fig. 5. As expected for
a Stark splitting in the external field, the pE

x and pE
y tran-

sitions remain degenerate, while the pE
z transition occurs at

a different energy. The excitation energy for this two-level
system lies around 1.28 PHz, which corresponds to 234 nm

FIG. 4. Nonzero components (xx, yy, zz) of the nuclear
quadrupole interaction (NQI) tensor for 9Be are shown for a lab-
oratory frame aligned with the electric field. The sE ground state
NQI 〈sE |QE |sE 〉 is shown with dotted lines, the pE

z excited state
NQI 〈pE

z |QE |pE
z 〉 is shown with a solid line, and the pE

y excited state
NQI components 〈pE

y |QE |pE
y 〉 are shown with dashed lines. For the

sE ground NQI and the pE
z excited state NQI the xx and the yy

component overlap, due to symmetry. At zero field the sE ground
state is spherical symmetric and thus has vanishing NQI. Also for
finite field strength the NQI of the sE ground state is negligibly small.
Both pE

z excited state and pE
y excited state have similar NQI for zero

field, but with swapped axis. For nonzero field the behavior differs,
since the field is aligned with the zE axis.

or 5.30 eV. We assume no detuning, i.e., ω ≈ ω0, and choose
the amplitude of the electric field such that a Rabi frequency
in the range of GHz is obtained for the two-level system. For
a dipole moment of approximately 1 D this corresponds to
an electric field amplitude of the order of 105 V

m . The Rabi
frequency of the two-level system should be chosen such that
the damping � is approximately of the same order; for further
discussion we choose 0.4 �. This ensures that the steady-state
approximation is valid and leads to a steady-state population

FIG. 5. Stark splitting of the 1Po ← 2S transition of 9Be in an
external electric field. pE

x and pE
y transitions remain degenerate, while

the pE
z transition occurs at a lower energy.
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FIG. 6. Quadrupole energy corrections in kHz for different elec-
tric field strengths E and different angles θ between zE and zB

for electronic excitations into the pE
y state (solid line) and pE

z state
(dashed line), respectively. The corrections are shown for the 3/2 ↔
1/2 transition but are identical to those for the 3/2 ↔ −1/2 transi-
tion. The corrections for −1/2 ↔ −3/2 and the 1/2 ↔ −3/2 differ
only in sign. All quadrupole energy corrections are on the order of
100 kHz. The calculations were performed for a two-level steady-
state population of ρ∞

2L,ee = 25
54 , which corresponds to � = 0.4�.

of

ρ∞
2L,ee = 25

54 , (32)

as obtained via Eq. (11) with γ⊥ = �/2. With the parameter
values set as motivated above, the steady-state approximation
holds, and we can apply the analysis of the previous section.

From the NQI tensor components shown in Fig. 4 we can
calculate the constant NQI tensor Q(0),E (pE

i , sE ) via Eq. (30)
and the harmonically modulated NQI tensor Q(1),E (pE

i , sE )
from Eq. (31) in the E frame for i ∈ {x, y, z}. Since the labora-
tory frame of the spin system is the B frame we have to apply
a rotation to the respective NQI tensors. The corresponding
matrix for a rotation around the common x axis by an angle θ

is given by

R(θ ) =

⎡
⎢⎢⎣

1 0 0

0 cos(θ ) − sin(θ )

0 sin(θ ) cos(θ )

⎤
⎥⎥⎦. (33)

The respective NQI tensors in the B frame are then given by

Q( j),B
(
pE

i , sE
) = R(θ ) Q( j),E

(
pE

i , sE
)

R(θ )�, (34)

for j ∈ {0, 1} and i ∈ {x, y, z}. Note that the E frame still
remains the reference for electronic states. The NQI tensor
values in the B frame can now be used to calculate the
quadrupole energy correction and thus the correct repeti-
tion rate of the laser pulse, the �mI = ±1 and �mI = ±2
transition elements, and the corresponding Rabi frequency
of the spin-level transitions. In Fig. 6 the transition en-
ergy corrections for the different spin-level transitions are
given in units of kHz for different electric field strengths
E and angles θ between zE and zB. Only the quadrupole
corrections are shown, i.e., Eq. (4) without the Zeeman split-

ting. The magnitude of the Zeeman splitting depends on the
magnitude of the external magnetic field. However, we as-
sume that the external field is on the order of tesla, leading
to a MHz Zeeman splitting. We denote the quadrupole energy
correction for the spin-level transition from state |mI〉 to |m′

I〉
for given electronic excitation as �EB(mI → m′

I |pE
i , sE ) with

i ∈ {x, y, z}. Figure 6 shows the transition energy corrections
for the 3/2 ↔ 1/2 transition, which are identical to those for
the 3/2 ↔ −1/2 transition. The correction energies for the
−1/2 ↔ −3/2 transition and the 1/2 ↔ −3/2 differ only in
sign. The 1/2 ↔ −1/2 transition is not shown since it has
a vanishing transition element, as can be seen from Eq. (5).
The quadrupole correction energy for the pE

z excited state NQI
shows stronger changes with increasing electric field strength
of the constant field E , while the quadrupole correction for
the pE

y excited state NQI differs much less. This is reasonable,
since the electric field is aligned with the zE axis.

In total, this leads to a repetition rate τ−1 of the pulse
sequence in the range of several MHz. The quadrupole correc-
tions are on the order of 100 kHz, and the repetition rate has
to be chosen such that it matches the corrected transition en-
ergy of a spin-level transition. The quadrupole correction also
enables individual addressability of the spin transitions, since
equidistant Zeeman transition energies are shifted individually
by NQI. Given a suitable repetition rate, we observe Rabi
oscillations of the spin-level transitions. The Rabi frequency
of the spin-level transitions is determined by the modulus of
the respective transition element given in Eqs. (5) and (6)
for the corresponding harmonically modulated NQI tensor
Q(1),B(pE

i , sE ). We denote the respective transition elements
from state |mI〉 to state |m′

I〉 for given electronic excitation by
gB(mI → m′

I |pE
i , sE ), with i ∈ {x, y, z}.

For a nuclear spin quantum number of I = 3/2 the pref-
actors α and β of the �m = ±1 and �m = ±2 transitions in
Eqs. (5) and (6), respectively, are given by

β3/2↔−1/2 = β1/2↔−3/2 =
√

3/2,

α3/2↔1/2 = α−1/2↔−3/2 =
√

3,

α1/2↔−1/2 = 0.

(35)

The 1/2 ↔ −1/2 transition is forbidden, whereas the other
transitions might have a nonvanishing transition amplitude,
depending on the respective NQI tensor.

Figure 7 illustrates the dependence of the resulting Rabi
frequencies on the relative angle θ between E frame and B
frame for different values of the electric field strength E .
Figure 7(a) shows the Rabi frequency for the 3/2 ↔ 1/2
transition, which is the same for the −1/2 ↔ −3/2 transition,
and Fig. 7(b) shows the Rabi frequency for the 3/2 ↔ −1/2
transition, which is also the same for the 1/2 ↔ −3/2 transi-
tion.

In general, the Rabi frequency for the NQI tensor of the pE
z

excited state can be more easily controlled with the external
constant electric field. The Rabi frequency for the NQI tensor
of the pE

y excited state varies much less; for the �mI = ±1
transitions in particular, almost no dependence can be ob-
served. Note that, for zero field, the transition elements of the
NQI tensor for both excited states coincide.
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(a) (b)

FIG. 7. Rabi frequencies in kHz for different electric field strengths E and different angles θ between zE and zB for pE
y excited state (solid

line) and for pE
z excited state (dashed line) NQI. Panel (a) shows the Rabi frequencies for the �mI = ±1 transitions, whereas panel (b) shows

the Rabi frequencies for the �mI = ±2 transitions. In both cases the Rabi frequencies are on the order of up to 100 kHz. The calculations were
performed for a two-level steady-state population of ρ∞

2L,ee = 25
54 , which corresponds to � = 0.4�.

The general shape of the θ dependence of the Rabi fre-
quency can be explained as follows. For an angle of θ = 0
the NQI of both excited states is diagonal, and therefore no
�mI = ±1 transitions can be driven as the transition element
vanishes. This is immediate from Eq. (5). The same happens
for θ = π/2. For θ = π/4, the off-diagonal elements are
maximized, as can be easily derived from the shape of the
rotation matrix.

For the pE
z excited state also �mI = ±2 transitions cannot

be driven at θ = 0, since xx and yy components coincide [see
Eq. (6)]. For the pE

y excited state, the xx and yy components
of the corresponding NQI tensor are maximally different in
this case, leading to a maximum of the transition element at
θ = 0. For the NQI of the pE

z excited state, the xx and yy
components are maximally different for an angle of π/2, since
the corresponding rotation into the B frame swaps the yy and
zz component. Depending on the transitions one is interested
in, the angle has to be chosen accordingly. A reasonable
choice would be θ = π/4, since all transitions can then be
addressed. The resulting Rabi frequencies lie in the range of
100 kHz, depending on the orientation and the magnitude of
the constant electric field. For comparison, the Rabi frequency
in the NER studies of Ref. [16] was found at 68 kHz.

Finally, in Fig. 8 we show the resulting Rabi oscillations
from a numerical simulation of the coupled system, i.e., a
numerical simulation of the open two-level system coupled
to a spin system via nuclear quadrupole interaction. The total
Hamiltonian from Sec. II A with decay operators for the two-
level system is simulated for an external pulsed excitation with
repetition rate τ−1 with the standard master equation solver of
the Python library QuTiP [29,30]. The simulation parameters
are chosen as � = 0.4� and � = 0, with � = 1 GHz, sim-
ilar to the above analytical investigation of the system. The
angle between electric field and magnetic field is chosen as
θ = π/4, the constant electric field strength was chosen to be
E = 0.01 a.u., and the magnetic field strength was set to 1 T.
An electronic excitation into the pE

z -excited state is assumed.
The repetition rate is chosen such that it matches the desired
spin-level transition energy including the quadrupole correc-

tion term. Note that the analytical treatment is necessary for
this step, as it delivers the corrected repetition rate of the laser
pulses. Figure 8 shows the Rabi oscillations of the numerical
simulation of the spin system for different pulse frequencies
matching the transition energies of the spin system for a
3/2 ↔ 1/2 and a 3/2 ↔ −1/2 transition, as derived from
the analytical considerations. The time axis is normalized
to the analytically obtained Rabi frequency of the respective
transition. It can be seen that there is a slight deviation of the
numerically obtained Rabi frequency and the analytical one,
since the maxima and minima are not perfectly at integer and
half-integer values. However, they are in good agreement.

To summarize, this shows that a nuclear spin system can
be controlled by pulsed electronic excitation of a coupled two-
level system. Since the transitions appear at different energies,
they can be addressed individually by selecting an appro-
priate repetition rate for the external pulses. An additional
decay channel of the two-level system, stemming from the
interaction with the spin system, is not problematic since the
decay of the two-level system is mainly governed by external
couplings. In fact, the two-level system can be considered
effectively independent of the spin system, which enables a
simplified analysis of the combined system and the imposed
quadrupole interaction between electronic excitation and nu-
clear spin manipulation. The simplified analytic discussion is
corroborated by the numerical results obtained for the total
coupled system.

IV. CONCLUSION

Fundamental principles and practical implications of nu-
clear quadrupole resonance as a tool for quantum computing
were investigated. A detailed theoretical description of nu-
clear quadrupole coupling was developed from first principles.
The quadrupole interaction Hamiltonian was derived from the
molecular Hamiltonian in a consistent manner by employing
Taylor expansions for nonpointlike nuclei. Important time-
independent and time-dependent properties of the nuclear
quadrupole Hamiltonian were discussed, and the coupling
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(a) (b)

FIG. 8. Rabi oscillations of the numerical simulation of a quadrupolar nucleus with nuclear spin I = 3/2 via pulsed excitation of a coupled
two-level system subject to an external constant magnetic field of magnitude 1 T. The simulation parameters are chosen for an electric field
strength of E = 0.01 a.u. with an angle of θ = π/4 to the magnetic field axis. The two-level system parameters were chosen as � = 0.4� and
� = 0 with � = 1 GHz. Electronic excitation was performed into the pE

z excited state. The y axis shows the population of the respective spin
states mI . Panel (a) shows the 3

2 ↔ − 1
2 transition, panel (b) the 3

2 ↔ 1
2 transition. The x axes are normalized to the analytically calculated Rabi

frequency. It can be seen that in both cases the analytical frequency and the numerical are in good agreement. Slight deviations can be seen,
since maxima and minima are not located at integer and half-integer values of the normalized time.

of electric field gradient and nuclear spin was investigated
in detail. Within the adiabatic approximation, and assuming
a quasi-independence of the electronic system from the nu-
clear spin system, a consistent, general description for future
discussions of NER and NAR experiments was obtained (a
summary of the applied approximations can be found in Ap-
pendix G). Our formalism exceeds simpler phenomenological
models and lays a consistent foundation for commonly ap-
plied approximations, which can be obtained as special cases
of our more general description (a typical phenomenological
model is discussed in Appendix F).

Putting this general description to practice, we further pro-
pose a scheme for nuclear electric resonance using pulsed
electronic excitation. Polarized laser pulses in the UV-visible
spectrum can be used to drive spin transitions via a coupling
of the EFG tensors in different electronic states of an atomic
or molecular system to the nuclear quadrupole moment. We
refer to this technique as “optical nuclear electric resonance”
(ONER). It exploits changes in the electric field gradient at
the position of the nucleus, which are induced by electronic
excitation, e.g., from the electronic ground state into a suitable
excited state. In a first numerical test with atomic 9Be as a
benchmark, Rabi oscillations for nuclear spin transitions on
the order of several kHz are predicted.

Based on these first results, we believe that ONER has
the potential to link coherent nuclear spin manipulation with
well-established concepts of optoelectronics and nanophoton-
ics. As a third paradigm aside NER and NAR, this protocol
offers the advantage of an increased flexibility with respect
to the addressing of molecular spin systems: It combines a
selectivity which is intrinsic to electronic excitations and their
specific effect on the electric field gradient at the various
nuclear positions of a molecular system. Furthermore, it has
the ability to select specific spin transitions of these nuclei
via pulsed laser light, by tuning the repetition rate to a certain
transition of interest.

Future research will be devoted to the simulation of larger,
more complicated but experimentally accessible systems with
the possibility to address and couple specific nuclear spins,
e.g., within the same molecule or a given molecular qubit
register, through different electronically excited states. Po-
tential candidate systems are metal complexes with reduced
magnetic noise and minimal vibrational coupling [44]. Al-
ternatively, regarding the individual addressing of spatially
separated quantum systems such as cold atoms, ions, or
solid-state qubits e.g., via light-shift gradients [45,46] or non-
linear response in two-level systems [47], new techniques of
quantum optical control may emerge from a combination of
methods.

As a final comment, we would like to emphasize that the
current formalism does not involve any coupling to the elec-
tron spin, which is assumed zero. In singlet systems, the only
spin-spin coupling takes place between nuclei, which might
be a technical advantage, and should be the concern of future
publications on the subject.
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APPENDIX A: OVERVIEW

Appendix B contains a detailed derivation of the nuclear
quadrupole Hamiltonian. Appendix C provides a brief in-
troduction to density operators and open quantum systems.
Appendix D gives an overview of common units and the
order of energy splittings due to quadrupole effects. Ap-
pendix E contains a description of graphical illustrations of
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EFG tensors for the sake of an improved, visual understand-
ing of the tensor components occurring in the main text. In
Appendix F we provide a phenomenological description of
the nuclear quadrupole coupling that is commonly used to
describe nuclear electric resonance or nuclear acoustic reso-
nance. Appendix G summarizes the approximations made in
the theoretical description of NER, NAR, and ONER.

APPENDIX B: DERIVATION OF THE NUCLEAR
QUADRUPOLE HAMILTONIAN

We start from the usual many-particle Hamiltonian of
molecular physics in the absence of external fields. In natural
units (h̄ = 1

4πε0
= me = a0 = 1) it reads

H (0) =

TE︷ ︸︸ ︷∑
i

−1

2
∇2

i +

T (0)
N︷ ︸︸ ︷∑

A

− 1

2MA
∇2

A +

VEE︷ ︸︸ ︷∑
i< j

1

|r (i) − r ( j)|

+
∑
A<B

ZAZB

|R(A) − R(B)|︸ ︷︷ ︸
V (0)

NN

+
∑
i,A

− ZA

|r (i) − R(A)|︸ ︷︷ ︸
V (0)

EN

, (B1)

with lower- and upper-case indices for electron and nuclear
coordinates, respectively. The position of the ith electron is
denoted as r (i), and ∇i is the derivative with respect to this
position. The position of the Ath nucleus is denoted as R(A)

and ∇A is the derivative with respect to this position. Charge
and mass of the Ath nucleus are denoted as ZA and MA,
respectively. Thus, TE represents the electron kinetic energy,
T (0)

N the nuclei kinetic energy, VEE the electron-electron in-
teraction, V (0)

NN the nucleus-nucleus interaction, and V (0)
EN the

electron-nuclei interaction. The superscript (0) will turn out
to be convenient in further discussion.

In this simplified Hamiltonian, the nuclei are thought of
as pointlike particles of mass MA and charge ZA; their actual,
nontrivial charge distribution is neglected. However, since
the deviation of proton positions from the center of charge
of the respective nucleus can be considered small, we can
apply a Taylor series expansion up to second order to ob-
tain correction terms for a non-point-like charge distribution
of the respective nuclei. Introducing center-of-charge coor-
dinates R(A) = 1

ZA

∑
pA

R(A,pA ) and denoting the deviation of
each proton from this center as δR(A,pA ) = R(A,pA ) − R(A), we
obtain the corrected total Hamiltonian

H = H (0) + 1

6

∑
A

�(A)
μν Q(A)

μν , (B2)

with �(A)
μν as the total electric field gradient tensor at the

position of the Ath nucleus,

�(A)
μν =

∑
B �=A

ZB

|R(A,B)|5
(
3R(A,B)

μ R(A,B)
ν − δμν |R(A,B)|2)

−
∑

i

1

|r(i,A)|5
(
3r(i,A)

μ r(i,A)
ν − δμν |r(i,A)|2), (B3)

with definitions r(i,A) := r (i) − R(A) and R(A,B) := R(A) − R(B)

for electron-nucleus and nucleus-nucleus difference vectors,

respectively. Q(A)
nm denotes the quadrupole moment of the re-

spective nucleus, which can be expressed as

Q(A)
μν =

∑
pA

(
3δR(A,pA )

μ δR(A,pA )
ν − δμν |δR(A,pA )|2). (B4)

The nuclear quadrupole moment of each nucleus can be
related to the total nuclear spin by employing the Wigner-
Eckart theorem. The nuclear quadrupole tensor is a traceless
symmetric second rank tensor. It is proportional to the sym-
metric traceless second rank total angular momentum tensor
3
2 (IμIν + IνIμ) − δμνI2 in a subspace with constant nuclear
spin quantum number I . This is satisfied, in good approxi-
mation, for the case of nuclear electric resonance, since the
orbital angular momentum of the nucleus can be considered
constant. Thus, it is sufficient to calculate the matrix elements
in the basis |I, mI〉 of the magnetic quantum numbers of
the nuclear spin, with spin quantum number I and magnetic
quantum number mI . Calculating the proportionality constant
in the |I, I〉 state yields

Qμν = q

I (2I − 1)

(
3

2
(IμIν + IνIμ) − δμνI2

)
, (B5)

with q := 〈II|Q33|II〉 as the scalar quadrupole moment of
the nucleus. The numerical values of the scalar quadrupole
moments of different nuclei are tabulated in Refs. [26,27].
Note that only nuclei with nuclear spin I > 1

2 can have a
nonvanishing quadrupole tensor, as indicated by the propor-
tionality constant.

Exploiting that the electric field gradient tensor � is sym-
metric and traceless, the nuclear quadrupole Hamiltonian for
a single nucleus can be rewritten as

HQ = 1
6�μνQμν = IμQμνIν, (B6)

with Qμν = q
2I (2I−1)�μν .

APPENDIX C: OPEN QUANTUM SYSTEMS

There are several different timescales involved and interac-
tions with the environment of the molecular system need to be
taken into account. This is achieved by introducing the density
operator ρ, which has the properties

ρ = ρ† � 0, tr{ρ} = 1, (C1)

and, in the case of an isolated system, obeys the von Neumann
equation

ih̄∂tρ = [H, ρ]. (C2)

As a Hermitian operator the density operator can be expressed
in its eigenbasis via ρ = ∑

α pα|ψα〉〈ψα|. The expectation
value of an observable O is calculated by the trace tr{ρO} =∑

α pα〈ψα|O|ψα〉, highlighting the statistical nature of the
density operator.

In open systems, the system of interest interacts with an
environment. The total system, SE , consisting of the system of
interest S and the environment E , is treated via a joint density
operator ρSE whose dynamics is given by the von Neumann
equation. Since we are interested only in the dynamics of the
system S, we want to reduce this density matrix to a density
matrix of that particular system only, such that expectation
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values of observables and matrix elements of the system re-
main the same as for the total system SE . This is reasonable
because the dynamics of the environment is unknown in most
cases and observables are only accessible for the system S. For
that purpose, the reduced density operator ρS is introduced as
the partial trace of the total density operator,

ρS = trE {ρSE } =
∑
mE

〈mE |ρSE |mE 〉, (C3)

for some basis |mE 〉 of the environment Hilbert space. Due
to the linearity of the trace operator, it is immediately clear
that expectation values of observables of the system OS can
be calculated via

〈OS〉 = tr{ρSE OS} = trS{OS trEρSE }
= trS{OSρS}. (C4)

Additionally, it is easy to check that the reduced density op-
erator fulfills the conditions for a density operator stated in
Eq. (C1) in the Hilbert space of the system S. In general, the
Hamiltonian of the total system may be written as

H = HS ⊗ IE + IS ⊗ HE + HSE , (C5)

with HS and HE as operators acting exclusively on the system
and the environment, respectively, and HSE as a coupling
term. IE and IS are denoting unit operators in their corre-
sponding Hilbert space. If the interaction between system and
environment is negligible, i.e., HSE ≈ 0, then the dynamical
equation for the reduced density operator is given by

ih̄∂tρS = [HS, ρS] (C6)

as can be checked easily. In this case the system can be treated
as an isolated system. However, if the interaction between
system and environment is not negligible, the treatment of
the dynamics of the system becomes much more involved.
A common ansatz to handle such cases is the Born-Markov
approximation, which leads to a nonunitary evolution equa-
tion for the reduced density operator, often referred to as
Linblad master equation. A full derivation can be found in
Ref. [28]. One starts from the evolution equation for the total
system

ih̄∂tρSE = [H, ρSE ], (C7)

and the assumptions of initial separability, i.e., ρSE (0) =
ρS (0) ⊗ ρE (0), separability during time evolution and con-
stant environment (Born approximation), i.e., ρSE (t ) =
ρS (t ) ⊗ ρE , a short memory environment (Markov approx-
imation) and a coarse grained system dynamics (secular
approximation).

This leads to the Born-Markov master equation of the
reduced system

ih̄∂tρS = [HS, ρS] + ih̄
∑

α

kαL[cα]ρS, (C8)

with decay strengths kα and the Linblad superoperator L de-
fined by

L[c]ρS = cρSc† − 1
2 (c†cρS + ρSc†c) (C9)

for a so-called collapse operator c. The prefactors kα of the
nonunitary evolution terms can be interpreted as the rate of

the process described by the coupling operators, for example,
the strength of dissipation due to coupling to the environment.
Note that a master equation of this type is trace-preserving
and ensures that the density operator is Hermitian, which is
important to ensure that the solution to the Lindblad master
equation is indeed a density operator.

APPENDIX D: UNITS AND ORDER ESTIMATES

In this section we provide numerical estimates of typical
energy scales within the context of quadrupole interaction.
So far, atomic units have been used, i.e., h̄ = 1

4πε0
= me =

a0 = 1. Within the SI, the EFG tensor is given in units of
V

m2 . The corresponding atomic units are 1 au = EH

ea2
0
, with a0

denoting the Bohr length, e the elementary charge, and EH

the energy in Hartree. The conversion factor to SI units is
1 au = 9.717×1021 V

m2 .
Typical values for the scalar quadrupole moment of a

nucleus are of the order of 10−3 − 1 barn, where 1 barn =
10−28 m2, as can be seen from the table of scalar quadrupole
moments given in Refs. [26,27]. Since q is very small, the
EFG necessary to generate a significant quadrupole interac-
tion needs to be very large. Typically, only a microscopic
mechanism in a crystal lattice or molecule, such as the distor-
tion of covalent bonds in the vicinity of the nucleus, creates
a significant EFG; values of the latter range from 1016 V

m2 to
1021 V

m2 . For scalar quadrupole moments in the range of 10−3

to 1 barn this yields an interaction strength of the order of kHz
to MHz.

Often a magnetic field is applied as well to generate a
Zeeman splitting of the nuclear energy levels. The magnitude
of the gyromagnetic moment is of the order of 1–50 MHz

T as
shown in Refs. [26,27]. Assuming a magnetic field of ap-
proximately 1 T, this results in a level splitting in the MHz
regime. In comparison to that, the gyromagnetic moment of
the electron is given by approximately 28 GHz

T . Hence, besides
direct stimulation via radio frequency adsorption, only an
acoustic phonon excitation in solids offers a possible coupling
within this energy regime. These options give rise to the possi-
bility of nuclear electric resonance (NER) or nuclear acoustic
resonance (NAR) as experimental techniques that have been
studied so far in recent years [16,24,25].

APPENDIX E: GRAPHICAL ILLUSTRATION
OF EFG TENSORS

In order to improve our understanding of the structure and
the origin of EFG tensor components we want to display
them graphically and investigate different examples of com-
binations of atomic orbitals, since, in the general case, linear
combinations of atomic orbitals have to be considered. As
defined in Ref. [48], we will consider the function

f (r) = s
∑

i j

ri〈�i j〉r j = s‖r‖2g(φ, θ ) (E1)

with 〈�i j〉 being the expectation value of the EFG tensor in the
state to investigate and s a scaling parameter, to illustrate the
EFG tensor as a three-dimensional surface plot. We set ‖r‖ =
|g(φ, θ )| and plot the resulting surface in blue if g(φ, θ ) > 0
and orange if g(φ, θ ) < 0. This is a general scheme that can be
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(a) isotropic, diag(1, 1, 1) (b) axial, η = 1, diag(1,−1, 0)

(c) axial, η = 0, diag(1, 1,−2) (d) intermediate, η = 1/3, diag(−3, 2, 1)

FIG. 9. Graphical representation of a second rank tensor with varying asymmetry parameters η in the principle axis system. (a) shows an
isotropic second rank tensor, and (b)–(d) traceless second rank tensors with asymmetry parameters η = 1, η = 0, and η = 1/3, respectively.

used to illustrate symmetric second rank tensors graphically.
An example is given in Fig. 9, where the isotropic case and
three feasible EFG tensors for different asymmetry parameters
η are presented. The asymmetry parameter is defined as

η = |�y′y′ − �x′x′ |
|�z′z′ | , (E2)

where the x′, y′, z′ are the eigenvectors of the EFG tensor,
with z′ corresponding to the largest eigenvalue. If the EFG
tensor is not diagonal in the chosen laboratory frame, it will
appear as a rotation of a diagonal tensor in the principle axis
system to the laboratory frame. In molecular systems, the
origin of the tensor is shifted to the origin of the nucleus of
interest.

APPENDIX F: PHENOMENOLOGICAL DESCRIPTION
OF NUCLEAR QUADRUPOLE COUPLING

The theoretical treatment in Sec. III A 1 entails and justifies
a commonly applied model for nuclear quadrupole coupling,
which is briefly discussed here. We assume an EFG tensor
created by a specific charge distribution n. The EFG tensor at
the position of a nucleus A of a molecular system (with fixed
nuclei), denoted as �(A)

μν , is given in Eq. (B3).

Since only one-electron operators appear in this expres-
sion, we can relate the expectation value 〈ψ |�(A)

μν |ψ〉, for a
given state |ψ〉 of the system, to an integral over the total
charge density

n(r (1) ) = − N
∫

|ψ (r (1), . . . , r (N ) )|2 d3r (2) . . . d3r (N )

+
∑

B

ZBδ(r (1) − R(B) ), (F1)

with N as the total number of electrons in the system, and
obtain

�(A)
μν =

∫
1

|r(A)|5
(
3r(A)

μ r(A)
ν − δμν |r(A)|2)n(r) d3r, (F2)

again with r(A) = r − R(A), as defined in Appendix B. Note
that this description incorporates also movements of the nu-
clei, yet in a classical manner, within the Born-Oppenheimer
approximation. Assuming that the position of the nucleus A is
fixed, which can always be done by coordinate transformation,
the first term in Eq. (F2) does not change under application of
an electric field E or mechanical strain ε to the system. Thus,
a variation of the EFG tensor is mediated through the change
of the total charge density.
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In a linear expansion around the zero-point position, i.e.,
zero electric field and strain, we can write

�(A)
μν ≈

∫
d3r

(
3r(A)

μ r(A)
ν − δμν |r(A)|2)
|r(A)|5

×
(

n(r)

∣∣∣∣
E=0
ε=0

+ δn(r)

δεαβ

∣∣∣∣
E=0
ε=0

εαβ + δn(r)

δEγ

∣∣∣∣
E=0
ε=0

Eγ

)
.

(F3)

This expression suggests the functional form

�(A)
μν ≈ �(A),(0)

μν + Sμναβεαβ + Rμνγ Eγ (F4)

for the electric field gradient tensor at the position of nucleus
A, with �(A),(0)

μν denoting the EFG tensor of the unperturbed
system, Sμναβ as a fourth rank coupling tensor of strain and
the EFG tensor, and Rμνγ as a third rank coupling tensor of
electric field and the EFG tensor. Note that we sum over Greek
indices appearing twice in one term. The tensors Sμναβ and
Rμνγ are determined by the change of the total charge density
due to the interaction of the system with strain and electric
field. In a simplified picture, we can deduce that the distortion
of the electron hull or the atomistic environment leads to an
electric field gradient at the position of the nucleus. Due to
the ∼ 1

r3 characteristics of the EFG tensor, we would expect
that only effects in the close neighborhood of the nucleus of
interest are relevant. The coupling of an external static electric
field to the EFG tensor is a well-known phenomenon, which
is also known as linear quadrupole Stark effect [49,50].

The derived relation between EFG tensor components and
external quantities can be generalized to the time-dependent
case, if we assume that the density relaxes instantaneously
to the ground state, i.e., that the timescale of the external
field variations is much larger than the timescale of the in-
trinsic dynamics of the electronic system. As can be seen
from Eqs. (F3) and (F4), a possible time dependence of the
strain εαβ or the electric field Eγ is not entering the derivation.
Therefore, the obtained results are only valid in the adiabatic

approximation for slowly varying strain or electric field, i.e.,
if the assumption, that the electronic system remains in its
adiabatic ground state during evolution, is justified.

Given the functional dependence of the EFG tensor in
a linearized adiabatic approximation on the electric field or
strain, we immediately see that the time dependence of the
EFG tensor is inherited from the time dependence of the ex-
ternal quantity. Thus, an application of an electric field E (t ) =
E0 cos(ωt ) with a frequency in the radio-frequency regime,
matching the transition frequency of nuclear spin states, may
be used to locally modulate the EFG and thereby control
nuclear spin state occupations coherently. This scheme has
already been verified experimentally for a 123Sb (spin 7/2) nu-
cleus in silicon [16]. The interaction strength is determined by
the intensity of the electric field and the quadrupole coupling
tensor. Note that this scheme enables a pure electric control
of the nuclear spin system without the need for oscillating
magnetic fields in the radio-frequency regime.

APPENDIX G: LIST OF APPROXIMATIONS
IN THE MODEL

For convenience, all approximations applied in the main
part of this article are summarized and listed below:

(1) Born approximation for total density matrix, i.e., de-
composable density matrix throughout time evolution

(2) Negligible effect of spin system on electronic system
due to relatively small coupling

(3) Negligible effect of hyperfine coupling between elec-
tron spin and nuclear spin

(4) Adiabatic approximation for the electronic system.
All of these approximations are reasonable if the interac-

tion of spin system and electronic system can be considered
small and the time dependence of the external field is qua-
sistatic compared to typical timescales of the electronic
system. Both conditions are well satisfied in the case of the
nuclear quadrupole interaction for NER and NAR. However,
these conditions are also satisfied for excitations of the elec-
tronic system, as is shown for the ONER protocol in Sec. III B.
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