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Spin polarization of electrons in a circularly polarized magnetic field
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Recently, the spin polarization of electrons induced by magnetic dipole radiation in a circularly polarized
magnetic field was investigated [O. V. Kibis, Phys. Rev. A 105, 043106 (2022)] based on the Weisskopf-Wigner
approximation. We reconsider the same subject with a more reasonable treatment of the initial magnetic field.
It is found that if the electron is initially in a spin-unpolarized state, its polarization vector 〈σ〉 precesses around
the z axis and eventually reaches a radiation equilibrium. The corresponding stable precession frequency is the
same as the external magnetic field frequency ω0. In particular, when ω0 is much larger than the magnetic field
intensity B0, 〈σz〉 will be close to a fixed value of about 2/3 with time. In addition, we also analyze the influence
of the parameters ω0 and B0 on the final polarizability. The results show that there exists a parametric region
where electrons can be almost fully polarized and the required time can be reduced to the order of seconds.
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I. INTRODUCTION

Spin-polarized electron beams are widely applied in mod-
ern scientific research. By utilizing the interaction between
the spin of electrons and other particles or substances, they
can serve as a powerful experimental tool in fields such as
particle and nuclear physics [1–7], materials science [8–12],
and atomic and molecular physics [13,14]. Consequently,
it is very important to generate high-performance polarized
electron beams. Since the 1970s, numerous types of polar-
ized electron sources have been developed [15–21]. Among
them, the GaAs polarized electron source [15,22] has gained
widespread popularity due to its high polarizability [23], high
beam intensity [24], and various other advantages [22,25].
In recent years, with the rapid development of laser tech-
nology [26], ultraintense lasers (with intensities exceeding
1022 W/cm2) have been achieved in laboratory settings
[27,28]. Schemes utilizing ultraintense laser pulses to gen-
erate highly polarized electron beams on the femtosecond
scale have been proposed [29–31]. Such methods have sig-
nificant application prospects but still require experimental
verification.

Generally, when a free electron is subjected to strong elec-
tromagnetic fields, its trajectory, spin, and radiation interact
with each other [32], resulting in spin polarization. Mean-
while, it is well known that the radiation dynamics of charged
particles are mainly governed by three mechanisms: electric
dipole radiation, electric quadrupole radiation, and magnetic
dipole radiation. Among them, the former two are dependent
on the spatial motion of the particles [33], while magnetic
dipole radiation can exist independently. For example, when
an initially stationary electron is placed in a circularly polar-
ized magnetic field, its radiation dynamics are solely governed
by magnetic dipole radiation. Recently, a study [34] calculated
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the spin polarizability of the electron in this case with a fully
quantum method, and the results indicate that the angular
momentum of the circularly polarized magnetic field can ef-
fectively transfer to the electron, leading to spin polarization.
However, some conclusions of that work are not applicable to
the case where the initial radiation field is a classical magnetic
field. This is because the initial state of the radiation field in
Ref. [34] is not a coherent state [35]. Furthermore, a similar
toy model that neglects electron motion and only considers
the interaction between spin and a strong field can be found
in Ref. [36]. It provides some insight into the study of back-
reaction effects in strong-field quantum electrodynamics.

The goal of this paper is to provide a derivation of spin
polarization of electrons in a circularly polarized magnetic
field. Specifically, we will not quantize the magnetic field but
instead will treat it directly in its classical form. Also, we still
use the Weisskopf-Wigner approximation [37,38] and derive
the reduced density matrix of electrons. Through numerical
simulation, we obtain some different conclusions and findings
from those in Ref. [34]. These results are helpful in under-
standing the dynamics of electrons in a circularly polarized
magnetic field.

The paper is organized as follows. In Sec. II, we describe
the derivation of the spin polarizability in detail. Our numeri-
cal results are presented in Sec. III. We summarize and discuss
our results in Sec. IV. Unless stated otherwise, atomic units
(a.u.) with h̄ = e = 1 and c ≈ 137.036 are employed through-
out this paper. Here, e represents the elementary charge, and c
is the speed of light.

II. METHOD

A. Dynamical equations of the system and their solutions

Let us consider a space-independent circularly polarized
magnetic field, written as

Bc(t ) = B0
(
e−iω0tε0 + eiω0tε∗

0

)
, (1)
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where B0 and ω0 represent the amplitude and angular fre-
quency, ε0 = 1√

2
(ex + iey) is the polarization vector, and ex

and ey are unit vectors for the x and y axes. Such a mag-
netic field configuration may be achieved by a node of an
electromagnetic standing wave. For example, if there is an
electromagnetic standing wave, its electric field and magnetic
field configurations are

Ec = Ec

⎛
⎝cos(k0z) cos(ω0t )

cos(k0z) sin(ω0t )
0

⎞
⎠ (2)

and

Bc = Bc

⎛
⎝− sin(k0z) sin(ω0t )

− sin(k0z) cos(ω0t )
0

⎞
⎠, (3)

respectively. Here, Ec = cBc and ω0 = ck0. When cos(k0z) =
0, the magnetic field equation (1) can be obtained. At the same
time, if the electron’s initial position satisfies the condition
cos(k0z) = 0 and the initial momentum is zero, the Lorentz
force will remain zero. In this case, the spatial motion of
the electron can be neglected. Moreover, if the Stern-Gerlach
effect is also considered, the electron will experience an addi-
tional force in the magnetic field, which can be written as

Fs = −∇(μ · Bc), (4)

where μ represents the electron’s spin magnetic moment.
Clearly, combining Eq. (3) with the initial conditions just
mentioned, Fs will also remain 0. Therefore the spatial motion
of electrons can still be ignored.

Note that our above analysis of electrons not moving at the
node where cos(k0z) = 0 is based on classical mechanics, and
whether such a node solution is stable in quantum mechan-
ics needs to be further determined. A corresponding detailed
analysis is beyond the scope of this paper. Nevertheless, the
dynamics of charged scalar particles and electrons at the mag-
netic node where sin(k0z) = 0 have been discussed [39,40],
and the results show that the solutions of both at the magnetic
node are inherently unstable.

Now let us return to the topic. If an electron with a velocity
of zero is placed in the magnetic field as described in Eq. (1),
the Hamiltonian of the whole system can be represented as
follows:

H = 1
2σ · [Bc(t ) + BQ(t )]. (5)

Here, σ is the Pauli operator. BQ(t ) is the quantized operator
for the magnetic field, and it is denoted as

BQ(t ) =
∑
k,s

Bk,s(e
−iωtεk,sak,s + H.c). (6)

In Eq. (6), the Coulomb gauge is adopted; hence k · εk,s = 0

and s = 1 or 2. Bk,1(2) = ±i
√

2πωk
V c2 , and V is the normalized

volume of the field. For convenience, we can set V = 1.
εk,s is the polarization vector of the quantized field. ω =
c|k| is the angular frequency of the photon. ak,s represents
the annihilation operator, satisfying the commutation relation
[ak,s, a†

k,s] = δkk′δss′ . Here, δ is the Kronecker symbol.

The wave function |ψ (t )〉 of the system satisfies the
equation

i
d|ψ (t )〉

dt
= 1

2
σ · [Bc(t ) + BQ(t )]|ψ (t )〉. (7)

Now, we introduce the following two time-dependent wave
functions [34]:

|g〉 =
[√

� + ω0

2�
|↑〉 −

√
� − ω0

2�
eiω0t |↓〉

]
e−iEgt ,

|e〉 =
[√

� + ω0

2�
|↓〉 +

√
� − ω0

2�
e−iω0t |↑〉

]
e−iEet , (8)

where � =
√

2B2
0 + ω2

0 , Eg = (ω0 − �)/2 , Ee = (� −
ω0)/2, and |↑〉 and |↓〉 are two eigenstates of spin projected
along the z axis. |g〉 and |e〉 are orthogonal to each other and
normalized. Obviously, they constitute a complete basis set
of the spin two-dimensional space. To solve Eq. (7), we can
expand |ψ (t )〉 as follows:

|ψ (t )〉 = ce(t )|e, 0〉 + cg(t )|g, 0〉
+

∑
k,s

[ceks(t )|e, 1k,s〉 + cgks(t )|g, 1k,s〉], (9)

where |e, 0〉 = |e〉 ⊗ |0〉, |0〉 represents the vacuum state of
the radiation field, and |1k,s〉 denotes the occupation number
of the scattered photon state on mode ks as 1. It should be
noted that in Eq. (9) we omit the states in which the number
of scattered photons is greater than or equal to 2, which
correspond to higher-order processes. Substituting Eq. (9) into
Eq. (7), we obtain

i
d

dt
ce(t ) =

∑
k,s

u1(t )cgks(t ) +
∑
k,s

w1(t )ceks(t ),

i
d

dt
cg(t ) =

∑
k,s

u2(t )cgks(t ) +
∑
k,s

w2(t )ceks(t ),

i
d

dt
ceks(t ) = w∗

1 (t )ce(t ) + w∗
2 (t )cg(t ),

i
d

dt
cgks(t ) = u∗

1(t )ce(t ) + u∗
2(t )cg(t ). (10)

Here,

u1(t ) = 1
2 Bk,se

−iωt 〈e|σ · εk,s|g〉,
u2(t ) = 1

2 Bk,se
−iωt 〈g|σ · εk,s|g〉,

w1(t ) = 1
2 Bk,se

−iωt 〈e|σ · εk,s|e〉,
w2(t ) = 1

2 Bk,se
−iωt 〈g|σ · εk,s|e〉. (11)

After a brief calculation, we have

〈g|σ · εk,s|g〉 = ω0

�
cos θs −

√
2B0

�
sin θs cos(ω0t − φs),

〈e|σ · εk,s|e〉 = − ω0

�
cos θs +

√
2B0

�
sin θs cos(ω0t − φs),
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〈e|σ · εk,s|g〉 = ei�t

[
ω0

�
sin θs cos(ω0t − φs)

+
√

2B0

�
cos θs − i sin θs sin(ω0t − φs)

]
.

(12)

The variables θs and φs represent the polar angle and az-
imuthal angle of vector εk,s, respectively. According to (10),
the solutions for ceks(t ) and cgks(t ) can be expressed in integral
form as[

ceks(t )
cgks(t )

]
= −i

∫ t

0

[
w∗

1 (t1) w∗
2 (t1)

u∗
1(t1) u∗

2(t1)

][
ce(t1)
cg(t1)

]
dt1. (13)

Substituting the above equation into the first two equations of
(10), we arrive at the expression

d

dt

[
ce(t )
cg(t )

]
= − 1

(2π )3

∫ t

0

∫ ∑
s

[
f11 f12

f21 f22

][
ce(t1)
cg(t1)

]
dkdt1,

(14)

where

f11 = w1(t )w∗
1 (t1) + u1(t )u∗

1(t1),

f22 = w2(t )w∗
2 (t1) + u2(t )u∗

2(t1),

f12 = w1(t )w∗
2 (t1) + u1(t )u∗

2(t1),

f21 = w2(t )w∗
1 (t1) + u2(t )u∗

1(t1). (15)

Thus

d

dt

[
ce(t )
cg(t )

]
= − 1

16π2c5

∫ t

0

∫ ∞

0
ω3e−iω(t−t1 )

×
[

F11 F12

F21 F22

][
ce(t1)
cg(t1)

]
dωdt1. (16)

The derivation process of Eq. (16) and the expression of
matrix element Fi j are elaborated in detail in Appendix A.

In order to study the long-term evolution of the system,
the Weisskopf-Wigner approximation [37,38] is applied when
solving Eq. (16). Consequently, we derive that

d

dt

[
ce(t )
cg(t )

]
= − 1

8c5

[
G1 ei�t G2

e−i�t G3 G4

][
ce(t )
cg(t )

]
, (17)

where

G1 = 4B2
0

3�2
ω3

0 + 8�B2
0

3
+ 2B4

0

3�
,

G2 = 2
√

2B0

3�

(
1 − ω0

�

)
ω3

0,

G3 = 16
√

2ω0B3
0

3�
+ 4

√
2ω0B0�

3
+ 2

√
2B0

3�

(
1 + ω0

�

)
ω3

0,

G4 = 4B2
0

3�2
ω3

0. (18)

Now, solving Eq. (17) is straightforward. First, we can express
cg(t ) in terms of ce(t ), that is,

cg(t ) = e−i�t ċe(t )/G2 − e−i�t ce(t )G1/G2. (19)

Then, substituting (19) back into (17) yields

c̈e(t ) − ρ1ċe(t ) + ρ2ce(t ) = 0, (20)

where

ρ1 = i� + G1 + G4,

ρ2 = i�G1 + G1G4 − G2G3. (21)

The general solution of Eq. (20) is given by

ce(t ) = h1eλ1t + h2eλ2t . (22)

Here,

λ1 =
ρ1 +

√
ρ2

1 − 4ρ2

2
,

λ2 =
ρ1 −

√
ρ2

1 − 4ρ2

2
. (23)

Furthermore, by considering the initial conditions, we have

h1 = (G1 − λ2)ce(0) + G2cg(0)

λ1 − λ2
,

h2 = (λ1 − G1)ce(0) − G2cg(0)

λ1 − λ2
. (24)

Finally, substituting (22) into (19), cg(t ) is given by

cg(t ) = h3eλ3t + h4eλ4t , (25)

and the correlation coefficients h3,4 and λ3,4 are as follows:

λ3 = λ1 − i�,

λ4 = λ2 − i�,

h3 = h1(λ1 − G1)/G2,

h4 = h2(λ2 − G1)/G2. (26)

B. Reduced density matrix of electrons

In Sec. II A, we introduce the procedure for solving Eq. (7).
However, this only applies to the case where the initial state
of the system is a pure state. In general, when the electron is
initially in a mixed state, the initial density matrix ρS (0) of the
entire system can be written as

ρS (0) = (p1|ϕ+〉〈ϕ+| + p2|ϕ−〉〈ϕ−|) ⊗ |0〉〈0|. (27)

In the above formula,

p1 = 1 + |P0|
2

, p2 = 1 − |P0|
2

, (28)

where P0 is the polarization vector of the electron at t = 0.
ϕ± are two eigenstates of the operator σ0 = σ · P0/|P0|, that
is, σ0ϕ± = ±ϕ±.

Meanwhile, the time evolution of the density matrix is
given by

ρS (t ) = U (t )ρS (0)U †(t ), (29)

where U (t ) is the time evolution operator and it satisfies

i
dU (t )

dt
= HU (t ). (30)
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Clearly, we can now transform ρS (t ) into

ρS (t ) = p1|ψ+(t )〉〈ψ+(t )| + p2|ψ−(t )〉〈ψ−(t )| (31)

by using Eq. (30). Here, both |ψ+(t )〉 and |ψ−(t )〉 satisfy
Eq. (7), and their corresponding initial states are |ϕ+, 0〉 and
|ϕ−, 0〉, respectively. As a result, the reduced density matrix
ρe of electrons is given by

ρe = trL[ρS (t )]

=
2∑

n=1

pn

(
| f0|2 + ∑

k,s | fk,s|2 f0g∗
0 + ∑

k,s fk,sg∗
k,s

f ∗
0 g0 + ∑

k,s f ∗
k,sgk,s |g0|2 + ∑

k,s |gk,s|2
)

,

(32)

where trL represents the trace operation on the photon state
and

f0 = xe−iEgt cg(t ) + ye−i(Ee+ω0 )t ce(t ),

g0 = −ye−i(Eg−ω0 )t cg(t ) + xe−iEet ce(t ),

fk,s = xe−iEgt cgks(t ) + ye−i(Ee+ω0 )t ceks(t ),

gk,s = −ye−i(Eg−ω0 )t cgks(t ) + xe−iEet ceks(t ). (33)

In Eq. (33), we have set x =
√

�+ω0
2�

and y =
√

�−ω0
2�

.

C. Spin polarization vector

Up to now, we have obtained the reduced density ma-
trix of electrons; so the spin polarization vector P = 〈σ〉 =
[〈σx〉, 〈σy〉, 〈σz〉] can be calculated next. For any spatial di-
rection n = (sin  cos �, sin  sin �, cos ), the projection
average value of the operator σ on it is given by

〈σ · n〉 = tr(ρeσ · n). (34)

After performing the calculation, we have

〈σ · n〉 = 2 cos (p1P+
↑ + p2P−

↑ ) − cos 

+ 2 sin 

2∑
n=1

pnRe

⎡
⎣e−i�

⎛
⎝ f ∗

0 g0 +
∑
k,s

f ∗
k,sgk,s

⎞
⎠

⎤
⎦.

(35)

Here, P±
↑ represents the probability that the electron’s spin is

up when it is in state |ψ±(t )〉. Its expression reads as

P±
↑ =∣∣xe−iEgt cg(t ) + ye−i(Ee+ω0 )t ce(t )

∣∣2

+
∑
k,s

[2xy Re{e−i(Ee−Eg+ω0 )t c∗
gksceks}

+ x2|cgks|2 + y2|ceks|2]. (36)

In addition,

∑
k,s

f ∗
k,sgk,s = xyeiω0t

(∑
k,s

|ceks|2 −
∑
k,s

|cgks|2
)

− y2ei(Ee−Eg+2ω0 )t
∑
k,s

cgksc
∗
eks

+ x2ei(Eg−Ee )t
∑
k,s

c∗
gksceks. (37)

FIG. 1. The spatial trajectory of P with ω0 = 0.05 a.u. and B0 =
0.01 a.u. The red arrow in the figure indicates the upward evolution
of the helical curve over time.

It can be found that no matter whether we are solving
(36) or (37), the calculation of the three terms

∑
k,s |ceks|2,∑

k,s |cgks|2, and
∑

k,s cgksc∗
eks must be performed. Fortunately,

we can apply the Weisskopf-Wigner approximation again to
obtain (see Appendix B for details)∑

k,s

|cgks|2 = 1

4c5

∫ t

0
A1|ce(t1)|2 + A2|cg(t1)|2dt1,

∑
k,s

|ceks|2 = 1

4c5

∫ t

0
A2|ce(t1)|2dt1,

∑
k,s

c∗
gksceks = − 1

4c5

∫ t

0
A2c∗

g (t1)ce(t1)dt1, (38)

where

A1 = 8�B2
0

3
+ 2B4

0

3�
, A2 = 4πB2

0

3�2
ω3

0. (39)

III. NUMERICAL RESULTS

In this paper, we are primarily concerned with the case
where the electron is initially in a spin-unpolarized state.
Therefore P0 = 0 and

ρS (0) = 1
2 (|↑〉〈↑| + |↓〉〈↓|) ⊗ |0〉〈0|. (40)

With the initial condition given by Eq. (40), we perform
numerical calculations for the spin polarization vector P. In
Fig. 1, we present the spatial trajectory of P when ω0 = 0.05
a.u. and B0 = 0.01 a.u. It can be found that under the action
of a circularly polarized magnetic field, the spin polarization
vector of electrons will spirally grow along the z-axis direc-
tion. Figure 2(a) quantitatively depicts the variation of 〈σz〉
with time, revealing that 〈σz〉 eventually reaches an upper
limit of about 0.67. Additionally, we also show the functional
relationship between 〈σx〉 and 〈σy〉 during the same time pe-
riod in Fig. 2(b). The results reflect that the point (〈σx〉, 〈σy〉)
ultimately lies on a fixed circle. This implies that P will reach
a state of radiative equilibrium after a certain period of time
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FIG. 2. The parameters ω0 and B0 are consistent with those in
Fig. 1. (a) 〈σz〉 as a function of time. (b) The projection of P in the
xy plane. (c) The time variation curves of 〈σx〉 and 〈σy〉. Here, A0 =
0.1924, and t = 0 denotes a moment selected after the stabilization
of 〈σz〉, at which 〈σx〉 = 0.

and precess around the z axis. To further demonstrate this
fact, we capture a segment of the curve depicting the variation
of 〈σx〉 and 〈σy〉 with time after 〈σz〉 stabilized, as shown in
Fig. 2(c). It is evident that both 〈σx〉 and 〈σy〉 exhibit simple
harmonic vibration with the same amplitude and frequency
over time, which is consistent with the description in Fig. 2(b).
Also, it is crucial to note that the time curve corresponding to
〈σy〉 coincides perfectly with a sine function of frequency ω0

and amplitude A0. This shows that the precession frequency is
exactly the frequency ω0 of the circularly polarized magnetic
field. Here, it should be emphasized that the dynamic prop-
erties of P mentioned above are acquired through numerical
analysis rather than analytical expressions. This is because
Eq. (35) cannot be simplified into a clear and straightfor-
ward expression. However, these dynamical properties are still
applicable to other numerical examples (involving different
values of ω0 and B0) that we discuss later, which is easy to
check numerically.

Having understood the general dynamic properties of the
polarization vector, it is natural to explore how the tunable
parameters of the system affect its evolution. As shown in
Fig. 3(a), we first calculate the maximum value (denoted by
〈σz〉max) that 〈σz〉 can reach for different B0 and ω0. Here, the
maximum B0 considered is only up to 10−2 a.u. (∼2350 T)
in order not to be far from reality. What is particularly

FIG. 3. (a) The maximum value of 〈σz〉 over time as a function
of ω0 and B0. (b) Profile lines of the contour map in (a) for a given
B0.

FIG. 4. (a) The maximum value of polarizability over time as a
function of ω0 and B0. (b) Time-varying curve of P with B0 = 0.01
a.u. and ω0 = 0.001 a.u.

intriguing is that there seems to be a significant area of pa-
rameter values where 〈σz〉max is approximately 2/3. Moreover,
within this area, there also appears to be a common character-
istic: ω0/B0  1. To confirm these two judgments, we present
in Fig. 3(b) the curves depicting the variation of 〈σz〉max with
ω0 for a given B0, and the reference line 〈σz〉max = 2/3. It
is clearly visible from the graph that as ω0/B0 gradually in-
creases, the curves corresponding to different magnetic field
intensities all converge to 2/3. This phenomenon is particu-
larly evident for the curve with B0 = 0.01 a.u.

Next, we also investigate the impact of ω0 and B0 on the
maximum polarizability Pmax, and the results are shown in
Fig. 4(a). It can be observed that similar to the behavior of
〈σz〉max, when ω0/B0  1, Pmax is about 0.67 and is indepen-
dent of the specific values of ω0 and B0. This phenomenon
bears a striking resemblance to the process in which the
moving electrons in a storage ring are polarized due to the
Sokolov-Ternov effect [41] under the action of a uniform
magnetic field. The maximum polarizability of the latter is
a fixed value as 8

√
3/15 [41], with the magnetic field inten-

sity and other system parameters only affecting the speed of
polarization. Furthermore, it is exciting that the maximum po-
larizability corresponding to the parameter region in the upper
left corner of Fig. 4(a) can be very close to 1. At the same time,
as demonstrated in Fig. 4(b), by selecting B0 = 0.01 a.u. and
ω0 = 0.001 a.u., it only takes about about 5 s for electrons to
be fully polarized.

IV. SUMMARY AND DISCUSSION

In summary, we rigorously address the time-dependent
evolution of the spin polarization vector of electrons in a
circularly polarized magnetic field. We find that electrons that
are completely spin polarized can be attained by adjusting
the intensity and frequency of the external magnetic field.
Additionally, the polarization time can also be controlled on
the order of seconds, which is highly significant for practical
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applications, although a magnetic field intensity as high as
2 × 103 T is required here.

The theoretical model presented in this paper does not
involve the spatial motion of electrons but only includes
magnetic dipole interactions. Consequently, the correspond-
ing speed of polarization is naturally inferior to that of the
previously proposed schemes [29,31,41]. However, it should
be noted that the probability of spin flip of electrons in these
schemes during the radiation process is calculated based on
perturbation theory. Obviously, the high degree of polarization
implies that the transition probability is not a small quantity.
This raises the question, Can perturbation theory and a high

degree of polarization coexist self-consistently? Last but not
least, the model presented in this paper can be regarded as a
toy model that neglects spatial motion, allowing us to analyt-
ically (nonperturbatively) solve Eq. (10) due to its simplicity.
Therefore it is worth exploring whether the polarizability can
also be obtained nonperturbatively after considering the spa-
tial motion of electrons.
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APPENDIX A

First, let us denote the polar angle and azimuthal angle of vector k as β and α, respectively. Then, the polarization vector εk,s

can be expressed by them as

εk,1 = (− cos β cos α,− cos β sin α, sin β ),

εk,2 = (− sin α, cos α, 0). (A1)

By comparing with θs and φs, we obtain

(− cos β cos α,− cos β sin α, sin β ) = (sin θ1 cos φ1, sin θ1 sin φ1, cos θ1),

(− sin α, cos α, 0) = (sin θ2 cos φ2, sin θ2 sin φ2, cos θ2). (A2)

Therefore, when s = 1, Eq. (12) can be transformed into

〈g|σ · εk,s|g〉 = ω0

�
sin β +

√
2B0

�
cos β cos(ω0t − α),

〈e|σ · εk,s|e〉 = −ω0

�
sin β −

√
2B0

�
cos β cos(ω0t − α),

〈e|σ · εk,s|g〉 = ei�t

[√
2B0

�
sin β − ω0

�
cos β cos(ω0t − α) + i cos β sin(ω0t − α)

]
. (A3)

With the help of Eq. (A3), we have

∫ 2π

0

∫ π

0
f11 sin β dβdα =8πω2

0

3�2
+ 4πB2

0

3�2
cos[ω0(t − t1)] + ei�(t−t1 )

(
2πω2

0

3�2
cos[ω0(t − t1)]

+ 2π

3
cos[ω0(t − t1)] − 4iπω0

3�
sin[ω0(t − t1)] + 16πB2

0

3�2

)
, (A4)

∫ 2π

0

∫ π

0
f22 sin β dβdα =

( ∫ 2π

0

∫ π

0
f11 sin β dβdα

)∗
, (A5)

∫ 2π

0

∫ π

0
f12 sin β dβdα = ei�t1

(
2
√

2πB0ω0

3�2
cos[ω0(t − t1)] + 2

√
2iπB0

3�
sin[ω0(t − t1)] − 8

√
2πB0ω0

3�2

)

+ ei�t

(
8
√

2πB0ω0

3�2
− 2

√
2πB0ω0

3�2
cos

[
ω0(t − t1)

] + 2
√

2iπB0

3�
sin[ω0(t − t1)]

)
, (A6)

∫ 2π

0

∫ π

0
f21 sin β dβdα =

( ∫ 2π

0

∫ π

0
f12 sin β dβdα

)∗
(t ←→ t1). (A7)

Here, we omit a common factor πω
2c2 e−iωk (t−t1 ) in Eqs. (A4)–(A7) for convenience.
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Similarly, when s = 2, the corresponding calculations are accessible. Finally, by combining the contributions of s = 1 and
s = 2, the expression of matrix element Fi j is given by

F11 = 8πω2
0

3�2
+ 16πB2

0

3�2
cos[ω0(t − t1)] + ei�(t−t1 )

(
16πB2

0

3�2
+ 8πω2

0

3�2
cos[ω0(t − t1)]

+ 8π

3
cos[ω0(t − t1)] − 16iπω0

3�
sin[ω0(t − t1)]

)
, (A8)

F22 = 8πω2
0

3�2
+ 16πB2

0

3�2
cos[ω0(t − t1)] + e−i�(t−t1 )

(
16πB2

0

3�2
+ 8πω2

0

3�2
cos[ω0(t − t1)]

+ 8π

3
cos[ω0(t − t1)] + 16iπω0

3�
sin[ω0(t − t1)]

)
, (A9)

F12 = ei�t1

(
−8

√
2πB0ω0

3�2
+ 8

√
2πB0ω0

3�2
cos[ω0(t − t1)] + 8

√
2iπB0

3�
sin[ω0(t − t1)]

)

+ ei�t

(
8
√

2πB0ω0

3�2
− 8

√
2πB0ω0

3�2
cos[ω0(t − t1)] + 8

√
2iπB0

3�
sin[ω0(t − t1)]

)
, (A10)

F21 = e−i�t

(
−8

√
2πB0ω0

3�2
+ 8

√
2πB0ω0

3�2
cos[ω0(t − t1)] + 8

√
2iπB0

3�
sin[ω0(t − t1)]

)

+ e−i�t1

(
8
√

2πB0ω0

3�2
− 8

√
2πB0ω0

3�2
cos[ω0(t − t1)] + 8

√
2iπB0

3�
sin[ω0(t − t1)]

)
. (A11)

APPENDIX B

According to Eq. (10), we have

∑
k,s

|cgks|2 = 1

(2π )3

∑
s

∫ ∣∣∣∣
∫ t

0
u1(t1)c∗

e (t1) + u2(t1)c∗
g (t1)dt1

∣∣∣∣
2

dk

= 1

(2π )3

∫ t

0

∫ t

0

∫ ∞

0

∫ 2π

0

∫ π

0

∑
s

[u1(t1)u∗
1(t2)c∗

e (t1)ce(t2) + u2(t1)u∗
2(t2)c∗

g (t1)cg(t2)

+ u1(t1)u∗
2(t2)c∗

e (t1)cg(t2) + u2(t1)u∗
1(t2)c∗

g (t1)ce(t2)]ω2 sin β dβdαdωdt1dt2,

(B1)

∑
k,s

|ceks|2 = 1

(2π )3

∑
s

∫ ∣∣∣∣
∫ t

0
w1(t1)c∗

e (t1) + w2(t1)c∗
g (t1)dt1

∣∣∣∣
2

dk

= 1

(2π )3

∫ t

0

∫ t

0

∫ ∞

0

∫ 2π

0

∫ π

0

∑
s

[w1(t1)w∗
1 (t2)c∗

e (t1)ce(t2) + w2(t1)w∗
2 (t2)c∗

g (t1)cg(t2)

+ w1(t1)w∗
2 (t2)c∗

e (t1)cg(t2) + w2(t1)w∗
1 (t2)c∗

g (t1)ce(t2)]ω2 sin β dβdαdωdt1dt2,

(B2)

and

∑
k,s

c∗
gksceks = 1

(2π )3

∫ t

0

∫ t

0

∫ ∞

0

∫ 2π

0

∫ π

0

∑
s

[u1(t1)w∗
1 (t2)c∗

e (t1)ce(t2) + u2(t1)w∗
1 (t2)c∗

g (t1)ce(t2)

+ u1(t1)w∗
2 (t2)c∗

e (t1)cg(t2) + u2(t1)w∗
2 (t2)c∗

g (t1)cg(t2)]ω2 sin β dβdαdωdt1dt2. (B3)

It is evident that the integration of β and α in Eqs. (B1)–(B3) can be readily replicated following the procedures outlined in
Appendix A. Having done so, Eq. (38) can naturally be obtained by again using the Weisskopf-Wigner approximation.
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