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Topological nontrivial bands can be realized via Rydberg-dressed neutral atoms. We propose a two-
dimensional hard-core boson model with a topological flat band on a honeycomb array, where the particle
hopping is realized via van der Waals interactions that exchange the Rydberg states of two interacting atoms,
while nonzero phases associated with hopping arises from the transfer of laser phase to the wave functions
of Rydberg atoms. Using exactly diagonalization and infinite density matrix renormalization group simulation,
we find in the system a fractional Chern insulator phase with a Chern number C = 1/2, which can persist
in the presence of weak many-body interactions. These reveal that neutral-atom arrays can emulate fractional
Chern insulators. Finally, we also study the proposed two-dimensional hard-core boson model under different
theoretical parameter settings; the results further support that the generated nonzero phases associated with
hopping amplitudes can produce a stable fractional Chern insulator state theoretically.
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I. INTRODUCTION

Quantum simulation of condensed-matter physics via
atomic, molecular, and optical methods has become an in-
teresting topic recently [1–4]. Among various phases of
condensed matter, topological phases [5,6] are especially in-
teresting not only because of their relevance for fundamental
condensed matter physics [7–9], but also due to their potential
in quantum computing [10,11]. Natural topological phases of
matter are not easily manipulated, but it is possible to engineer
spin-orbit coupling [12,13] or pseudomagnetic fields [14–22]
to prepare topological phases, especially with neutral atoms
[23–33].

In this article, we show that it is possible to use van
der Waals interaction between Rydberg atoms [34–37] in a
two-dimensional array to simulate a topological Chern insu-
lator [38,39] with a fractional Chern number C = 1/2. The
method depends on an effective magnetic field created by
off-resonantly addressing of Rydberg states as proposed in
Ref. [40]. A Rydberg state refers to a state where the atomic
energy is much higher than its ground-state energy. Because
the electron of a Rydberg atom is extended far from its
nucleus, the dipole-dipole interaction between two Rydberg
atoms is much larger than that between two ground-state
atoms [41]. Due to the strong dipole-dipole interaction, there
have been intense efforts directed to the search for exotic
effective magnetic phases of atoms in dipole microtraps or op-
tical lattices via Rydberg interactions [42–49]. The possibility
to realize topological states in a one-dimensional system by
Rydberg atoms was demonstrated in [50].

The two-dimensional topological state in our method re-
sults from an off-resonant addressing of ground states to
Rydberg states [45,46,51–58], so that the effective ground-
state atoms inherit interactions from the Rydberg states. Our
goal is to design a tight-binding Hamiltonian which has one

or more bands that are topological nontrivial, i.e., possessing
nonzero Chern numbers when the time-reversal symmetry is
absent. The first step to achieve this is to build up quasiparticle
hopping between atoms, and the second is, as one choice, to
induce a pseudomagnetic field so that the time-reversal sym-
metry is broken. In our model, the hopping between two sites
is realized by the exchange interaction [41,59–61] when two
interacting atoms are in different Rydberg levels, while the
pseudomagnetic field can be created via the phase difference
of lasers upon the two atoms [40]. Since the atomic spacing
in our model is on the order of 10 μm, the benefit of realizing
topological band structure via van der Waals interactions is
that accurate control of a single atom in the array can be easily
carried out [62], thus rendering easier ways to, for instance,
study impurities [63] in topological phases and manipulate
excitations for topological quantum computation [31,64,65].
Compared to other methods by using direct dipolar exchange
interactions of Rydberg atoms [47,48], the Rydberg dressing
in this work renders long coherence times for the quasiparti-
cles [45,46,50–57].

The remainder of this article is outlined as follows. In
Sec. II we address the technical details of the off-resonant
addressing of ground states to Rydberg states and deduce the
effective Hamiltonian of the system which describes interact-
ing hard-core bosons on a honeycomb lattice. We also address
the possibility of realizing the topological state and specify
the parameters. Section III describes the technical details of
experimental design with numerical support. Then we gen-
eralize the experimental parameter settings to give a purely
theoretical study of the proposed effective Hamiltonian.
Section IV A briefly addresses the method of producing a flat
energy band and gives the parameter settings. In Sec. IV B
we prove the existence of a fractional Chern insulator (FCI)
phase and propose the parameter settings for the theoreti-
cal realization of the FCI phase in this model by using the
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FIG. 1. (a) Quantum emulation of a two-dimensional hard-core
boson-Hubbard model in a honeycomb lattice. The numbers ±φ and
±φ/2 show the phase changes when hard-core bosons hop from
one site to another, shown by the arrows. (b) Optical admixing of
Rydberg states with two ground states for each atom in the dipole
microtraps. For each atom, two chosen ground states are excited by
two-photon transitions. Each two-photon process is realized by a
z-polarized laser (lower transition) that travels along y and a right-
hand polarized laser (upper transition) that travels along z. On
sublattice a three laser fields are used to address the transition from
the ground to the 5P states, which in principle can all be the 5P3/2

state when different detunings at it are used. However, the energy
separation between neighboring F states of 5P3/2 is in the range of
72–267 MHz, and it is useful to tune the two lower lasers for address-
ing nA and nB states to be above the F = 3 state and below F = 0
states, respectively, or vice versa. Then the 5P1/2 state is shown
for addressing the nC Rydberg state so as to simplify the tuning
of the effective Rabi frequencies and the two-photon detunings for
the Rydberg addressing. Similarly, on sublattice b, the 5P1/2 state is
shown for addressing the nF Rydberg state.

exact diagonalization (ED) and the infinite-size variant of the
Density Matrix Renormalization Group (iDMRG) method,
and discuss the phase transitions between the FCI phase
and other topological trivial phases. Section V gives a brief
summary.

II. A HONEYCOMB RYDBERG-DRESSED SYSTEMS WITH
EFFECTIVE MAGNETIC FIELDS

We focus on a honeycomb configuration of the dipole
microtraps, where the two sublattices are labeled as a and
b, as shown in Fig. 1(a). Trapped at each site of the ar-
ray is one 87Rb atom that is optically excited off-resonantly.
Each atom is prepared in a superposition state of two hy-
perfine ground states | ↑〉 and | ↓〉. These two states can be
chosen as |5S1/2, F = 1(2), mF = 1〉, where F and mF denote
hyperfine and magnetic quantum numbers, respectively. The
nearest-neighboring couplings are realized by coupling the
two ground states to two Rydberg levels (nAS1/2, nBS1/2) for
all sites, where nB − nA = 1. All the coupled Rydberg states
have electron and nuclear spin states 1/2 and 3/2, respec-

tively, thus these quantum numbers are suppressed in the
notations. The van der Waals interaction can drive the two-
atom state |nAS1/2nBS1/2〉 to |nBS1/2nAS1/2〉 [41], where the
symbols inside the ket on the left and right denote states of the
two neighboring atoms. When addressed to the ground states,
this type of exchange process results in exchange interaction
| ↑↓〉 ↔ | ↓↑〉 between two neighboring atoms. Since the
van der Waals interaction scales as 1/r6 at sufficiently large
interatomic distances, with r the distance between two atoms,
the addressing of the ground states to these two levels will
lead to nearest-neighboring effective interaction, while next-
nearest neighboring interaction is much smaller. In order to
switch on next-nearest neighboring couplings, the ground
states are also coupled to two other pairs of Rydberg levels
(nCS1/2, nDS1/2) and (nE S1/2, nF S1/2) for the two sublattices,
respectively, where nD − nC = nF − nE = 1. Since the dis-
tance between two next-nearest neighboring sites are

√
3

larger compared to that between two nearest neighbors,
nC, . . . , nF shall be larger than nA and nB, so that the coupling
between two nearest sites and that between two next-nearest
sites are comparable in magnitude.

The comparable couplings for both nearest and next-
nearest neighbors are realized by choosing appropriate
Rydberg levels. Even the blockade interaction occurs between
two atoms in any Rydberg levels, the exchange interaction
occurs only for a pair of levels nα, nβ when |nα − nβ | is
small. As shown in Ref. [66], the van der Waals interaction
that exchanges the two principal quantum numbers nα and nβ

is negligible when |nα − nβ | > 2. When we choose the con-
dition nC − nB, nE − nD > 2, the exchange process between
(nAS1/2, nBS1/2), (nCS1/2, nDS1/2), or (nE S1/2, nF S1/2) is the
dominant exchange interaction. This design can give us a large
degree of freedom to adjust parameters for simulating differ-
ent possible magnetic phases [45,46]. Beside of the interaction
that exchanges the principal quantum numbers of two atoms,
there is a residual interaction that changes the total electron
spin of two atoms, but its magnitude is several orders smaller
than that of the former process, and thus can be ignored.

The time-reversal symmetry is broken by introducing
a nonzero phase to the next-nearest neighboring hopping
through the laser excitation. To understand such a phase term
for the hopping, we can look at the various optical excitations
of the neutral atoms. For all the two-photon transitions de-
picted in Fig. 1(b), the lower transitions are through linearly
polarized lasers, whose electric vectors are polarized along z,
while the upper transitions happen through right-hand polar-
ized laser fields. Now the two-dimensional array lies in the
x-y plane, and then it is convenient to choose z = 0 for the
plane where the atomic array lies. As a result, the phase term
with a chosen two-photon Rabi frequency is solely deter-
mined by the lower Rabi transition. As an example, consider
two general next-nearest sites at r1 and r2, respectively; the
phase is

(k5S1/2,F=1→5P1/2,F=1 − k5S1/2,F=2→6P1/2,F=1) · r1

− (k5S1/2,F=1→5P1/2,F=2 − k5S1/2,F=2→6P1/2,F=2) · r2, (1)

where the wave vectors are along ŷ as indicated by red
or green in Fig. 1. For sublattice a, we denote the phase
term accompanying the transition from | ↑ (↓)〉 to |nC(D)S1/2〉
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as φ(ri )[ϕ(ri )] by the two-photon laser excitation as in
Fig. 1(b). By performing a perturbation calculation as from
Refs. [67,68], the phase term that appeared in | ↑↓〉〈↓↑ |i j

for the effective Hamiltonian reads φi j = φ(ri ) − φ(r j ) −
ϕ(ri ) + ϕ(r j ). In the setup of Fig. 1(b), the two-photon transi-
tions to (nCS1/2, nDS1/2) are via 5P1/2 and 6P1/2 intermediate
levels, giving φi j ∼ (E5P − E6P )/(h̄c)ŷ · (ri − r j ), with h̄ the
reduced Planck constant, c the speed of light in vacuum,
and E5(6)P the energy of the atomic level. Because the 5P1/2

and 6P1/2 levels have an energy difference of about 2π ×
333.9 THz [69], a significant phase φi j can appear. More
details about such phases can be found in Ref. [40] or the
Appendix.

The effective Hamiltonian is derived in a perturbative
method. When the two-photon detuning is large compared
to the two-photon Rabi frequency, the coupling between the
ground and the excited states is removed effectively by a
canonically transformation [67]. Details of the derivation
can be found in Ref. [40]. Up to fourth order, the effective
Hamiltonian is given by

Ĥ (4)
eff =

∑
α,β,γ ,ε=↑,↓

Hαβ,γ ε |αβ〉〈γ ε|, (2)

where Hαβ,γ ε is a function of the Rabi frequency, detun-
ing, and Rydberg interaction [40]. Because the state-changing
Rydberg interactions exchange only the states of two interact-
ing atoms and by no means create extra up or down states, one
can define hard-core bosons in such types of systems. We note
that for a system with dipolar interactions, similar hard-core
boson Hubbard models were studied that can be topologically
nontrivial [21,22,70,71]. Defining b†

i ≡ (| ↑〉〈↓ |)i and n̂i =
b†

i bi for each site i, the system has an effective Hamiltonian
Ĥb = Ĥtunneling + Ĥblockade + Ĥchemical, where

Ĥtunneling =
∑
〈i, j〉

(ti j b̂
†
i b̂ j + H.c.)

Ĥblockade =
∑
〈i, j〉

Ui j n̂in̂ j

Ĥchemical =
∑

i

μin̂i, (3)

and μi = ∑
j �=i[(H↑↓,↑↓ + H↓↑,↓↑)/2 − H↓↓,↓↓]i, j,Ui j =

[H↑↑,↑↑ + H↓↓,↓↓ − H↑↓,↑↓ − H↓↑,↓↑]i, j , and ti j = H↑↓,↓↑.
For convenience, we label the nearest-neighboring (N)
and next-nearest-neighboring (NN) hoppings arising from
the phase-free exchange interactions of Rydberg atoms
in states (nAS1/2, nBS1/2) by tN and tNN, respectively. The
magnitudes of the phase-carrying NN hoppings in sublattices
a and b are t (aa)

NN and t (bb)
NN , respectively, while the phase

ξ accompanying these hoppings is illustrated in Fig. 1.
With these parameters, ti j = tN for two nearest-neighboring
atoms, and ti j = tNN + t (xx)

NN eiξ , where x = a or b and ξ is a
phase determined by x and the orientation of the two sites.
The chemical potential and the NN many-body interaction
are μ(x) and U (x)

NN for sublattice x, where x = a or b, while
the nearest-neighboring many-body interaction is U (ab)

N .
These interactions are nonzero in general, indicating that it is

possible to realize interesting many-body phases through van
der Waals interactions of neutral atoms.

III. EXPERIMENTAL PROSPECTS

In this section we discuss the experimental prospects for
realizing the model of this paper.

First, the excitation of the Rydberg states with mJ = 1/2
requires high polarization purity of the laser fields for
exciting the atoms. For example, the nA Rydberg state used
in the setup of Fig. 1 can be |[nAS1/2]mJ = 1/2, mI = 3/2〉
in the ideal case. When the lower laser field is not purely
z-polarized, and the upper laser is not purely σ+ polarized,
the Rydberg states |[nAS1/2]m′

J , m′
I〉 with (m′

J , m′
I ) =

(−1/2, −1/2), (1/2, −3/2), (±1/2, ∓1/2), (1/2, 1/2),
(−1/2, 3/2) can be excited. These states can lead to a
fourth-order Hamiltonian that has extra terms compared to
the desired one, as shown in the Appendix. To achieve the
topological model shown above, it is necessary to have high
polarization purity. In the supplemental material of Ref. [72]
it was shown that with Glan-Taylor polarizers, the intensity
polarization purity of a circular light field can be up to
I+/I− = 104, which means that the electric field of the wrong
polarization is about 1% of that of the correct polarization.
If it is used to realize the model of this paper, the undesired
Rydberg excitation (corresponding to the excitation by Rabi
frequencies with subscripts; see Sec. 2 of the Appendix) will
lead to extra terms that are I−/I+ times the correct terms and
can be significantly suppressed.

The model presented requires the laser fields traveling
along the x-y plane not to have a significant crosstalk. As
shown in Fig. 1(a), the laser pathways addressing sublattices
a and b can have a separation L/2, which is 6.4 μm for the
model shown above. To avoid the crosstalk, the Rayleigh
range should be large. For example, a Rayleigh range of X =
26 μm was employed in Ref. [73] for single-site addressing
in a 3D atom array via lasers of waists w0 = 2.7 μm. By as-
suming this setup, the ratio between the electric field strength
at the nontarget site and that at the beam waist is below
X/

√
X 2 + x2exp{−(L/2)2X 2/[w2

0 (X 2 + x2)]} [40], where x is
the axial separation from the beam waist. This ratio is smaller
than 0.004 even if x = 0 and will drop quickly for larger x. So
it is possible to realize the model with the setup of Fig. 1.

The observation of the topological order of the model
hinges on the possibility to preserve the coherence of the
system. If the dephasing is only from the Rydberg-state
decay, then there is no problem as discussed in Ref [40].
However, it is necessary to avoid dephasing due to the dipole-
dipole coupling. As shown above, the model depends on pure
van der Waals interactions, which is derived by the second-
order perturbation theory, shown in the Appendix. In this
case it is necessary to set the distance between two atoms
far enough so that when they are excited to Rydberg states,
their states will not go out of the state manifold covered by
the optical excitation. In the Appendix the critical distances
for the pairwise interaction to be of the van der Waals type
are listed, which indicate that the lattice constant employed
in the example can satisfy the condition for the van der
Waals interaction. For smaller atomic spacings, dipole-dipole
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FIG. 2. Energy spectra as a function of wave vector for the
Hamiltonian (3) with Ui j = 0 when the system is on a cylinder,
whose axis is along y and x in (a) and (b), respectively. The parame-
ters are from the example system in the text. Each finite system here
has 50 rows of atoms.

interactions will couple the states to other states that cannot
be excited back to the ground state, leading to population loss
[74]. However, because the experiments on Rydberg atoms
were usually at room temperature, the presence of the ther-
mal photons can couple the excited Rydberg states to nearby
Rydberg states that can no longer be coupled back to ground
states. This type of dephasing was studied in Ref. [75].
Nonetheless, it is unclear whether this type of blackbody-
radiation-induced excitation of Rydberg states will destroy the
appearance of the topological order for the model here.

In order to examine the topological property of the
system, it is useful to perform a Fourier transform of the
single-particle part of Eq. (3), i.e., with Ui j = 0. Direct
calculation gives Hk = ε(k) + ∑3

j=1 d j (k)σ j , where σ j

is the jth Pauli matrix, and the details can be found
in Sec. IV A. To show that it is possible to realize the
topological bands with the Hamiltonian in Eq. (3), we
choose an example system with the following Rydberg states:
(nA, nB, nC, nD, nE , nF ) = (85, 86, 100, 101, 105, 106).
Using a numerical search with the restriction that the width
of the energy band should be flat as proved in Ref. [19],
as shown in Fig. 2, we find that a relatively flat Chern
band is realized with the lattice constant L = 12.798 μm,
(�A,�B,�C,�D,�E ,�F )/2π = (−102.8, 397.2, 1947.4,

386.1, 975.4, 1357.8) kHz, �α/�α = η, with η = 7.90, 7.27,
and 8.34 when α = (A, B), (C, D), and (E , F ), respectively;
see the Appendix for details. With these parameters,
the upper band is narrow: the gap between these two
bands is 1.52 times of the width of the upper band. The
parameters of the hard-core boson model of Eq. (3) are φ =
49.377π rad, (μ(a), μ(b), tNN, t (aa)

NN , t (bb)
NN , tN)/2π = (−159,

−152, 2, 12, 12, −40) Hz, and (U (aa)
NN ,U (bb)

NN ,U (ab)
N )/2π =

(−9.15, −9.96, 92.7) Hz. These couplings are much larger
than the decoherence rate of the state | ↑ (↓)〉 [40]. The
upper band has a width of 2π × 47.0 Hz, while the gap
between the lower and upper bands is 2π × 71.4 Hz. Indeed,
dispersionless edge states can appear at the boundary of a
topological band insulator. This is confirmed when we put
the system on a cylinder. As shown in Fig. 2(a) with an

FIG. 3. Charge pumping with respect to the external flux φext

under the proposed experimental parameter setting.

armchair boundary and in Fig. 2(b) with a zigzag boundary,
there are two curves connecting the lower and upper bands.
It is straightforward to check that the Chern number of the
two bands is ±1; however, for the experimental case, the
generating of mutual couplings between atoms are inevitable.
Therefore, we have to turn to a numerical simulation of
the interacting cases by taking all the U couplings into
consideration.

To check the validity of realizing a topological insula-
tor concerning the above experimental parameter setting,
we calculated the charge pumping < Qp > with respect to
the external flux φext by implementing the iDMRG method;
see Sec. IV B for technical details. A finite value of < Qp >

denotes the nontrivial topological effect of the model and
gives the topological charge simultaneously. As shown in
Fig. 3, the model with our proposed parameters for exper-
imental design reproduces the charge pumping phenomena
successfully; we can see that < Qp >∼ 0.5 considering the
numerical instability. Figure 3 indicates that our proposed
parameter setting may lead to a fractional Chern insulator
state; in consequence, we give a thorough theoretical study
of Eq. (3) by generalizing the experimental parameter settings
in the following sections and further confirm the existence of
a stable fractional Chern insulator phase in such a model.

IV. THEORETICAL GENERALIZATION

Although we have proved that a fractional Chern insula-
tor can be realized by using Rydberg-dressed neutral atoms,
which is described effectively by Eq. (3), the alternation of
parameters is confined to experimental settings. Therefore, it
is still necessary to set the theoretical foundation that a model
with respect to Eq. (3) can really generate a stable fractional
quantum Hall state, which is exactly the aim of this section.

A. Topologically flat bands

Equation (3) is analogous to the Haldane-Bose-Hubbard
model [6,19] filled with hard-core bosons except for the differ-
ent phase factors pertaining to the next-nearest hopping t (aa)

NN

and t (bb)
NN that generate zero net flux threading within one unit
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FIG. 4. Band structure of Eq. (3) for which the flatness ratio for
the ground energy band is 0.099, and tN = −1, φ = 8.37700016,
t (aa)or(bb)
NN = −0.31, tNN = 0.14.

cell, as shown in Fig. 1(a). We will name our model described
by Eq. (3) as the untypical Haldane-Bose-Hubbard (UHB)
model in the following context for convenience in compar-
ison with the usual Haldane-Bose-Hubbard model. Previous
studies [19,76] of the Haldane-Bose-Hubbard model have
shown that a fractional Chern insulator (FCI) phase with a
fractional Chern number C = 1/2 can be realized in such a
model with parameter settings under which a flat ground en-
ergy band is achieved. Such a model is termed as topological
flat band model (TFB). Consequently, it is natural to expect
that such a FCI phase may also be realized in the UHB model.

Since the existence of flat bands is the prerequisite for the
FCI phase to appear, it is useful to show a set of parameters
for Eq. (3) to support TFB. The flat ground energy band is
described by the flatness ratio, which is defined as δ/� [20],
where δ is the band width of the ground energy band and �

denotes the energy gap above the ground energy band. In the
noninteracting case, Eq. (3) can be directly diagonalized by
means of Fourier transformation, which gives Hk = d0(k) +∑3

j=1 d j (k)σ j , where σ j is the jth Pauli matrix, and

d0 = 2t2

(
cos φ cos kv1 + cos

φ

2
cos kv2 + cos

φ

2
cos kv3

)
,

d1 = t (cos ks1 + cos ks2 + cos ks3),

d2 = t (sin ks1 + sin ks2 + sin ks3),

d3 = 2t2

(
− sin φ sin kv1 + sin

φ

2
sin kv2 + sin

φ

2
sin kv3

)
.

Here v1 = (
√

3, 0), v2,3 = (−√
3/2,±3/2), and s1,2 =

(±√
3/2, 1/2), s3 = (0,−1). Then the two eigenvalues of Hk

can be written as ε±,k = d0(k) ±
√

d2
1 (k) + d2

2 (k) + d2
3 (k).

We can read out the band width of the lower band ε−,k, δ =
max[ε−,k] − min[ε−,k], and the energy gap, � = min[ε+,k] −
max[ε−,k]. The band flatness ratio δ/� can be obtained nu-
merically, and the optimal value for it is fixed at about 0.099
with the parameter setting tN = −1, φ = 8.37700016, t (aa)

NN =
t (bb)
NN = −0.31, tNN = 0.14, as shown in Fig. 4. Here, by fol-

FIG. 5. (a) ED results of the lowest six eigenlevels of a half-
filling 4 × 3 lattice for UN = 0.1, 2.1, 4.1 with UNN = 0.2, of which
the blue lines denote the ground energy level and the red lines
indicate the first excitation energy. (b) Von Neumann entropy and the
correlation length of the system with respect to UNN with UN = 2.0.
The data were obtained with iDMRG calculations on an infinite
cylinder with MPS unit cell of size 4 × 4 and the bond dimension
χ up to 200.

lowing Ref. [19], we have taken the next-nearest-neighbor
hopping terms tNN between different sublattices into consid-
eration in order to obtain a more flatter band structure.

Next, in the following section, we will search for the ex-
pected FCI phase and its robustness to the finite coupling
U (ab)

N and U (a)or(b)
NN , which will be abbreviated as UN and UNN,

respectively, in the above TFB UHB model and briefly discuss
the nontopological phases exhibited in its phase diagram.

B. Numerical results

In this section we perform the ED and iDMRG calculations
to ascertain the possible phases exhibited by the UHB model
with a flat ground energy band and demonstrate the existence
of a FCI phase in the phase diagram of the model with respect
to UNN and UN; here we will set |tN| = 1 as the energy scale.
The stability of this FCI phase against the presence of finite
interactions and the phase transitions driven by the ratio of
UNN/UN are also studied numerically.

To facilitate the numerical calculation and utilize the trans-
lational symmetry of the UHB model, we roll the honeycomb
array shown in Fig. 1(a) as an infinite cylinder along the x
axis while with a finite circumstance Ly unit cells along the
y direction. For the ED calculation, we will consider a 3 × 4
(Ly × Lx) lattice with a periodical boundary along both of the
space directions.

We concentrate on the half-filling Hilbert subspace with
the filling factor ν = Nb/Ncell = 1/2, where Nb is the particle
number and Ncell is the total number of unit cells of the lat-
tice. It has been verified for the TFB Haldane-Bose-Hubbard
model that the ground state with ν = 1/2 in the weak coupling
case is a 1/2 bosonic fractional Chern insulator [19]. There-
fore, a 1/2 bosonic FCI state is also naturally expected in our
model due to its analogy to the usual Haldane-Bose-Hubbard
model.

First, we determine the phase diagram of the TFB UHB
model with respect to different UN and UNN. Figure 5(a)
displays the selected sets of energy spectrum of the TFB
UHB model obtained by ED calculations. For conciseness,
we put only the first lowest six eigenvalues for each pair of
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FIG. 6. (a) Phase diagram of model 3. (b) Charge excitation with
respect to the external flux φext under distinct parameter settings.
We amplified the curve corresponding to the scale of UN = 2 and
UNN = 2 by 1000 times to show its behavior clearly. All the data
were obtained by iDMRG calculations with an infinite cylinder with
MPS bond dimension χ up to 600.

(UNN, UN) in the figure. We find that, when UNN � 1, the
ground energy is nearly double degenerated, and this double
manifold is separated by a moderate finite gap to the lowest
exciting energy level. This kind of double degeneracy is a
necessary condition for the occurrence of a FCI state and is
consistent with the ED results of Ref. [19]. However, such a
double degeneracy will be slightly lifted by increasing either
UN, which inevitably introduces numerical instability to the
determination of the FCI phase.

Figure 5(b) presents the critical behaviors of the von Neu-
mann entanglement entropy and the correlation length for the
TFB HUB model obtained by iDMRG calculations. With a
fixed UN = 2.0, the system driven by the next-nearest neigh-
bor coupling UNN exhibits two critical points: the first one
at UNN = 1.3 is signified by a sharp peak of the correlation
length and a clear jump of the von Neumann entanglement
entropy which implies a second-order quantum phase transi-
tion; by contrast, the correlation length near the other critical
point at UNN = 2.8 shows only a jump behavior together with
the von Neumann entanglement entropy implying a first-order
phase transition.

Figure 6(a) plots the phase diagram of the UHB model
with respect to UN and UNN, which is obtained by combining
the data from Figs. 5(a) and 5(b). There are three distinct
phases: one FCI phase at the bottom of the phase diagram, one
supersolid phase, and a solid phase. The topological nature of
the FCI phase is of particular interest as shown below.

To determine the topological properties of the FCI region
in Fig. 6(a), we resort to the infinite density matrix renormal-
ization group (iDMRG) method to study the charge excitation
effect as in Laughlin’s gedanken experiment [77]. Technically,
we add the external magnetic flux φext threading through the
cylinder, which can be realized by imposing twist boundary
conditions along the y direction in the model during iDMRG
calculation. Then we adiabatically evolve the φext from 0 to
2π , which means one has to calculate the ground-state wave
function with respect to each value of the φext in sequence by
utilizing the wave function obtained in the last DMRG step
as the initial trial wave function. After the adiabatic evolution
and due to the particle hopping between the edge modes [78]
in the topological FCI phase, the ground state is restored to

FIG. 7. The corresponding on-site charge distribution in the
phase diagram. Red and blue dots denote different sublattices, and
the magnitude of the on-site charge density is signified by the di-
ameter of the dots. (a) FCI phase and the topological trivial phase
with C = 0 with UN = 2 and U.NN = 0.2 (b) Supersolid phase with
UN = 2 and UNN = 2. (c) Solid phase with UN = 2 and UNN = 4. The
data were obtained from iDMRG calculations. Panels (d), (e), and (f)
plot the corresponding structure factors to (a), (b), and (c).

the one before the insertion of φext but with a different particle
distribution which leads to the passing of < Qp > particles
across the middle cut point of the matrix product state (MPS)
wave function on the cylinder; here < Qp > featuring the
quantized Hall conductivity just gives the Chern number of
the topological phase, and we find that it is exactly 1/2 as
illustrated in Fig. 6(b) for the case of UN = 1, UNN = 0.2.
This demonstrates the existence of a FCI phase in the TFB
UHB model.

The stability of the FCI state with respect to internal or
external factors has been investigated in many previous works,
e.g., Ref. [79]; in the article we also ascertain that the charge
pumping effect associated to the FCI phase is also not sta-
ble in the presence of the nearest-neighboring coupling UN.
Figure 5(a) reveals that the double ground state degeneracy
can be lifted by a larger UN > 1; further calculation con-
firms that UNN can also lift the degenerated ground energy
manifold. Therefore, in order to obtain the charge pumping
phenomena, we have to increase both the truncate dimension
and the size of the unit cell along the y direction during the
iDMRG calculation. In Fig. 6(b), as an example, we plot the
result for the case of UNN = 0.1 with UN = 2.5. However,
this numerical instability cannot be detected by using the
criteria of correlation length or von Neumann entanglement
entropy; the ground-state on-site particle occupancy pattern
in the FCI phase shows uniform charge distribution with an
on-site charge density of 〈ni〉 = 1/4 as shown in Fig. 7(a).

By increasing UNN, we also find two topological trivial
phases: the supersolid phase and the solid phase as illus-
trated in Fig. 6(a), which is very analogous to the scenario
in Ref. [76]. The on-site particle density and the correspond-
ing structure factor S(q) for these two phases are shown
in Figs. 7(b) and 7(c). The supersolid phase is character-
ized by the (π, π ) peak of S(q) and the sinusoidal pattern
of charge excitation as shown in Fig. 6(b). The supersolid
phase is driven into the solid phase by increasing UNN across
a first-order phase transition as indicated in Fig. 5(b). In
such a solid phase, the charge excitation effect disappears as

053107-6



FRACTIONAL CHERN INSULATOR WITH … PHYSICAL REVIEW A 108, 053107 (2023)

shown in Fig. 6(b), and a large gap shows up in the entan-
glement spectrum above the lowest energy of which the data
are not shown here. A difference with Ref, [76] is that the
two peaks of S(q) at (π, π/2) and (π, 3π/2) are shifted to
(π, π/4) and (π, 3π/4), which is due to the physical effect
of the special complex hopping phase factors of the UHB
model. The conclusions about these two phases are almost the
same as the results of Ref. [76], and no further discussion is
necessary here.

V. CONCLUSIONS

In summary, we propose a method to simulate a fractional
Chern insulator based on Rydberg-dressed neutral atoms. By
using Rydberg dressing, a hard-core boson Hubbard model
with a special complex hopping amplitudes on a honeycomb
array can be realized. With the help of massive numerical
searching, we find a set of parameters which may be exper-
imentally suitable to be implemented to simulate a fractional
Chern insulator whose ground energy band can be described
by a factional Chern number of 1/2 concerning their topology,
and the conclusion is justified by numerical calculations. Nev-
ertheless, it should be noted that the experimental parameter
setting cannot be chosen arbitrarily; more effort is needed to
put into the work of optimizing the experimental setting in
the future. Despite the imposing of the experimental restric-
tion, we give a thorough numerical study of the fractional
Chern insulating phase of the model by generalizing the ex-
perimental parameter settings. Our results clearly support the
existence of a stable FCI phase in the special hard-core boson
Hubbard model, dubbed the UHB model in the context, under
finite intersite couplings and set a theoretical foundation for
the appearance of topological phenomena in a model with
the different type of time-reversal symmetry-breaking items
that are presented in this article. This shows that anomalous
fractional quantum Hall phases may be emulated with neutral
atoms via Rydberg dressing.
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APPENDIX: EFFECTIVE HAMILTONIAN VIA RYDBERG
DRESSING

1. Rydberg interaction when nA �= nB

The proposal hinges on the possibility to create van der
Waals interaction between Rydberg atoms. The van der Waals
interaction is from the second-order perturbation of dipole-
dipole interaction when two atoms A and B are far enough

[41]. For an atomic state highly excited, we use the princi-
pal quantum number n, electron angular momentum quantum
number l , total angular momentum quantum number j, and
magnetic quantum number m to represent its state. Here the
quantization axis is along z. The dipole-dipole interaction
between two atoms with quantum numbers (nA, lA, jA, mA)
and (nB, lB, jB, mB) is an electrostatic interactions given by

V̂dd = ŝA · (3r̂r̂/r2 − Î) · ŝB/L3, (A1)

where ŝA(B) is the dipole moment of atom A(B), L the distance
between the two atoms, and Î an identity operator. Using the
representation of spherical harmonic rank 2 tensor, the matrix
element

VmAmB;mamb = 〈nAlA jAmA; nBlB jBmB|V̂dd|nala jama; nblb jbmb〉
(A2)

can be written as

−
√

6

L3

〈
nAlA jA

∣∣∣∣D[1]
A

∣∣∣∣nala ja〉〈nBlB jB
∣∣∣∣D[1]

B

∣∣∣∣nblb jb
〉

×
2∑

M=−2

�
[2]
−M (θ, ψ )

1∑
α,β=−1

C112
αβMC ja1 jA

maαmA
C jb1 jB

mbβmB
, (A3)

where D[1]
k is the dipole moment of atom k = A or B in terms

of rank 1 tensor, C a Clebsh-Gordan coefficient, �[2] a rank 2
tensor given by the standard spherical harmonics multiplied
by a factor of

√
4π/5, and (θ, ψ ) the angular position of

atom B with respect to atom A. Because all the second-
order spherical harmonics, except �0, are ∝ sin θ , the dipole
coupling will conserve the total projection of the magnetic
angular momenta of the two atoms when θ = 0. Here the
dipole matrix element 〈nAlA jA||D[1]

A ||nala ja〉 can be calculated
using the Wigner-Eckart theorem. More details can be found
in Ref. [41].

When the coupling strength of the two dipoles is much
smaller than the energy difference of the dipole-coupled initial
and final two-atom states, the two-atom state is hardly ex-
cited out of the degenerate manifold (nA, lA, jA; nB, lB, jB),
(nB, lB, jB; nA, lA, jA) for two atoms in different initial fine
structures. Even when the principal quantum numbers of the
two atoms are not exchanged, their magnetic angular mo-
menta mA and mB can still change. In this case, the van der
Waals interaction is given by

ĤvdW = −
∑
nala ja

∑
nblb jb

V̂ddV̂
†

dd/δab. (A4)

Here the matrix elements of V̂dd are given in Eq. (A2), and the
energy defect is [35]

δab = E (nala ja) + E (nblb jb) − [E (nAlA jA) + E (nBlB jB)],

(A5)

where E (nl j) is the atomic energy of a Rydberg atom
with quantum numbers n, l, j. An interesting example is
that state (nA, lA, jA, mA; nB, lB, jB, mB) can go to state
(nB, lB, jB, mB; nA, lA, jA, mA), i.e., the quantum numbers of
the two atoms swap. In this paper we are interested in such
processes when (lA, jA) = (lB, jB) = (0, 1/2), and the polar
angle θ = π/2.
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Consider two 87Rb Rydberg atoms lying perpendic-
ular to the quantization axis, one prepared in state
|rA±〉 = |nA

2S 1
2
, mJ = ±1/2〉 ⊗ |mI〉, and the other in state

|rB±〉 = |nB
2S 1

2
, mJ = ±1/2〉 ⊗ |mI〉, where nA �= nB. We

consider the following four channels for the dipole-dipole
interaction, each characterized by its energy defect:

δ1(na, nb) = E (na p 3
2
) + E (nb p 3

2
) − E (nAs 1

2
) − E (nBs 1

2
),

δ2(na, nb) = E (na p 3
2
) + E (nb p 1

2
) − E (nAs 1

2
) − E (nBs 1

2
),

δ3(na, nb) = E (na p 1
2
) + E (nb p 3

2
) − E (nAs 1

2
) − E (nBs 1

2
),

δ4(na, nb) = E (na p 1
2
) + E (nb p 1

2
) − E (nAs 1

2
) − E (nBs 1

2
).

(A6)

Here (na, nb) denote the principal quantum numbers of the
pair state produced by the scattering process. These four cou-
plings are known to be the dominant ones in our case. In
the van der Waals interaction the atoms then go back to the
initial levels and the magnetic quantum number of either atom
can change up to 1. We can separate the angular dependence
of the interaction from the principal quantum numbers; then
Eq. (A4) can be written as

Ĥ (nA,nB )
vdW =

4∑
k=1

∑
nala

∑
nblb

D(δk )C(k)
6 . (A7)

When the polar angle ψ = 0, the matrix rep-
resentation of the matrix D in the basis of
|rA+rB+〉, |rA−rB+〉, |rA+rB−〉, |rA−rB−〉 is given by

D(δ1) =

⎛
⎜⎜⎝

0.3457 0 0 −0.0741
0 0.2469 0.0247 0
0 0.0247 0.2469 0

−0.0741 0 0 0.3457

⎞
⎟⎟⎠,

D(δ2(3)) =

⎛
⎜⎜⎝

0.0988 0 0 0.0741
0 0.1975 −0.0247 0
0 −0.0247 0.1975 0

0.0741 0 0 0.0988

⎞
⎟⎟⎠,

D(δ4) =

⎛
⎜⎜⎝

0.1235 0 0 −0.0741
0 0.0247 0.0247 0
0 0.0247 0.0247 0

−0.0741 0 0 0.1235

⎞
⎟⎟⎠,

(A8)

where one finds interactions that change the overall magnetic
quantum number of the two atoms up to 2 for each scattering
process. When the polar angle ψ = π/2,

D(δ1) =

⎛
⎜⎜⎝

0.3457 0 0 0.0741
0 0.2469 0.0247 0
0 0.0247 0.2469 0

0.0741 0 0 0.3457

⎞
⎟⎟⎠,

D(δ2(3)) =

⎛
⎜⎜⎝

0.0988 0 0 −0.0741
0 0.1975 −0.0247 0
0 −0.0247 0.1975 0

−0.0741 0 0 0.0988

⎞
⎟⎟⎠,

TABLE I. Critical distance for the interaction between two atoms
at level n1S1/2 and n2S1/2 to change from dipole-dipole to van der
Waals feature.

n1\n2 85 86 100 101 105 106

85 4.0
86 5.6 4.1
100 1.5 3.8 6.1
101 1.2 1.6 7.9 6.2
105 0.7 0.8 5.7 9.2 6.8
106 0.6 0.6 5.0 5.9 8.8 7.0

D(δ4) =

⎛
⎜⎜⎝

0.1235 0 0 0.0741
0 0.0247 0.0247 0
0 0.0247 0.0247 0

0.0741 0 0 0.1235

⎞
⎟⎟⎠. (A9)

We take (nA, nB) = (85, 86) as an example, and numeri-
cally calculate [66],

Ĥ (85,86)
vdW =

(
V V
V V

)
, (A10)

where

V =

⎛
⎜⎜⎝

13 254 0 0 V f

0 12 447 202 0
0 202 12447 0
V∗

f 0 0 13 254

⎞
⎟⎟⎠μm6 GHz

L6
,

V =

⎛
⎜⎜⎝

10 350 0 0 V f

0 9579 193 0
0 193 9579 0
V ∗

f 0 0 10 350

⎞
⎟⎟⎠μm6 GHz

L6
,

(A11)

where (V f ,V f ) = (303 − 525i, 289 − 501i), (−606,−578),
(303 + 525i, 289 + 501i) when ψ = (−π/3, 0, π/3). The
basis vectors of Ĥ (85,86)

vdW for the columns from left to right and
for the rows from top to bottom are

|rA+rB+〉, |rA−rB+〉, |rA+rB−〉, |rA−rB−〉, |rB+rA+〉,
|rB−rA+〉, |rB+rA−〉, |rB−rA−〉. (A12)

The critical distance for the interaction between the two atoms
to follow Eq. (A11) is 5.6 μm, which applies to both V and V
since the perturbation channels for calculating them are the
same [66]. The other relevant critical distances are listed in
Table I.

When (nA, nA) = (85, 85) and (nB, nB) = (86, 86), we
have

Ĥ (85,85)
vdW =

⎛
⎜⎜⎝

8637 0 0 v85

0 8415 55 0
0 55 8415 0

v∗
85 0 0 8637

⎞
⎟⎟⎠μm6 GHz

L6
,

Ĥ (86,86)
vdW =

⎛
⎜⎜⎝

9903 0 0 v86

0 9647 64 0
0 64 9647 0

v∗
86 0 0 9903

⎞
⎟⎟⎠μm6 GHz

L6
,

(A13)
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where v85 = 83 − 144i,−166, 83 + 144i when ψ =
(−π/3, 0, π/3) v86 = 96 − 166i,−192, 96 + 166i when
ψ = (−π/3, 0, π/3). Here the basis vectors are

|rA+rA+〉, |rA−rA+〉, |rA+rA−〉, |rA−rA−〉, (A14)

for Ĥ (85,85)
vdW and

|rB+rB+〉, |rB−rB+〉, |rB+rB−〉, |rB−rB−〉, (A15)

for Ĥ (86,86)
vdW . The critical distance for Ĥ (85,85)

vdW and Ĥ (86,86)
vdW is

4.0 μm and 4.1 μm, respectively. When we excite all atoms
to both levels nA = 85 and nB = 86, one shall set the dis-
tance between any two atoms far compared to these critical
distances as in this paper. The relevant data for the states used
in this paper are shown in Table I, which show that for the
parameters used in the main text, the interactions are of the
van der Waals character.

2. Perturbative calculation of the effective Hamiltonian

Consider two atoms labeled as atom 1 and atom 2, where
each is prepared in a superposition of the two states | ↑〉 and
| ↓〉. Now the state | ↑〉 is excited to states |rA+〉, while | ↓〉 is
excited to states |rB+〉. In order to show the impact of wrong
polarization of the laser fields on the model, we will derive an
effective Hamiltonian by assuming that the state | ↑〉 is excited
to states |rA±〉, while | ↓〉 is excited to states |rB±〉.

The optical excitation is the perturbation

V̂ = 1

2

∑
k

∑
α=±

(�Aαeiφkα |↑〉〈rAα| + �Bαeiϕkα |↓〉〈rBα| + H.c.)k,

(A16)

where k denotes the index for the atom. After completion of
the derivation, we will set �A− and �B− as zero for demon-
strating the physics through a simple excitation scheme. Note
that the phase term φkα differs from atom to atom. First, it is
useful to diagonalize the operator Ĥ0 in the two-atom basis.
With the n = 85, 86 states as an example, the unperturbed
Hamiltonian

Ĥ0 =
∑

i

∑
α=±

[−�A|rAα〉〈rAα| − �B|rBα〉〈rBα|]i

+
∑
〈i j〉

[
Ĥ (85,85)

vdW + Ĥ (85,86)
vdW + Ĥ (86,86)

vdW

]
i j
, (A17)

for the two atoms at sites i and j can be diagonalized. There
are two different cases.

(a) For the addressing of different Rydberg
levels, diagonalization gives the following eigenvalues and
eigenstates,

E1± = −�A − �B + Vb + Vb ± (V f + V f ),

E2± = −�A − �B + Vb − Vb ± (V f − V f ),

E3± = −�A − �B + Vd + Vd ± (Ve + Ve),

E4± = −�A − �B + Vd − Vd ± (Ve − Ve), (A18)

and the corresponding eigenstates,

2|v1±〉 = |rB−rA−〉 + |rA−rB−〉 ± (|rB+rA+〉 + |rA+rB+〉),
2|v2±〉 = |rB−rA−〉 − |rA−rB−〉 ± (|rB+rA+〉 − |rA+rB+〉),

2|v3±〉 = |rB+rA−〉 + |rA+rB−〉 ± (|rB−rA+〉 + |rA−rB+〉),

2|v4±〉 = |rB+rA−〉 − |rA+rB−〉 ± (|rB−rA+〉 − |rA−rB+〉).

(A19)

Note that the above result is valid for ψ = 0 or π/2. When
ψ = π/4 or 3π/4, there is an imaginary factor in the van der
Waals interaction. Here the notations are defined as

Vb = V11, Vb = V11

V f = V14, V f = V14,

Vd = V22, Vd = V22

Ve = V23, Ve = V23. (A20)

Obviously, |v1±/v2±|, |v3±/v4±| � 1 when �A + �B = 0.
(b) For the addressing of the same Rydberg level nA = 85,

one finds that the off-diagonal matrix elements of Ĥ (nA,nA )
vdW in

Eq. (A13) are more than 50 times smaller than the diago-
nal matrix elements. Thus we can ignore these off-diagonal
matrix elements. Then diagonalization gives the following
matrix:

ĤA = diag
[
Ĥ (85,85)

vdW

] − 2�A1̂4×4, (A21)

with the same basis vectors as in Eq. (A13). Similar results
exist when we address the ground states to the same Rydberg
level nA = 86,

ĤB = diag
[
Ĥ (86,86)

vdW

] − 2�B1̂4×4. (A22)

With the diagonalization at hand, the unperturbed
Hamiltonian for two atoms that are interacting with each
other can be written as

Ĥ0 =
∑

α=±,β=↑,↓
[−�A|rAαβ〉〈rAαβ| − �B|rBαβ〉〈rBαβ|

−�A|βrAα〉〈βrAα| − �B|βrBα〉〈βrBα|]

+
4∑

i=1

∑
α=±

Eiα|viα〉〈viα| + ĤA + ĤB. (A23)

The perturbation in these basis can be written as

V̂ = 1

2

∑
i

∑
α=±,β

[�Aαeiφ1α | ↑ β〉〈rAαβ| + �Bαeiϕ1α | ↓ β〉〈rBαβ| + H.c.] + 1

2

∑
i

∑
α=±,β

[�Aαeiφ2α |β ↑〉〈βrAα|

+ �Bαeiϕ2α |β ↓〉〈βrBα| + H.c.], (A24)

where the summation over β is for ↑,↓ and all the single Rydberg excited states. Let us write the above operator as

V̂ = V̂b + V̂o, (A25)
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where

V̂o = 1

2

∑
i

∑
α=±,β=↑,↓

[�Aαeiφ1α | ↑ β〉〈rAαβ| + �Bαeiϕ1α | ↓ β〉〈rBαβ| + H.c.] + 1

2

∑
i

∑
α=±,β=↑,↓

[�Aαeiφ2α |β ↑〉〈βrAα|

+ �Bαeiϕ2α |β ↓〉〈βrBα| + H.c.], (A26)

and V̂b = V̂ − V̂o. From Ref. [67], the unitary transformation Û ≡ eĜ can get rid of the first-order coupling V̂ . Ĝ shall be
calculated order by order. According to this quasidegenerate perturbation theory, the goal of the perturbation is to eliminate the
coupling V̂o, so that the new ground states are decoupled from the excited states. In order to have the operator Û ≡ eĜ, where
Ĝ = ∑

k Ĝ(k), one solves

[Ĥ0, Ĝ(1)] = −V̂o,

[Ĥ0, Ĝ(2)] = −[V̂b, Ĝ(1)],

[Ĥ0, Ĝ(3)] = −[V̂b, Ĝ(2)] − 1
3 [[V̂o, Ĝ(1)], Ĝ(1)].

As an example, we solve

Ĝ(1) = −
∑

α=±,β=↑,↓

[
�Aαeiφ1α

2�A
| ↑ β〉〈rAαβ| + �Bαeiϕ1α

2�B
| ↓ β〉〈rBαβ| − H.c.

]

−
∑

i

∑
α=±,β=↑,↓

[
�Aαeiφ2α

2�A
|β ↑〉〈βrAα| + �Bαeiϕ2α

2�B
|β ↓〉〈βrBα| − H.c.

]
. (A27)

As soon as one gets Ĝ(1), the second-order perturbed Hamiltonian is

Ĥ (2)
eff = 1

2
[V̂o, Ĝ(1)]

=
∑

α �2
Aα

2�A
| ↑↑〉〈↑↑ | +

∑
α �2

Bα

2�B
| ↓↓〉〈↓↓ | +

(∑
α �2

Aα

4�A
+

∑
α �2

Bα

4�B

)
(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |)

−
∑

α

�2
Aα

4�A

∑
β=↓,↑

[|rAαβ〉〈rAαβ| + |βrAα〉〈βrAα|] −
∑

α

�2
Bα

4�B

∑
β=↓,↑

[|rBαβ〉〈rBαβ| + |βrBα〉〈βrBα|], (A28)

where one gets diagonal couplings within the excited states manifold. As long as we finally get rid of the coupling between the
ground and excited states, we do not need to pay special attention to the energy levels of the excited states. We thence do so.

The calculation of the effective Hamiltonian can be conveniently performed following Ref. [68]. The third-order effective
Hamiltonian is zero, while the result for fourth-order effective Hamiltonian is

Ĥ (4)
eff = 1

2 [V̂o, Ĝ(3)] − 1
24 [[[V̂o, Ĝ(1)], Ĝ(1)], Ĝ(1)]

= Ĥ (4)
light + Ĥ (4)

atom, (A29)

where the part due to the laser field is

Ĥ (4)
light =

[
−

(
�2

A+ + �2
A−

)2

4�3
A

]
| ↑↑〉〈↑↑ | +

[
−

(
�2

B+ + �2
B−

)2

4�3
B

]
| ↓↓〉〈↓↓ |

−
[(

�2
A+ + �2

A−
)2

16�3
A

+
(
�2

B+ + �2
B−

)2

16�3
B

+
(
�2

A+ + �2
A−

)(
�2

B+ + �2
B−

)
16�A�B

(
1

�A
+ 1

�B

)]
(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |)

+Energy shifts of excited states, (A30)

while the part due to Rydberg interaction is

Ĥ (4)
atom = − 1

4�2
A

∑
α,β=±

�2
Aα�2

Aβ

HA
αβ

| ↑↑〉〈↑↑ | − 1

4�2
B

∑
α,β=±

�2
Bα�2

Bβ

HB
αβ

| ↓↓〉〈↓↓ | + 1

4
[h1 + h2 + h3](| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |)

+ 1

4
[(h4 + h5 + h6)| ↑↓〉〈↓↑ | + H.c.], (A31)
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where the calculation for the coefficient of | ↑↓〉〈↑↓ | can be done from Eq. (B15) of Ref. [68]. First, the contribution from
(|l〉, |l ′′〉) = (|rAα ↓〉, |rAβ ↓〉) is

h1 = −�2
A+�2

B+ + �2
A−�2

B−
16�2

A

∑
k=1,2

∑
α=±

1

Ekα

− �2
A+�2

B− + �2
A−�2

B+
16�2

A

∑
k=3,4

∑
α=±

1

Ekα

− �A+�B+�A−�B−
8�2

A

(
1

E1+
− 1

E1−
+ 1

E2+
− 1

E2−

)
cos(φ1+ − φ1− + ϕ2+ − ϕ2−)

− �A+�B+�A−�B−
8�2

A

(
1

E3+
− 1

E3−
+ 1

E4+
− 1

E4−

)
cos(φ1+ − φ1− − ϕ2+ + ϕ2−), (A32)

and the contribution from (|l〉, |l ′′〉) = (| ↑ rBα〉, | ↑ rBβ〉) h2 applies the same form as h1, but with �A replaced by �B. Now, the
part from (|l〉, |l ′′〉) = (|rAα ↓〉, | ↑ rBβ〉) and (| ↑ rBβ〉, |rAα ↓〉) is

h3 = −�2
A+�2

B+ + �2
A−�2

B−
8�A�B

∑
k=1,2

∑
α=±

1

Ekα

− �2
A+�2

B− + �2
A−�2

B+
8�A�B

∑
k=3,4

∑
α=±

1

Ekα

− �A+�B+�A−�B−
4�A�B

(
1

E1+
− 1

E1−
+ 1

E2+
− 1

E2−

)
cos(φ1+ − φ1− + ϕ2+ − ϕ2−)

− �A+�B+�A−�B−
4�A�B

(
1

E3+
− 1

E3−
+ 1

E4+
− 1

E4−

)
cos(φ1+ − φ1− − ϕ2+ + ϕ2−). (A33)

We next come to the exchange part. The contribution from (|l〉, |l ′′〉) = (|rAα ↓〉, |rBβ ↑〉) and (| ↑ rBβ〉,↓ rAα〉) is

h4 = − 1

8�A�B

∑
α

(
1

E1α

− 1

E2α

)[
�2

A+�2
B+ cos(φ1+ − φ2+ − ϕ1+ + ϕ2+) + �2

A−�2
B− cos(φ1− − φ2− − ϕ1− + ϕ2−)

]

− �A+�B+�A−�B−
8�A�B

∑
α

(
1

E3α

− 1

E4α

)
[cos(φ1+ − φ2− − ϕ1+ + ϕ2−) + cos(φ1− − φ2+ − ϕ1− + ϕ2+)]

− �A+�B+�A−�B−
8�A�B

∑
α

(
α

E1α

− α

E2α

)
[cos(φ1− − φ2+ − ϕ1+ + ϕ2−) + cos(φ1+ − φ2− − ϕ1− + ϕ2+)]

− 1

8�A�B

∑
α

(
α

E3α

− α

E4α

)[
�2

A+�2
B− cos(φ1+ − φ2+ − ϕ1− + ϕ2−) + �2

A−�2
B+ cos(φ1− − φ2− − ϕ1+ + ϕ2+)

]
,

(A34)

The contribution from (|l〉, |l ′′〉) = (|rAα ↓〉, | ↓ rAβ〉) is

h5 = − 1

16�2
A

∑
α

(
1

E1α

− 1

E2α

)[
�2

A+�2
B+ exp[i(φ1+ − φ2+ − ϕ1+ + ϕ2+)] + �2

A−�2
B− exp[i(φ1− − φ2− − ϕ1− + ϕ2−)]

]

− �A+�B+�A−�B−
16�2

A

∑
α

(
1

E3α

− 1

E4α

)
[exp[i(φ1+ − φ2− − ϕ1+ + ϕ2−)] + exp[i(φ1− − φ2+ − ϕ1− + ϕ2+)]]

− �A+�B+�A−�B−
16�2

A

∑
α

(
α

E1α

− α

E2α

)
[exp[i(φ1− − φ2+ − ϕ1+ + ϕ2−)] + exp[i(φ1+ − φ2− − ϕ1− + ϕ2+)]]

− 1

16�2
A

∑
α

(
α

E3α

− α

E4α

)[
�2

A+�2
B− exp[i(φ1+ − φ2+ − ϕ1− + ϕ2−)] + �2

A−�2
B+ exp[i(φ1− − φ2− − ϕ1+ + ϕ2+)]

]
.

(A35)

The contribution from (|l〉, |l ′′〉) = (| ↑ rBα〉, |rBβ ↑〉) is

h6 = − 1

16�2
B

∑
α

(
1

E1α

− 1

E2α

)[
�2

A+�2
B+ exp[i(φ1+ − φ2+ − ϕ1+ + ϕ2+)] + �2

A−�2
B− exp[i(φ1− − φ2− − ϕ1− + ϕ2−)]

]

− �A+�B+�A−�B−
16�2

B

∑
α

(
1

E3α

− 1

E4α

)
[exp[i(φ1+ − φ2− − ϕ1+ + ϕ2−)] + exp[i(φ1− − φ2+ − ϕ1− + ϕ2+)]]
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− �A+�B+�A−�B−
16�2

B

∑
α

(
α

E1α

− α

E2α

)
[exp[i(φ1− − φ2+ − ϕ1+ + ϕ2−)] + exp[i(φ1+ − φ2− − ϕ1− + ϕ2+)]]

− 1

16�2
B

∑
α

(
α

E3α

− α

E4α

)[
�2

A+�2
B− exp[i(φ1+ − φ2+ − ϕ1− + ϕ2−)] + �2

A−�2
B+ exp[i(φ1− − φ2− − ϕ1+ + ϕ2+)]

]
.

(A36)

In summary, the Hamiltonian up to fourth order for the two atoms i and j is

Ĥeff = Ĥ0 + Ĥ (2)
eff + Ĥ (4)

eff . (A37)

If L is so large that all van der Waals interaction is zero, Ĥeff is still nonzero for the ground states,

Ĥeff →
∑

α=±,β=↑,↓
[−�A|rAαβ〉〈rAαβ| − �B|rBαβ〉〈rBαβ| − �A|βrAα〉〈βrAα| − �B|βrBα〉〈βrBα|]

+
4∑

k=1

∑
α=±

Ekα|vkα〉〈vkα| + ĤA + ĤB

+ hlight + energy shifts of excited states, (A38)

where one finds the light shift of the ground states

hlight =
∑

α �2
Aα

2�A
| ↑↑〉〈↑↑ | +

∑
α �2

Bα

2�B
| ↓↓〉〈↓↓ | +

(∑
α �2

Aα

4�A
+

∑
α �2

Bα

4�B

)
(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |)

−
(
�2

A+ + �2
A−

)2

8�3
A

| ↑↑〉〈↑↑ | −
(
�2

B+ + �2
B−

)2

8�3
B

| ↓↓〉〈↓↓ |

−
[(

�2
A+ + �2

A−
)2

16�3
A

+
(
�2

B+ + �2
B−

)2

16�3
B

]
(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |). (A39)

The term hlight shows that detuning of the states are changed effectively to be

|rAα〉 : �A +
∑

α �2
Aα

4�A
−

(
�2

A+ + �2
A−

)2

16�3
A

+ shifts due to excited states,

|rBα〉 : �B +
∑

α �2
Bα

4�B
−

(
�2

B+ + �2
B−

)2

16�3
B

+ shifts due to excited states. (A40)

As a result, the effective Hamiltonian can be written as

Ĥeff = [
Ĥ0 + Ĥ (2)

eff + Ĥ (4)
eff − hlight

]
ground states

= H11| ↑↑〉〈↑↑ | + H44| ↓↓〉〈↓↓ |
+H22(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |) + H23| ↑↓〉〈↓↑ | + H∗

23| ↓↑〉〈↑↓ |. (A41)

Here

H11 = −
(
�2

A+ + �2
A−

)2

8�3
A

− 1

4�2
A

∑
α,β=±

�2
Aα�2

Aβ

HA
αβ

,

H44 = −
(
�2

B+ + �2
B−

)2

8�3
B

− 1

4�2
B

∑
α,β=±

�2
Bα�2

Bβ

HB
αβ

,

H22 = −
(
�2

A+ + �2
A−

)(
�2

B+ + �2
B−

)
16�A�B

(
1

�A
+ 1

�B

)

+
(

1

�A
+ 1

�B

)2[
− �2

A+�2
B+ + �2

A−�2
B−

16

∑
k=1,2

∑
α=±

1

Ekα

− �2
A+�2

B− + �2
A−�2

B+
16

∑
k=3,4

∑
α=±

1

Ekα

− �A+�B+�A−�B−
8

(
1

E1+
− 1

E1−
+ 1

E2+
− 1

E2−

)
cos(φ1+ − φ1− + ϕ2+ − ϕ2−)
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− �A+�B+�A−�B−
8

(
1

E3+
− 1

E3−
+ 1

E4+
− 1

E4−

)
cos(φ1+ − φ1− − ϕ2+ + ϕ2−)

]
,

H23 = h4 + h5 + h6,

ReH23 =
{

− 1

16

∑
α

(
1

E1α

− 1

E2α

)[
�2

A+�2
B+ cos(φ1+ − φ2+ − ϕ1+ + ϕ2+) + �2

A−�2
B− cos(φ1− − φ2− − ϕ1− + ϕ2−)

]

− �A+�B+�A−�B−
16

∑
α

(
1

E3α

− 1

E4α

)
[cos(φ1+ − φ2− − ϕ1+ + ϕ2−) + cos(φ1− − φ2+ − ϕ1− + ϕ2+)]

− �A+�B+�A−�B−
16

∑
α

(
α

E1α

− α

E2α

)
[cos(φ1− − φ2+ − ϕ1+ + ϕ2−) + cos(φ1+ − φ2− − ϕ1− + ϕ2+)]

− 1

16

∑
α

(
α

E3α

− α

E4α

)[
�2

A+�2
B− cos(φ1+ − φ2+ − ϕ1− + ϕ2−) + �2

A−�2
B+ cos(φ1− − φ2− − ϕ1+ + ϕ2+)

]}

×
(

1

�A
+ 1

�B

)2

,

ImH23 =
{

− 1

16

∑
α

(
1

E1α

− 1

E2α

)[
�2

A+�2
B+ sin(φ1+ − φ2+ − ϕ1+ + ϕ2+) + �2

A−�2
B− sin(φ1− − φ2− − ϕ1− + ϕ2−)

]

− �A+�B+�A−�B−
16

∑
α

(
1

E3α

− 1

E4α

)
[sin(φ1+ − φ2− − ϕ1+ + ϕ2−) + sin(φ1− − φ2+ − ϕ1− + ϕ2+)]

− �A+�B+�A−�B−
16

∑
α

(
α

E1α

− α

E2α

)
[sin(φ1− − φ2+ − ϕ1+ + ϕ2−) + sin(φ1+ − φ2− − ϕ1− + ϕ2+)]

− 1

16

∑
α

(
α

E3α

− α

E4α

)[
�2

A+�2
B− sin(φ1+ − φ2+ − ϕ1− + ϕ2−) + �2

A−�2
B+ sin(φ1− − φ2− − ϕ1+ + ϕ2+)

]}

×
(

1

�A
+ 1

�B

)2

. (A42)

The result above can be written in terms of Pauli matrices σ̂ (i)
z ≡ 2| ↑〉〈↑ |i − 1̂(i) = 1̂(i) − 2| ↓〉〈↓ |i, σ̂ (i)

x ≡ | ↑〉〈↓ |i + | ↓〉〈↑ |i,
and σ̂ (i)

y ≡ i| ↓〉〈↑ |i − i| ↑〉〈↓ |i, with 1̂(i) the identity operator in the Hilbert space of the the two spin states of the ith atom,

Ĥ =
∑

i

Biσ̂
(i)
z /2 +

∑
〈i, j〉

∑
α=x,y,z

Jαασ̂ (i)
α σ̂ ( j)

α /4 +
∑
〈i, j〉

(
Jxyσ̂

(i)
x σ̂ ( j)

y + Jyxσ̂
(i)
y σ̂ ( j)

x

)
/4, (A43)

where

Bi =
∑

j

[H11 − H44]i, j/2,

Jxx = Jyy = 2ReH23,

Jzz = H11 − 2H22 + H44,

Jxy = −Jyx = 2ImH23. (A44)

Now the hard-core boson is defined as b†
i = | ↑〉〈↓ |i, then σ̂ (i)

x = b†
i + bi, σ̂

(i)
y = i(bi − b†

i ) and σ̂ (i)
z = 2b†

i bi − 1. Thus we have

Ĥ =
∑

i

μini +
∑
〈i, j〉

ti jb
†
i b j +

∑
〈i, j〉

Vi jnin j, (A45)

where ni = b†
i bi, and

μi = Bi −
∑

j

[Jzz]i, j/2 =
∑

j

[H22 − H44]i, j,

ti j = (Jxx + iJxy)/2 = H23,

Vi j = Jzz = H11 − 2H22 + H44. (A46)
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Note that if we have H33 �= H22, then

μi = Bi −
∑

j

[Jzz]i, j/2 =
∑

j

[H22 + H33 − 2H44]i, j/2,

ti j = (Jxx + iJxy)/2 = H23,

Vi j = Jzz = H11 − H22 − H33 + H44. (A47)

The above derivation shows that the wrong polarization of the laser fields will lead to fourth-order terms that are of
order �i−� j−/(�i′+� j′+), where i, j, i′, j′ are A or B. This means that with a polarization purity 104 which leads to
�i−/�i′+,� j−/� j′+ ∼ 0.01, the extra terms in the fourth-order are about 10−4 times the terms relevant for the topological
order to appear, so that the wrong excitation channels can be ignored.

3. Boson-Harburd model on a honeycomb lattice

We use six types of Rydberg levels for the model. The state (| ↑〉, | ↓〉) for each site of sublattice a in the honeycomb lattice of
Fig. 1(a) is excited to Rydberg states (nAS1/2, nBS1/2) and (nCS1/2, nDS1/2), while each site of sublattice b is excited to Rydberg
states (nAS1/2, nBS1/2) and (nE S1/2, nF S1/2). The blockade interaction happens between two atoms of any Rydberg levels, while
n-exchange interaction occurs only for pairs of levels (nAS1/2, nBS1/2), (nCS1/2, nDS1/2), or (nE S1/2, nF S1/2). The intermediate
P levels for addressing (nCS1/2, nDS1/2) and (nE S1/2, nF S1/2) are chosen to have F = 1 and F = 2, respectively. We will apply
the analytical result in the last section for levels (nAS1/2, nBS1/2), set �A− and �B− as zero, and ignore the populations on
the Rydberg states |rA−〉, |rB−〉. We use �A for �A+ below, and similarly for others. The same symbols are applied for levels
(nCS1/2, nDS1/2) and (nE S1/2, nF S1/2), with the subscripts replaced correspondingly. For |nα − nβ | �= 1, the interaction for levels
(nαS1/2, nβS1/2) is only an energy shift, which is represented by V (nα,nβ ). For two nearest atoms in sublattice a, the coefficients
in Eq. (A42) becomes

H(aa)
11 = − �4

A

8�3
A

− �4
C

8�3
C

− �2
A�2

C

(
1/�2

A + 1/�2
C

)
4(�A + �C )

− 1

4

[
�2

A�2
A/�2

A

V (nA,nA ) − 2�A
+ �2

A�2
C

(
1/�2

A + 1/�2
C

)
V (nA,nC ) − �A − �C

+ �2
C�2

C/�2
C

V (nC,nC ) − 2�C

]
,

H(aa)
44 = − �4

B

8�3
B

− �4
D

8�3
D

− �2
B�2

D

(
1/�2

B + 1/�2
D

)
4(�B + �D)

− 1

4

[
�2

B�2
B/�2

B

V (nB,nB ) − 2�B
+ �2

B�2
D

(
1/�2

B + 1/�2
D

)
V (nB,nD ) − �B − �D

+ �2
D�2

D/�2
D

V (nD,nD ) − 2�D

]
,

H(aa)
22 = −�2

A�2
B(1/�A + 1/�B)

16�A�B
− �2

A�2
D(1/�A + 1/�D)

16�A�D
− �2

C�2
B(1/�C + 1/�B)

16�C�B
− �2

C�2
D(1/�C + 1/�D)

16�C�D

−
(

1

�A
+ 1

�B

)2 ∑
β=±

�2
A�2

B

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

)
−

(
1

�C
+ 1

�D

)2 ∑
β=±

�2
C�2

D

32
( − �C − �D + V (nC,nD )

b + βV (nC,nD )
b

)
−

(
1

�A
+ 1

�D

)2
�2

A�2
D

16(−�A − �D + V (nA,nD ))
−

(
1

�C
+ 1

�B

)2
�2

B�2
C

16(−�C − �B + V (nB,nC ))
,

ReH(aa)
23 = −

(
1

�A
+ 1

�B

)2 ∑
β=±

β�2
A�2

B[cos(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nA,nB )

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

)
−

(
1

�C
+ 1

�D

)2 ∑
β=±

β�2
C�2

D[cos(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nC,nD )

32
( − �C − �D + V (nC,nD )

b + βV (nC,nD )
b

) ,

ImH(aa)
23 = −

(
1

�A
+ 1

�B

)2 ∑
β=±

β�2
A�2

B[sin(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nA,nB )

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

)
−

(
1

�C
+ 1

�D

)2 ∑
β=±

β�2
C�2

D[sin(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nC,nD )

32
( − �C − �D + V (nC,nD )

b + βV (nC,nD )
b

) . (A48)

For two nearest atoms in sublattice b, the coefficients are in the same form of Eq. (A48), with C, D replaced by E , F . For
convenience, the next-nearest-neighboring hopping on sublattice a is divided into two parts, tNN that carries no phase and t (aa)

NN
that carries a phase, and similarly for that on sublattice b.
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For two nearest atoms, one at sublattice a, the other on b, the effective Hamiltonian is

Ĥeff = [
Ĥ0 + Ĥ (2)

eff + Ĥ (4)
eff − hlight

]
ground states

= H(ab)
11 | ↑↑〉〈↑↑ | + H(ab)

44 | ↓↓〉〈↓↓ | + H(ab)
22 | ↑↓〉〈↑↓ | + H(ab)

33 | ↓↑〉〈↓↑ | + H(ab)
23 | ↑↓〉〈↓↑ | + H(ab)∗

23 | ↓↑〉〈↑↓ |,
(A49)

where one finds that H22 differs from H33. In detail,

H(ab)
11 = − �4

A

8�3
A

− �2
A�2

C

(
1/�2

A + 1/�2
C

)
8(�A + �C )

− �2
A�2

E

(
1/�2

A + 1/�2
E

)
8(�A + �E )

− �2
C�2

E

(
1/�2

C + 1/�2
E

)
8(�C + �E )

−1

4

�2
A�2

A/�2
A

V (nA,nA ) − 2�A
− 1

8

�2
A�2

C

(
1/�2

A + 1/�2
C

)
V (nA,nC ) − �A − �C

− 1

8

�2
A�2

E

(
1/�2

A + 1/�2
E

)
V (nA,nE ) − �A − �E

− 1

8

�2
C�2

E

(
1/�2

C + 1/�2
E

)
V (nC,nE ) − �C − �E

,

H(ab)
44 = − �4

B

8�3
B

− �2
B�2

D

(
1/�2

B + 1/�2
D

)
8
(
�B + �D

) − �2
B�2

F

(
1/�2

B + 1/�2
F

)
8(�B + �F )

− �2
D�2

F

(
1/�2

D + 1/�2
F

)
8(�D + �F )

−1

4

�2
B�2

B/�2
B

V (nB,nB ) − 2�B
− 1

8

�2
B�2

D

(
1/�2

B + 1/�2
D

)
V (nB,nD ) − �B − �D

− 1

8

�2
B�2

F

(
1/�2

B + 1/�2
F

)
V (nB,nF ) − �B − �F

− 1

8

�2
D�2

F

(
1/�2

D + 1/�2
F

)
V (nD,nF ) − �D − �F

,

H(ab)
22 = −�2

A�2
B(1/�A + 1/�B)

16�A�B
− �2

A�2
F (1/�A + 1/�F )

16�A�F
− �2

C�2
B(1/�C + 1/�B)

16�C�B
− �2

C�2
F (1/�C + 1/�F )

16�C�F

−
(

1

�A
+ 1

�B

)2 ∑
β=±

�2
A�2

B

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

)
−

(
1

�C
+ 1

�F

)2
�2

C�2
F

16(−�C − �F + V (nC,nF ) )

−
(

1

�A
+ 1

�F

)2
�2

A�2
F

16(−�A − �F + V (nA,nF ) )
−

(
1

�C
+ 1

�B

)2
�2

B�2
C

16(−�C − �B + V (nB,nC ))
,

H(ab)
33 = −�2

A�2
B(1/�A + 1/�B)

16�A�B
− �2

A�2
D(1/�A + 1/�D)

16�A�D
− �2

E�2
B(1/�E + 1/�B)

16�E�B
− �2

E�2
D(1/�E + 1/�D)

16�E�D

−
(

1

�A
+ 1

�B

)2 ∑
β=±

�2
A�2

B

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

)
−

(
1

�E
+ 1

�D

)2
�2

E�2
D

16(−�E − �D + V (nE,nD ))

−
(

1

�A
+ 1

�D

)2
�2

A�2
D

16(−�A − �D + V (nA,nD ))
−

(
1

�E
+ 1

�B

)2
�2

B�2
E

16(−�E − �B + V (nB,nE ))
,

ReH(ab)
23 = −

(
1

�A
+ 1

�B

)2 ∑
β=±

β�2
A�2

B[cos(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nA,nB )

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

) ,

ImH(ab)
23 = −

(
1

�A
+ 1

�B

)2 ∑
β=±

β�2
A�2

B[sin(φ1+ − φ2+ − ϕ1+ + ϕ2+)](nA,nB )

32
( − �A − �B + V (nA,nB )

b + βV (nA,nB )
b

) . (A50)

Thus the two-dimensional model on a honeycomb lattice has the following Hamiltonian:

Ĥ =
∑

i

μini +
∑
〈i, j〉

ti jb
†
i b j +

∑
〈i, j〉

Vi jnin j, (A51)

where ni = b†
i bi, and for i on sublattice a,

μi =
∑

j

[H22 − H44]i, j =
∑

j

[
H(aa)

22 − H(aa)
44

]
i, j +

∑
j

[
H(ab)

22 − H(ab)
44

]
i, j,

V (aa)
i j = H(aa)

11 + H(aa)
44 − [

H(aa)
22 + H(aa)

33

]
,

V (ab)
i j = H(ab)

11 + H(ab)
44 − [

H(ab)
22 + H(ab)

33

]
, (A52)
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and similarly for i on sublattice b. Note that when calculating μi, each site has six next-nearest neighbors and three nearest
neighbors. For i and j on sublattice a and b, or the same sublattice, we have

t (ab)
i j = H(ab)

23 , t (aa)
i j = H(aa)

23 , t (bb)
i j = H(bb)

23 . (A53)

The phase terms arise due to laser phases. The nearest atoms have distance L = 12.8 μm. For each site of the honeycomb lattice
in Fig. 1(a), let us show how the phase term can be calculated when states | ↑〉 and | ↓〉 are addressed to states |rA+〉 and |rB+〉
via intermediate states 5P3/2. We calculate the phase terms according to Ref. [81] about the setup in Fig. 1. For two atoms labeled
as 1 and 2,

φ1+ = (k5S1/2,F=1→5P3/2 + K5P3/2→nAS1/2 ) · r1,

ϕ1+ = (k5S1/2,F=2→5P3/2 + K′
5P3/2→nBS1/2

) · r1,

φ2+ = (k5S1/2,F=1→5P3/2 + K5P3/2→nAS1/2 ) · r2,

ϕ2+ = (k5S1/2,F=2→5P3/2 + K′
5P3/2→nBS1/2

) · r2, (A54)

where we have ignored the detunings of the laser, since it is negligible compared to the energy difference between the
atomic levels. Here we use k, K to distinguish z and right-hand polarizations. The energy difference between F = 1 and
F = 2 of 5S1/2 is about 6.8 GHz, and that between two Rydberg states is also on the GHz scale. This means the phases
(k5S1/2,F=1→5P3/2 − k5S1/2,F=2→5P3/2 ) · (r1 − r2) and (K5P3/2→nAS1/2 − K′

5P3/2→nBS1/2
) · (r1 − r2) are both on the order of 10−3 for

nearest-neighbor interaction. Thus we approximately have ImH(ab)
23 = 0 in this case.

For the other phases, it is useful to set z where the two-dimensional lattice lies as 0, then all the phase terms in Eq. (A54) are
defined through the wave vectors of the linearly polarized lasers. For two atoms on sublattice a,

φ1+ − φ2+ − (ϕ1+ − ϕ2+) = (k5S1/2,F=1→5P1/2,F=1 − k5S1/2,F=2→6P1/2,F=1) · r1 − (k5S1/2,F=1→5P1/2,F=2 − k5S1/2,F=2→6P1/2,F=2) · r2

= k5P1/2→6P1/2 · (r1 − r2)

= k5P1/2→6P1/2 |r1 − r2| cos ϑ ≡ φ cos ϑ, (A55)

where the angle ϑ between the wave vector of the linearly polarized laser and the vector r1 − r2 is 0, mπ/3, with m an integer.
With L = 12.798 μm, here φ is about 49.377π , and (μ(a), μ(b), tNN, t (aa)

NN , t (bb)
NN , tN)/2π = (−159, −152, 2, 12, 12, −40)Hz,

and (U (aa)
NN ,U (bb)

NN ,U (ab)
N )/2π = (−9.15, −9.96, 92.7)Hz, where tN is the nearest-neighboring hopping and tNN is part of the

next-nearest-neighboring hopping that carries no phase.
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