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We investigate the process of photon absorption by atoms or molecules shortly interacting with a laser beam
in the dipole approximation. Assuming that the interaction time τ is much smaller than the lifetime of the
corresponding excited state, we examine the absorption probability as a function of τ . In addition, we incorporate
Doppler broadening due to nonzero temperature of the atoms (molecules). It is demonstrated that in the case of
a zero detuning and without Doppler broadening the absorption probability is quadratic in τ . Once Doppler
broadening is taken into account or the laser beam is off from the resonant frequency, the absorption probability
becomes linear in τ . Our findings are expected to be important for experimental studies in optical cells or cavities
where atoms or molecules traverse continuous laser beams. The experimental prospects of searching for the
electric dipole moment of the electron are discussed in detail.
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I. INTRODUCTION

A quantum-mechanical formalism describing the interac-
tion between light and atoms or molecules was developed as
early as in the 1930s (see, e.g., Refs. [1,2]). Within quantum
electrodynamics (QED), the first approach to the determi-
nation of a spectral line profile was proposed by Low [3]
(for review, see Ref. [4]). An extensive literature has been
devoted to laser optics and nonlinear optics since then (see,
e.g., Refs. [5–7] and references therein). One of the basic
phenomena regarding light-matter interactions is the process
of photon absorption by atoms or molecules. Here we are in-
terested in evaluation of the excited-state population focusing
on the setup where the interaction time is much smaller than
the lifetime of the excited state of a general two-level system,
which is assumed to mimic either an atom or a molecule
depending on the experimental scenario.

This paper is motivated by a very important application of
the theory of laser-atom interactions, that is, optical experi-
ments where a continuous laser radiation propagates through a
gas medium within an optical cell [8,9] or high-finesse optical
cavity [10]. The time interval τ during which the atoms in the
gas medium traverse the laser beam (typically 1 mm in di-
ameter), i.e., the so-called transit time, can be smaller than the
characteristic lifetime 1/� of the atomic metastable state. This
situation arises in the experiment proposed in Refs. [11,12]
for the search for the electric dipole moment (EDM) of the
electron. In Refs. [11,12], a possibility to reveal such an effect
by observing the P , T -odd Faraday rotation (P stands for the
space parity and T stands for the time reflection invariance)
was investigated. The P , T -odd Faraday effect manifests itself
as a rotation of the polarization plane of linearly polarized

light propagating through a gas medium in an external electric
field. The experiment is supposed to be carried out on the
ground state of the atomic (or molecular) system with a laser
tuned to a resonance with a suitable transition. In this context,
it is crucial to avoid large populations of the excited state since
it should otherwise substantially reduce the effect hindering
the corresponding experimental measurements. This means
that one has to require that the absorption probability be
sufficiently small. A principle scheme of the proposed ex-
perimental setup is depicted in Fig. 1. An atomic (molecular)
beam crosses a high-finesse optical cavity between two mir-
rors in a transverse direction. Within the cavity, the particles
interact with a linearly polarized laser beam. The overlap
of these two beams is located in a background electric field
directed along the laser beam axis. The detection of optical
rotation (either using simple polarimetry or phase-sensitive
techniques) happens at the output of the cavity. The present
constraint (up to recent time) on the electron EDM was es-
tablished in experiments with ThO molecules by the ACME
collaboration [13] (1.1 × 10−29e cm). Here e stands for the
elementary charge. In such an experiment, the electron-spin
precession in an external electric field was explored. Very
recently, a new upper bound for the electron EDM (improve-
ment by a factor ≈2.4) was established in an experiment with
trapped molecular ions HfF+ in a rotating electric field [14].
Still, there is a wide gap between the theoretical predictions of
the Standard Model and its extensions and the experimental
constraints on the electron EDM (see, e.g., Refs. [15–18]).
Therefore, it is strongly desirable to develop another type
of methods for electron EDM measurements such as that
based on the P , T -odd Faraday rotation. In the case of the
ACME-type experiment, the statistics is determined by the
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FIG. 1. Principle scheme of the experimental setup for measur-
ing the P , T -odd Faraday rotation. A beam of atoms or molecules
(blue) traverses a high-finesse optical cavity between two mirrors and
interacts with a linearly polarized laser beam (green). The interaction
region is located in a background electric field (yellow) directed
along the laser beam axis. The laser radiation transmitted through
the mirrors is detected by means of a polarimeter.

number of molecules, whereas within the P , T -odd Faraday
experiment the statistics can be governed by the number of
detected photons. In the latter case, one has to conduct the
experiment using atoms or molecules in a ground state with
a zero total angular momentum. Note that the excited state
can be considered optically inactive for the laser, provided
the decoherence effects are negligible. In this case, there will
be no noise induced by atoms or molecules. In Refs. [11,12]
the P , T -odd Faraday experiment on ThO and PbF was pro-
posed. The ground state of the ThO molecule possesses a zero
total angular momentum. The PbF molecule with account for
the nuclear spin can also be formally considered to have a zero
total angular momentum [19,20]. It is important that one can
make the number of detected photons (that had interacted with
molecules and scattered forward) much larger than molecules.
Then, our aim is to have high laser intensity keeping the
absorption probability much less than unity. A rough esti-
mate of the absorption probability was used in Ref. [12]. In
the present paper, we thoroughly examine this quantity in the
dipole approximation taking into account the laser detuning
from the atomic resonance and Doppler broadening.

We employ the relativistic units h̄ = c = 1 (h̄ is the Planck
constant, and c is the speed of light). The charge units cor-
respond to α = e2/(4π ) (e < 0 is the electron charge, and α

is the fine-structure constant). Throughout the paper, we will
refer to the two-level system as the “atom” although it may
well also be a molecule. Also we do not distinguish between
the terms “transit time” and “interaction time.”

II. CALCULATION OF THE ABSORPTION PROBABILITY

Within the conventional formalism of QED, the initial and
final (asymptotic) states are eigenstates of the Hamiltonian
incorporating the Coulomb interaction. In the case of an atom,
these can only correspond to the ground state ψg since the
excited state has a finite lifetime, i.e., nonzero natural width
�. Accordingly, the absorption process must be followed by
photon emission. Nevertheless, in the stationary case (infinite
duration of the interaction time between the atom and external

FIG. 2. Leading-order Feynman diagram describing absorption
and emission of a photon by an atom interacting with a classical
external field.

field) these two stages can be considered separately, i.e., the
corresponding Feynman diagram with two vertices can be
factorized. However, it is no longer applicable if the atom
interacts with a time-dependent background radiation, e.g.,
laser field. In what follows, we will assume that the interaction
time τ is small so that �τ � 1. The laser field is treated
as a classical external background, so within perturbation
theory the absorption-emission process is described by the
Feynman diagram depicted in Fig. 2 [21,22]. The double line
represents the exact electron wave function (or propagator)
incorporating the interaction with the nucleus and other elec-
trons, whereas the laser field is treated perturbatively. The
latter approximation is well justified as we are interested in
the (near-)resonance case, i.e., the laser frequency ωL is close
to the energy difference ω0 = E1 − E0 (E0 and E1 are the
energies of the ground and excited states, respectively). The
diagram yields the main contribution when the intermediate
state coincides with the excited state ψe. Note also that the di-
agram with the different order of the absorption and emission
events is strongly suppressed in the resonance case, so it will
be disregarded. The condition �τ � 1 prevents reabsorption,
so it is the diagram in Fig. 2 that contains all the necessary
information and there is no need to take into account the
higher-order diagrams.

Integrating the mod square of the diagram over the photon
momentum and summing over the polarizations, one obtains
the absorption probability W . From the practical viewpoint, it
is clear that photon emission takes place after the interaction
with the laser field as τ � 1/�, so W can also be interpreted
as the population of the excited state after the interaction, pro-
vided W � 1. The latter condition is actually one of particular
interest since our goal is to keep the excited-state population
small. Finally, we note that as long as W � 1, the stimulated
emission process is suppressed.

Let us evaluate the amplitude Sk,λ of the process depicted
in Fig. 2. The general expression reads

Sk,λ = e2
∫

d4xd4yψg(y)ε̂∗
k,λ


∗
k,λ(y)S(y, x)Â(x)ψg(x), (1)

where ψ ≡ ψ†γ 0, V̂ ≡ γ μVμ, ε
μ

k,λ
is the photon polariza-

tion four-vector (the photon momentum and polarization are
denoted by k and λ, respectively), 
k,λ is the space-time-
dependent part of the photon wave function, S(y, x) is the
bound electron propagator, and Aμ is a four-vector describ-
ing the laser field and involving the interaction time τ . Let
us introduce the following temporal and spatial components:
x = {tx, rx} and y = {ty, ry}. The ground-state wave function
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has the form

ψg(x) = ψg(rx )e−iE0tx . (2)

The function 
k,λ reads


k,λ(x) = 1√
2k0

e−i(k0tx−krx ), (3)

where k0 = |k|. The electron propagator can be represented in
the following form:

S(y, x) =
∫

dω̃

2π
e−iω̃(ty−tx )

∑
n

ψn(ry)ψn(rx )

ω̃ − En(1 − i0)
, (4)

where the sum is taken over the whole spectrum of the system,
and En is the energy of the state ψn. Since we consider a
two-level system and resonance effects, only one term of the
sum corresponding to the resonance excited state ψn = ψe

survives. The explicit form of the wave function is

ψe(x) = ψe(rx )e−iE1tx . (5)

The classical laser field is described by the following vector
potential:

A(x) = EL

ωL
eLe−i(ωLtx−kLrx )e−4t2

x /τ 2
, (6)

where EL is the field strength, and ωL = |kL|. The scalar
potential vanishes, A0 = 0. The last exponential function in
Eq. (6) introduces a finite interaction time. The transverse
profile of the laser field along, say, the x direction is given
by exp(−x2/w2), where w governs the laser beam radius. In
this slowly varying envelope, we replace x with the classical
expression vxtx, where vx is the average speed of the atoms.
Introducing then τ = 2w/vx, one arrives at Eq. (6). Note that
the rapidly oscillating carrier exponent is treated exactly, i.e.,
we incorporate its spatial dependence.

Integrating over the temporal variables tx and ty in Eq. (1),
one obtains

Sk,λ =
√

2π3/2ατEL

ωL
√

k0
〈g|ε̂∗

k,λe−ikr|e〉〈e|êLeikLr|g〉

× 1

k0 − ω0 + i�/2
e−(k0−ωL )2τ 2/16, (7)

where êL ≡ −γeL and the spatial matrix elements are defined
via

〈n| f (r)|m〉 ≡
∫

drψn(r) f (r)ψm(r). (8)

In Eq. (7) we performed the conventional substitution E1 →
E1 − i�/2 in order to regularize the denominator. The natural
width � appears due to the radiative corrections (mass opera-
tor) to the electron wave function and determines the lifetime
of the excited state (the standard derivation can be found, e.g.,
in Refs. [4,21]).

The probability density of the process (probability Wλ per
unit phase volume d3k) is given by

dWλ

d3k
= |Sk,λ|2

(2π )3
. (9)

Taking the mod square of Sk,λ in Eq. (7), we obtain

W =
∑

λ

Wλ = α2τ 2E2
L

4ω2
L

|〈e|êLeikLr|g〉|2

×
∑

λ

∫
d3k
k0

|〈g|ε̂∗
k,λe−ikr|e〉|2 e−(k0−ωL )2τ 2/8

(k0 − ω0)2 + �2/4
.

(10)

Let us now perform the summation over the photon polar-
ization λ. The polarization four-vector has the form εk,λ =
(0, ek,λ). To calculate the matrix element in Eq. (10), we
approximately replace e−ikr with 1 and identify the ma-
trix element of γ with the electron velocity according to
the nonrelativistic approximation. After that, we employ the
following identity, which is valid for any vector a [21]:∑

λ |ek,λa|2 = |n × a|2, where n ≡ k/k0. The matrix element
of the velocity is proportional to the matrix element of the
position vector, so one finally arrives at∑

λ

|〈g|ε̂∗
k,λe−ikr)|e〉|2 ≈ ω2

0|n × rge|2. (11)

Here rge = 〈g|r|e〉. Note that the matrix element of the electric
dipole moment is 〈g|d|e〉 = dge = erge. Analogous calcula-
tions yield

|〈e|êLeikLr)|g〉|2 ≈ ω2
0|eLreg|2, (12)

where reg = 〈e|r|g〉. Next we will integrate over the emitted
photon momentum k, which can be parametrized by the en-
ergy k0 and two spherical angles. If the kz axis is directed
along the vector rge, then |n × rge|2 = |rge|2 sin2 θ and the
integration over the angles yields

W = 16π2

3
α2τ 2ω2

LI|eLreg|2|rge|2
∫ ∞

0

k0e−(k0−ωL )2τ 2/8dk0

(k0 − ω0)2 + �2/4
,

(13)
where I = E2

L/(8π ) is the laser intensity. In the overall pref-
actor in Eq. (13), it is assumed that ωL ≈ ω0. An explicit
evaluation of the integral in Eq. (13) is carried out in the
Appendix. The result reads

W = 32π5/2

3

α2τ 2ω3
LI

�
|eLreg|2|rge|2 f

(
ωτ

2
√

2
,

�τ

4
√

2

)
. (14)

Here ω = ωL − ω0 is a detuning from the atomic resonance,
and the real-valued function f (x, y) is defined via

f (x, y) = Re
√

πe−z2
[1 − erf(−iz)], (15)

where z = x + iy. It is natural to expect that the excited-state
population of the atom should not depend on the emission
matrix element. Actually, the dipole matrix element can be ex-
pressed via the natural width as follows (see, e.g., Ref. [21]):

|rge|2 = 3�

4αω3
0

≈ 3�

4αω3
L

. (16)

The expression (16) (dipole approximation) is accurate since
the light wavelength is much greater than the Bohr radius.
Then, we rewrite Eq. (14) in the form

W = 8π5/2ατ 2I|eLreg|2 f

(
ωτ

2
√

2
,

�τ

4
√

2

)
. (17)
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In the case of a zero detuning (ω = 0) and �τ � 1, we have
f (0, �τ/4

√
2) ≈ √

π , so one obtains a quadratic dependence
of the absorption probability W0 on the transit time τ :

W0 ≈ 8π3ατ 2I|eLreg|2. (18)

This result can be interpreted in the following way. Due to the
short transit time (�τ � 1), the absorption line shape gains
a frequency profile with effective width �τ ≈ 1/τ . Then, at
the exact resonance, the effect is determined by the largest of
the widths, i.e., the absorption probability is proportional to
τ/�τ ∼ τ 2 (compare with the standard expression for the sta-
tionary probability per unit time in the resonance equal to 1/�

[5]). Accordingly, the absorption probability rapidly decreases
for short-time interactions (although for large τ the probabil-
ity may formally exceed unity, so one has to take into account
the higher-order contributions with respect to the interaction
with the classical background, here we neglect the higher-
order terms since in our analysis the probability is always
small). Within the setup considered in Refs. [11,12], the tran-
sit time inside the cavity was assumed to be 10−5 s, while the
natural width of the molecular state excited by the laser radia-
tion amounted to � ≈ 103 s−1. This may represent a favorable
scenario for reaching a higher accuracy of measurements.
Nevertheless, for experiments proposed in Refs. [11,12], it is
also of great importance to have large detunings ω, which
will be discussed next.

The asymptotic behavior of f (x, y) for x � 1 and y � 1 is
given by

f (x, y) = y

x2
+ O(x−4). (19)

Note that this expression differs from Eq. (15) by no more
than 10% already for x � 4 [11,12], which is sufficient for
our aims. Substituting now Eq. (19) into Eq. (17), we obtain
the following expression for the absorption probability in the
case ωτ � 1 in the limit of small τ (�τ � 1):

W ≈ 27/2π5/2α�τ I

(ω)2
|eLreg|2. (20)

Thus, the leading contribution to the absorption probability
within the small-τ regime for large detunings is linear in the
transit-time parameter. We evaluated the absorption probabil-
ity in the case of an individual atom. Next, we will consider
an atomic ensemble at finite temperature.

III. DOPPLER BROADENING

In our calculations, we should address a further broadening
mechanism which affects the line shape—Doppler broaden-
ing. We assume that the atoms have the same longitudinal
velocity, so the transit time τ is well defined, while the trans-
verse velocity fluctuates (the atoms can slowly move along
the laser beam axis). We introduce Doppler broadening via
a convolution of Eq. (13) with the Maxwell distribution for
the atoms at given temperature T . This convolution represents
the averaging over the chaotic motion of the atoms. Let us
denote the probability in Eq. (13) by W (τ, ωL ). We perform
the averaging via

W (τ, ωL ) =
∫ ∞

−∞
dv W (τ, ωL − vωL )P(v), (21)

where v is the projection of atomic velocity on the laser beam
direction, P(v) is a one-dimensional Maxwell distribution
function,

P(v) = 1√
πv0

e−v2/v2
0 , v0 =

√
2kT

M
. (22)

Here k is the Boltzmann constant and M is the mass of the
atom. The Doppler width is defined as �D = ω0v0 ≈ ωLv0

(ω � ω0). Introducing a dimensionless variable x = v/v0,
we recast Eq. (21) into

W (τ, ωL ) = 4π3/2α�τ 2I|eLreg|2
ωL

×
∫ ∞

−∞
dx e−x2

∫ ∞

0

k0e−(k0−ωL+�Dx)2τ 2/8

(k0 − ω0)2 + �2/4
dk0.

(23)

In what follows, we will assume �Dτ � 1, which represents
a completely realistic condition [11,12]. To carry out the in-
tegration in Eq. (23), let us first evaluate the integral over x.
Neglecting exponentially suppressed terms as �Dτ � 1, one
obtains ∫ ∞

−∞
dx e−x2

e−(k0−ωL+�Dx)2τ 2/8

≈
√

8π

�Dτ
e−(k0−ωL )2/�2

D . (24)

Then, the leading-order contribution in τ in Eq. (23) takes the
form

W (τ, ωL ) ≈ 27/2π2α�τ I|eLreg|2
ωL�D

×
∫ ∞

0

k0e−(k0−ωL )2/�2
D

(k0 − ω0)2 + �2/4
dk0. (25)

The integral in Eq. (25) has the same form as in Eq. (13). It
yields

W (τ, ωL ) = 29/2π5/2ατ I|eLreg|2
�D

f (u, q), (26)

where u = ω/�D and q = �/(2�D). One observes that in
the leading order the τ dependence and the form of the ex-
pression coincide with a rough estimate given in Ref. [12].
Note also that compared to the non-Doppler case, now for a
zero detuning one has a linear dependence on the transit time
since the largest of the widths is the Doppler one (W is now
proportional to τ/�D instead of τ/�τ ).

In what follows, we will consider the regime of large detun-
ings (u = 4−5). Utilizing the asymptotic behavior of f (u, q)
[see Eq. (19)], one obtains from Eq. (26)

W (τ, ωL ) ≈ 27/2π5/2α�τ I|eLreg|2
u2�2

D

. (27)

Averaging over the atomic ensemble, we replace |eLreg|2 with

|reg|2/2 = |rge|2/2. Then, using Eq. (16), we rewrite Eq. (27)
in the following form:

W (τ, ωL ) ≈ 3
√

2π5/2�2τ I

u2�2
Dω3

L

. (28)
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This result suggests that there is no significant reduction of
the absorption probability due to short laser-atom interactions
in the case of large detunings. However, the advantage of the
scenario with the transit time τ � 1/� over the stationary
one can be demonstrated in the following way. In the station-
ary case, when one increases the laser intensity, at a certain
point the refractive index becomes twice smaller compared
to the system without the laser field. This corresponds to the
so-called saturation intensity Isat, for which the rates of ab-
sorption, stimulated emission, and spontaneous decay become
equal. According to Ref. [5], for large detunings the saturation
intensity reads

Isat = 2ω3
L(ω)2

π�
. (29)

Substituting the expression for the saturation intensity (29) in
Eq. (28), one obtains

W (τ, ωL )
∣∣
I=Isat

= 6
√

2π3/2�τ ≈ 50�τ. (30)

Thus, we justified the rough parametric estimate
W (τ, ωL )|I=Isat ≈ �τ that was used in Ref. [12]. From
Eq. (30) it follows that W (τ, ωL )|I=Isat � 1 for sufficiently
small �τ , while in the stationary case this quantity amounts
to 1/3.

IV. P , T -ODD FARADAY EFFECT

Here we apply the results obtained above to the proposed
optical cavity experiment concerning the observation of the
P , T -odd Faraday effect. We consider an experiment with
heavy heteronuclear molecules rather than with atoms since
it is known that the P , T -odd effects in molecules are addi-
tionally enhanced due to the presence of the �-doubling effect
[23–25]. This manifests itself in a splitting of every electron
energy level into two very close sublevels with opposite spa-
tial parities.

Let us compare the experimental setup involving a molecu-
lar beam and that based on using a molecular vapor (medium).
First, in a medium, the collisional width �col is usually larger
than the natural one, which diminishes the rotation angle,
while for the beam case �col can be neglected. Second, if a
laser beam intersects a molecular one at a right angle, then
the transverse Doppler width should be taken into account.
However, it is usually smaller than the ordinary one, which
is also favorable for the considered effect. Third, we note
that a molecular vapor usually interacts chemically, reacts
with walls, settles on walls, etc. Moreover, there are technical
difficulties in creating a large external electric field over a
long distance. For instance, a PbF molecule (a good candidate
for the observation of the P , T -odd effects) is polarized in
an electric field E ≈ 104 V/cm. Such a large field can be
arranged only within the distance of several centimeters. On
the other hand, the typical diameter of the beam (several
centimeters) is smaller than the typical cavity length (about
1 m), which obviously diminishes the resulting rotation angle.
We believe that this drawback of the molecular-beam setup is
minor compared to the advantages described above. Finally, as
will be shown below, the transit time effects, which represent
the main subject of the present paper, also enhance the effect
from the statistical viewpoint. In what follows, we will focus

on discussing the experiment concerning optical rotation with
a molecular beam.

Let us discuss the main notations and expressions for esti-
mating the experimental signal. The rotation signal R(u) reads

R(u) = ψ (u)Nev, (31)

where u = ω/�D is a dimensionless detuning introduced in
Sec. III, ψ (u) is the rotation angle, and Nev is the number of
statistical events which, in our case, is the number of photons
that interacted with molecules (scattered forward) and then
were detected. The transmission function T (u, q) related to
the intracavity losses obeys the Beer-Lambert law:

T (u, q) = I (u, q)

I0
= Nev

N0
= e−l/L(u,q), (32)

where I (u, q) is the final detected intensity, I0 is the initial in-
tensity, N0 is the initial number of photons emitted by the laser,
and L(u, q) is the absorption length. The dimensionless pa-
rameter q = �/(2�D) was defined in the previous section, and

L(u, q) = [ρσ (u, q)]−1 = [ρσ0 f (u, q)]−1. (33)

Here ρ is the number density of molecules and σ0 is the
standard resonance cross section for the photon absorption by
a molecule; the function f (u, q) is defined in Eq. (15). Being
expressed via the absorption length at the given detuning, the
rotation signal reads [12]

R(u) = h(u, q)

f (u, q)

l

L(u, q)

deEeff

2�D
Nev. (34)

The real-valued function h(u, q) = ∂
∂u g(u, q), where the

function g(u, q) is defined in Eq. (A3) (see also Ref. [9]).
The quantity l is the optical path length, i.e., the total path
length where laser light interacts with a molecular beam
before detection. For instance, for the cavity with the reported
transmission δ ≈ 10−5 [10] crossed by a molecular beam
(typically 1 cm in diameter), it is l ≈ 105 cm. Another im-
pressive achievement is that the cavity with δ ≈ 10−8−10−7

[26] yields l ≈ 107–108 cm for laser light propagating
through a molecular beam. In addition, in Eq. (34), de is the
value of the electron EDM, whose constraint is established in
such experiments, i.e., the corresponding experiments provide
an access, if indirect, to estimating the electron EDM. Finally,
Eeff is the internal molecular effective electric field acting on
the electron EDM, which cannot be measured experimentally
and should be calculated (see, e.g., Refs. [27,28]).

In the previous sections, we derived general expressions
allowing one to address both the resonance case and large
detunings. Next, we will discuss and compare these two exper-
imental options and demonstrate that using a large-detuning
setup is more advantageous. At the resonant frequency
h(0, q) ∼ f (0, q) ≈ 1. Then, Eq. (34) can be rewritten as

R(u = 0) ≈ l

L(0, q)

deEeff

2�D
Nev. (35)

The large-detuning asymptotics reads |h(u, q)| ≈ 1/u2 +
O(u−4), while that of f (u, q) is presented in Eq. (19). As
was stated in Sec. II, these asymptotics are valid within 10%
already for u � 4 [11,12]. Then, the large-detuning rotation
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signal reads

R(u � 4) ≈ l

L(u, q)

deEeff

�
Nev. (36)

As was mentioned in the Introduction and shown in Ref. [12],
for the observation of the P , T -odd Faraday effect in optical
cavities, the fundamental photon shot noise determines the
statistical error of the experiment (not number of molecules).
Note that in this case, molecules with zero total angular mo-
mentum should be used. It means that the more injected and,
accordingly, detected photons per second we have, the better
the statistical sensitivity of the experiment is. Then, one can
define the noise F as F = √

Nev, where Nev is the number
of detected photons. For the shot-noise limited measurement,
one should keep the signal-to noise ratio greater than unity:

R(u)

F
= ψ (u)

√
Nev > 1. (37)

The vital point here is that the number of photons Nev is lim-
ited by the maximum possible intracavity intensity which in
turn is determined by the intensity that saturates the transition
(in other words, “bleaches” the molecules).

Let us now discuss a standard optical optimization for both
resonance and off-resonance setups. This procedure requires
that the signal-to-noise ratio (37) be maximized over the op-
tical path length l . Here we employ Eq. (32) for Nev and
Eq. (34). It is assumed that the initial number of photons
N0 is fixed (i.e., l independent). Maximizing the signal-to-
noise ratio with respect to l , we obtain the standard condition
l = 2L(u, q). However, for the cavity experiments, the opti-
mization procedure should be slightly modified. First, note
that the intensity of the light coupled inside the cavity (the
intracavity intensity) is very high: Iint ≈ I0/δ [29], where δ

is the mirror transmission. Second, the mirror transmission
is roughly related to the possible number Np of light passes
along the cavity via δ ≈ N−1

p = l0/l , where l0 is the optical
path length after one pass of the light through the cavity. Now
we assume that N0 ∼ δ ≈ N−1

p = l0/l , so the corresponding
optimization condition follows from the equation

d

dl

[
l

(
l0
l

)1/2

e−l/2L(u,q)

]
= 0. (38)

From this equation, it follows that the optimization for the
optical cavities yields l = L(u, q), which differs from the
standard optical optimization condition by a factor of 2.

Now we are able to compare the resonance and off-
resonance scenarios. Comparing Eqs. (35) and (36), one
reveals the advantage of the optimized experiment at large
detunings over the resonance case:

R(u � 4)

R(u = 0)

∣∣∣∣
opt

= �D

�
� 1. (39)

For the proposed experiment with ThO and PbF molecular
beams, �D/� ≈ (104–105) (see below). However, the absorp-
tion length at large detunings may exceed the resonance-
setup value by several orders of magnitude [L(u � 4, q �
1)/L(0, q � 1) = u2/q]. To achieve such large values of L
in the off-resonance experiments, one has to take advantage

of optical cavities, which allows one to significantly increase
the optical path length.

It turns out that further optimization [that beyond the con-
dition l = L(u, q), which is now implied] can be applied if
we fix the number of molecules N and take into account
the saturation effects in order not to bleach the molecules.
Although we wish to have as many photons (Nev) as possible,
this kind of optimization yields the condition Nev ≈ N (see
the discussion in Ref. [30]). This brings us to the so-called
“Equation One” in the polarimetry [30], which in terms of
the uncertainty in the electron EDM value δde for an ideal
molecular-beam experiment takes the form

δde ∼ 1

Eeff

1

τc

1√
ṄevT

. (40)

This is the figure of merit for the fundamental noise-limited
experiment which determines the statistical sensitivity of the
experiment.

Let us now compare the sensitivity of the electron EDM
experiments by means of Eq. (40). For the electron spin-
precession experiment (e.g., such as that with ThO [13]), the
coherence time τc amounts to a few microseconds, Ṅev is the
number of molecules per unit time in the desired state, and T
is the total time of the experiment (usually, about two weeks).
In our scheme (optical rotation experiment), from Eqs. (36)
and (37) for the absorption length, it follows that τc = 1/�

also yields a few microseconds. The quantity T is still the
total time of the experiment (usually, about two weeks). Nev-
ertheless, Ṅev is the number of detected photons per unit time.
This fact is the key difference between our proposal and the
electron spin-precession experiments.

On the one hand, as was pointed out above, the optimized
setup implies that the number of photons is approximately
the same as the number of molecules, Nev ≈ N . However,
it should be noted that in the existing cavities [10,26] it is
not possible to achieve the absorption length in the case of
strongly detuned light for the molecular systems of interest
(ThO, PbF), i.e., in fact, l < L(u, q). Therefore, our proposal
is not optimal in this sense. In this case, Eq. (40) should be
modified as follows:

δde ∼ L(u, q)

l

1

Eeff

1

τc

1√
ṄevT

, (41)

and the number of detected photons can be much larger than
the number of molecules, so our goal is to make the number
of the former as large as possible in order to reduce the last
factor in Eq. (41). Accordingly, the aim of this paper is to eval-
uate the maximum possible number of detected photons and
sensitivity to the electron EDM measurement in the proposed
scheme taking into account the transit-time effects, which will
be done next.

Finally, let us estimate the maximal number of photons Nev

in terms of the maximal intracavity intensity Imax. We define
the latter quantity by requiring that the absorption probability
amount to 0.1:

W (τ, ωL )|I=Imax = 0.1. (42)

A promising candidate for the P , T -odd Faraday experiment
in an optical cavity with diatomic molecules is a PbF molecule
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with the X12�1/2 → X22�3/2 transition (λ = 1210 nm). The
natural linewidth of the X2 state is � = 2.7 × 103 s−1 [31].
For the PbF beam, we adopt the transverse temperature of 1 K
(e.g., in Ref. [32] the transverse temperature of the supersonic
YbF beam was reported to be about 1 K) and �D = 4.5 ×
107 s−1. Let us estimate the maximum intracavity intensity
for the transition under investigation in the PbF molecule.
According to Eq. (42), for τ = 10−5 s, ωL = 1.56 × 1015 s−1,
and u = 5, one obtains

Imax ≈ 4 × 102 W/cm2. (43)

According to Eq. (29), the saturation intensity for the above-
mentioned parameters in PbF is Isat = 5.3 × 103 W/cm2.

Consider now the X 1�0 → H31 transition (λ = 1810
nm) in ThO. The natural linewidth of the metastable H state is
� = 2.38 × 102 s−1 [33]. Substituting the parameters of ThO
(τ = 10−5 s, ωL = 1.04 × 1015 s−1, �D = 2.9 × 107 s−1, and
u = 5) in Eq. (42), one finds

Imax ≈ 6.6 × 103 W/cm2. (44)

According to Eq. (29), the saturation intensity in ThO is Isat =
7.4 × 103 W/cm2. One observes that the condition Imax � Isat

is not fulfilled. This obviously stems from the fact that even
though �τ � 1, the factor 50 in Eq. (30) can violate this
inequality for actual experimental parameters. Note, however,
that in the stationary treatment of the problem one should
use the laser intensity I � Isat in order to keep the absorption
probability sufficiently small.

Finally, taking into account the maximum possible number
of the detected photons [Eqs. (42)–(44)], we are going to
estimate the expected sensitivity of the electron EDM mea-
surement [Eq. (41)] via the P , T -odd Faraday effect in optical
cavities. The effective electric field for the excited state of
interest in the PbF molecule Eeff(2�+3/2) = 9.3 GV/cm [11]
and in the ThO molecule Eeff(31) = 80 GV/cm [34]. Recall
that τc = 1/�, T is of the order of two weeks and adopt the
diameter of the laser beam of the order of 1 mm2. Substituting
these parameters in Eq. (41), one finds that the current electron
EDM sensitivity can be improved by one to two orders of
magnitude: de ≈ 10−32e cm even for the not fully optimized
experimental scheme proposed here. With respect to the pos-
sible new-physics effects, this allows one to test new particles
at an energy of one order of magnitude larger than the current
best constraint.

Furthermore, one may also expect that the path length l
will be increased in the near future due to the progress in the
optical cavity techniques. In this case, adopting the number
density and the cross section of the molecular beams as ρ ≈
1010 cm−3 and 1 cm2, respectively, and substituting them into
Eq. (40) [for l = L(u, q), Nev is approximately equal to the
number of molecules that have interacted with the laser light],
one can improve the current electron EDM sensitivity by three
to four orders of magnitude (de ≈ 10−34e cm). This value is
very close to the benchmark Standard-Model prediction for
the P , T -odd effects deqv

e ≈ 10−35e cm [18]. The equivalent
electron EDM deqv

e is defined as the electron EDM which
produces the same linear Stark shift in the same electric field

as that produced by the electron-nucleus P , T -odd interaction
in a particular atomic system.

In the optimal case l = L(u, q), the sensitivity δde is de-
termined by means of Eq. (40) both for our proposal and
for the spin-precession experiment, so one has to explicitly
indicate the origins of the three to four order-of-magnitude
improvement revealed above. First, within our experimental
scheme, one can achieve much larger numbers of molecules
(and accordingly, photons) since one does not need to prepare
molecules in the desired electronic state and the experiment
involves the particles in the ground state. Second, in our case,
the carrier of the effect is a photon, so it does not matter what
happens with a molecule after the interaction process. In the
electron spin-precession experiments, from the instant of the
injection of molecules (after interaction with external fields
and before readout procedure), one loses a lot of molecules,
which makes the statistics of the experiment worse.

V. CONCLUSIONS

In this paper, we evaluated the photon absorption probabil-
ity in the dipole approximation within short-time interactions
between atoms (molecules) and laser radiation. In particu-
lar, we were interested in the setup where atoms traverse a
continuous laser beam inside an optical cavity with a small
transit time. Our investigation was motivated by the ques-
tion whether the absorption probability (and, accordingly, the
population of the excited state of the two-level atomic sys-
tem) is reduced in the case of short-time interactions. This
is extremely important for our proposal put forward earlier
and concerning the possible search for the electron EDM in
optical cavities. Here we performed a detailed quantitative
analysis of the absorption process and obtained more accurate
numerical estimates. It is demonstrated that the reduction can
be substantial (W0 ∼ τ 2) in the resonant non-Doppler case (if
�Dτ � 1). In the case of a large detuning with account for
Doppler broadening, which is most relevant to the proposed
EDM experiments [12], we refined the rough estimates for
the absorption probability obtained previously. Although the
reduction effect of smaller transit times within the scenario
involving Doppler broadening vanishes, the advantage over
the stationary scenario is in the following. In the finite-transit-
time problem, one can have the intracavity intensity on the
level of the saturation intensity, I ∼ Isat, while in the sta-
tionary problem one should make sure that I � Isat. Using
the results obtained, the expected electron EDM sensitivity
can be improved by one to two orders of magnitude (de ≈
10−32e cm even for the not fully optimized experimental
scheme). However, further optimizing the experiment by re-
fining the optical-cavity techniques and increasing the optical
path length, the current electron EDM sensitivity can be im-
proved by three to four orders of magnitude (de ≈ 10−34e cm).
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APPENDIX: INTEGRATION OVER k0 IN EQ. (13)

First, let us introduce x = (
√

2/4)(k0 − ωL )τ . The integral
will then have the following form:

W = 16π2α2τ 2ω2
LI

3
|eLreg|2|rge|2

×
∫ ∞

− ωL τ

2
√

2

e−x2(
x + ωLτ

2
√

2

)
(
x + ωτ

2
√

2

)2 + (�τ )2

32

dx, (A1)

where ω = ωL − ω0 is the detuning from the atomic reso-
nance. Since the characteristic time for the atom to traverse
the laser beam is τ ≈ 10−5 s, for visible or near-infrared light
ωLτ � 1. Note also that the presence of the exponential factor
(e−x2

) in the integrand allows one to extend the lower limit of
the integration to −∞ and neglect x in the numerator. It yields

W = 25/2π2α2τ 3ω3
LI

3
|eLreg|2|rge|2

∫ ∞

−∞

e−x2
dx(

x + ωτ

2
√

2

)2 + (�τ )2

32

.

(A2)

It is convenient to express the result in terms of the real-valued
function f defined in Eq. (15). This function has the following
integral representation [9]:

1√
π

∫ ∞

−∞
dx

e−x2

x − u − iq
= i f (u, q) − g(u, q), (A3)

where g(u, q) is also assumed to be real. The integral in
Eq. (A2) is then trivial:∫ ∞

−∞

e−x2
dx

(u − x)2 + q2

= −1

q
Im

∫ ∞

−∞

e−x2
dx

u − x + iq
=

√
π

q
f (u, q). (A4)

Replacing x with −x in Eq. (A2) leads us to the integral of the
form Eq. (A4). Finally, we obtain

W = 32π5/2α2τ 2ω3
LI

3�
|εLreg|2|rge|2 f

(
ωτ

2
√

2
,

�τ

4
√

2

)
, (A5)

which coincides with Eq. (14).
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