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Magnetic dipole transitions in the H2
+ ion
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The magnetic dipole transitions in the homonuclear molecular ion H2
+ are obtained for a range of v and

L, vibrational and total orbital momentum quantum numbers, respectively. Calculations are performed in the
nonrelativistic approximation. Spin consideration is also included.
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I. INTRODUCTION

The hydrogen molecular ion is the simplest stable
molecule, which may be studied both theoretically and
experimentally with high precision. In recent years laser spec-
troscopy of the heteronuclear hydrogen molecular ions HD+

achieved spectacular progress [1–3], which allowed one to
get valuable information on fundamental constants such as
proton-to-electron mass ratio and set new limits on the pos-
sible manifestations of new interactions between hadrons, on
the hypothetical “fifth force” [4,5].

H2
+ is difficult to study experimentally since the elec-

tric dipole transitions are strongly suppressed. Neverthe-
less, the hydrogen molecular ion is of significant interest
for metrology, especially as a direct way to measure
the proton-to-electron mass ratio, and new experiments
are coming to attack the problem using quantum logic
spectroscopy [6].

In all the cases it is very important to know the strength of
various transitions, which may be induced by the laser light.
In our previous studies [7,8] quadrupole E2 and forbidden E1
transitions for the H2

+ ions were investigated. In the present
work we consider M1 transitions for the hydrogen molecular
ion H2

+ at low v and L.
The M1 transitions in H2 molecule were studied in [9]

within the adiabatic approximation; it was found that they are
significantly weaker than the quadrupole transitions for low
rotational states. The magnetic properties of the H2

+ ion differ
from the one of the H2 molecule, since the total electron spin
S is zero for the case of H2. Still, we come to a similar conclu-
sion for the H2

+ molecular ion. Our calculation is based on ab
initio three-body variational approximation of the bound-state
nonrelativistic wave function and a direct evaluation of the
orbital magnetic moment operator; see Eq. (3) below. No
adiabatic approximation is used. Another point is that the
spin-dependent structure of the transitions, which allow one
to study the hyperfine spectrum of the H2

+ ion, is carefully
considered.

In what follows we assume atomic units: h̄ = |e| =
me = 1.

II. THEORY

Throughout we keep to the following notation: v is the
vibrational quantum number and L is the total orbital angular
momentum of the nonrelativistic wave function. The spin part
is described by the spin operators of two protons, I1, I2, and
the spin of an electron, se, I = I1 + I2 is the total nuclear spin,
F = I + se is the total spin of the H2

+ ion, and J = F + L is
the total angular momentum. Thus the ground “para” state is
denoted (v = 0, L = 0, I = 0, F = 1/2, J = 1/2). Since the
M1 transition preserves spatial parity and we will consider
the spatial wave function in the nonrelativistic approximation
only, we have thus a selection rule for these states: L → L′ =
L.

The nonrelativistic Hamiltonian in the center-of-mass
frame may be written as

H0 = p2
1

2M
+ p2

2

2M
+ p2

e

2me
− Z

r1
− Z

r2
+ Z2

R
, (1)

where ri = re−Ri and R = R2−R1 are electron coordinates
relative to nuclei and internuclear position vector in the molec-
ular coordinate notations, (R1, R2, re ≡R3) and (p1, p2, pe ≡
p3) are the position vectors and momenta of particles in the
center-of-mass frame, M = mp is the proton mass, and Z = 1
is the proton charge.

The transition magnetic moment μnn′ for a bound system
of particles is expressed (see [10], Sec. 47):

μnn′ = 〈ψn|μ̂|ψn′ 〉 = μB〈ψn|gL(v, v′)L + gese + gp

mp
I|ψn′ 〉,

(2)

where μ̂ is the operator of the magnetic moment of the
bound system, ge = −2.002 319 is the electron g factor, gp =
5.585 694 is the proton g factor [11], μB = |e|h̄/(2mec) is the
Bohr magneton, and gL(v, v′) is the orbital g factor of the
transition:

gL(v, v′) = 1

μB〈L‖L‖L〉
3∑

a=1

〈ψn‖ za

ma
[Ra × pa]‖ψn′ 〉. (3)
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TABLE I. Orbital g factor for transition, gL (v, v′), for the orbital states L = 1 and L = 2. [a(b) = a × 10b.]

L = 1 L = 2

v → v′ v = 0 v = 1 v = 2 v = 0 v = 1 v = 2

v′ = 0 5.0113(−4) 5.0095(−4)
1 7.6094(−6) 4.9606(−4) 7.6324(−6) 4.9587(−4)
2 6.5530(−7) 1.1257(−5) 4.9060(−4) 6.5775(−7) 1.1291(−5) 4.9039(−4)
3 1.2180(−7) 1.1844(−6) 1.4421(−5) 1.2221(−7) 1.1892(−6) 1.4465(−5)
4 3.4906(−8) 2.4674(−7) 1.7594(−6) 3.5029(−8) 2.4765(−7) 1.7670(−6)
5 1.2655(−8) 7.7464(−8) 3.9817(−7) 1.2705(−8) 7.7754(−8) 3.9977(−7)
6 5.3465(−9) 3.0371(−8) 1.3402(−7) 5.3693(−9) 3.0498(−8) 1.3456(−7)
7 2.5135(−9) 1.3718(−8) 5.6022(−8) 2.5417(−9) 1.3783(−8) 5.6268(−8)
8 1.3084(−9) 6.8817(−9) 2.6810(−8) 1.3164(−9) 6.9173(−9) 2.6953(−8)
9 7.3091(−10) 3.7398(−9) 1.4170(−8) 7.3522(−10) 3.7732(−9) 1.4225(−8)
10 4.3382(−10) 2.2204(−9) 7.9503(−9) 4.3783(−10) 2.2064(−9) 8.0930(−9)

Here the sum is over all the particles of the system, and za and
ma are corresponding charges and masses of the particles.

When n �= n′ the initial- and final-state functions are or-
thogonal and the spin terms in (2) are exactly zero. Thus
the transition amplitudes are determined solely by gL, the
orbital g factor of the transition. The spin-dependent transi-
tion amplitudes between hyperfine states are then expressed
as

〈vIFLJ‖μ̂‖v′IF ′LJ ′〉 = δFF ′ (−1)J+F+L+1
√

(2J+1)(2J ′+1)

×
{

L 1 L
J ′ F J

}
〈vL‖μ̂‖v′L〉 (4)

and we have an additional selection rule for the hyperfine
transition lines: F → F ′ = F .

The transition probability for spontaneous emission of a
magnetic dipole photon from state n to state n′ is expressed as
follows:

Ann′ = 1

τ

4α3

3
w3

nn′
|〈ψn‖μ̂‖ψn′ 〉|2

2Jn + 1
= 1

τ

α5

3
w3

nn′
g2

L(v, v′)
2Jn + 1

.

(5)

Here wnn′ = En − En′ is the transition frequency and τ is a
unit of time in atomic units: τ = 2.41888 × 10−17 s.

If v = v′, transitions occur between hyperfine states of the
same vibrational level and all the terms in (2) contribute to
the transition strength. For the “pure” HFS states [for defini-
tion see [7], Eq. (10)] the matrix of the magnetic moment is
expressed by

μnn′ = μB〈vIFLJ‖gLL+gese+ gp

mp
I‖vI ′F ′LJ ′〉. (6)

TABLE II. Dependence of gL on the orbital momentum L for two
vibrational transitions.

v → v′ L = 1 L = 2 L = 3 L = 4

0 → 1 7.6094(−6) 7.6324(−6) 7.6670(−6) 7.7132(−6)
0 → 9 7.3091(−10) 7.3522(−10) 7.4243(−10) 7.5216(−10)

Then for the real hyperfine eigenstates the matrix is modified
by orthogonal transformation, which connects pure and real
HF eigenstates. The matrix elements for particular terms in
(6) may be evaluated using 6- j symbols as is shown in the
Appendix, Eq. (A2).

III. RESULTS AND DISCUSSION

Numerical calculations were based on the “exponential”
variational expansion [12]. By averaging Eq. (3) over the spa-
tial degrees of freedom, we obtained the orbital g factors and,
eventually, the Einstein coefficients Ann′ for the spontaneous
emission of a photon from the state n = (v, L, F, J ) to the
state n′ = (v′, L′, F ′, J ′); see Eq. (5).

In Table I the results of our numerical calculations for L=1
and L=2 transitions are presented. The transition probability
calculated from the orbital g factors for the (L = 1, v = 1) →
(1, 0) transition is AM1

nn′ = 5.45 × 10−12 s−1, which must be
compared with the quadruple transition probability for the
same transition AE2

nn′ = 2.65 × 10−7 s−1 [7]. Thus the M1 tran-
sition is five orders of magnitude weaker than the quadrupole
one.

Variation of the orbital g factor with a change of L is
expectedly small due to the adiabatic nature of the system
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FIG. 1. Dependence of gL for various v → v′ transitions. L = 1.
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and this is confirmed numerically in Table II. Since the L
dependence is small we do not present calculations for higher
L states. On the other hand, the orbital magnetic moment is
proportional to

√
L(L + 1)(2L + 1) and transition probability

Ann′ increases with L, similarly to the case of the molecule H2

(see Fig. 1, Ref. [9]) and at some L > 20 the M1 transition
becomes dominant.

On Fig. 1 three series of vibrational transitions for the L =
1 states are shown.

In conclusion, we obtained the M1 transition strengths for
the hydrogen molecular ion H2

+. Along with our previous
calculations of the quadruple E2 transitions and forbidden
dipole E1 transitions it completes the study of the transition
rates, which are necessary for planning future experiments and
allow one to estimate the laser intensity required for precision
spectroscopy of the H2

+ ion.
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APPENDIX: REDUCED MATRIX ELEMENTS FOR THE
SPIN AND ORBITAL ANGULAR MOMENTUM

OPERATORS

In this section we will apply the formula for the tensor
product of irreducible tensor operators [13].

Let Vkμ ≡ {Tk1 ⊗ Uk2}kμ, where Tk1 acts on subsystem 1
with angular moment J1 and Uk2 acts on subsystem 2 with
angular momentum J2. Then

〈v1v2J1J2J‖Vk‖v′
1v

′
2J ′

1J ′
2J ′〉 = �JJ ′k

⎧⎨
⎩

J ′
1 J ′

2 J ′
k1 k2 k
J1 J2 J

⎫⎬
⎭〈v1J1‖Tk1‖v′

1J ′
1〉〈v2J2‖Uk2‖v′

2J ′
2〉. (A1)

The reduced matrix elements for operators I, se, and L in the basis of the pure hyperfine states are

〈IFLJ‖I‖IF ′LJ ′〉 = �FF ′JJ ′ (−1)I+se+L+J ′+1

{
I 1 I

F ′ se F

}{
F 1 F ′
J ′ 1 J

}
〈I‖I‖I〉,

〈IFLJ‖se‖IF ′LJ ′〉 = �FF ′JJ ′ (−1)I+se+L+J ′+1

{
se 1 se

F ′ I F

}{
F 1 F ′
J ′ L J

}
〈se‖se‖se〉,

〈IFLJ‖L‖IF ′LJ ′〉 = δFF ′�JJ ′ (−1)F+L+J+1

{
L 1 L
J ′ F J

}
〈L‖L‖L〉,

(A2)

where �S = √
2S+1 and 〈S‖S‖S〉 = √

S(S+1)(2S+1) for any angular momentum operator S.
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