
PHYSICAL REVIEW A 108, 052824 (2023)

QED calculations of the nuclear recoil effect in muonic atoms
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The nuclear recoil effect, known also as the mass shift, is one of the theoretical contributions to the energy
levels in muonic atoms. Accurate theoretical predictions are needed for extracting, e.g., the nuclear charge radii
from experimental spectra. We report rigorous QED calculations of the nuclear recoil correction in muonic
atoms, carried out to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge
number and α is the fine-structure constant). The calculations show differences with the previous approximate
treatment of this effect, most pronounced for the lowest-lying bound states. The calculated recoil correction was
found to be sensitive to the nuclear charge radius, which needs to be accounted for when extracting nuclear
parameters from measured spectra.
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I. INTRODUCTION

Muonic atoms are a class of atomic systems where a nega-
tively charged muon replaces an electron in the atomic cloud.
Compared to electrons, muons penetrate about 200 times
deeper into the atomic nucleus due to their larger mass. This
phenomenon allows one to use muonic atoms as a powerful
tool to investigate the inner structure and properties of atomic
nuclei [1–3]. In combination with theoretical predictions, ex-
perimental studies of transition energies in muonic atoms
provide accurate determinations of the nuclear charge radii,
the magnetic dipole, and the electric quadrupole moments
of the nuclei [4–8]. A new generation of these experiments
is currently being implemented at the Paul Scherrer Institute
[9,10], which requires complementary advances on the theory
side.

The previous-generation theory did not always succeeded
in adequately describing the experimental data. In particular,
there are unexplained disagreements observed in muonic Pb,
Zr, and Sn atoms [5,11–13]. At the time, these disagreements
were ascribed to the insufficiently known nuclear polariza-
tion (NP) corrections, which were typically treated as free
fitting parameters when interpreting the experimental spectra.
However, recent studies of the NP correction [14,15] did not
support this supposition and called for systematic ab initio
QED recalculations of spectra of muonic atoms [16] and a
search for alternative solutions [17].

In the present paper we report a rigorous QED calculation
of the nuclear recoil effect in muonic atoms. Previously, the
nuclear recoil calculations in muonic atoms were performed
approximately [18], with a partial inclusion of relativistic
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effects. This is in contrast to the case of electronic atoms,
where the nuclear recoil was studied rigorously within QED.
In particular, formulas valid to all orders in the electron-
nucleus coupling strength parameter Zα were derived by
Shabaev [19,20] and calculated numerically in Refs. [21,22].
These formulas obtained for the electronic atoms can in
principle be applied also to muonic systems, but the point-
nucleus model assumed in the derivation was not an adequate
approximation for muonic atoms. One therefore needed a
generalization of the nuclear recoil theory for the extended
nuclear size.

A partial inclusion of the finite nuclear size (FNS) into the
nuclear recoil was reported in Refs. [23,24]. The complete
treatment, however, required a derivation of the generalized
photon propagator, which was accomplished only recently in
Ref. [25]. In the present work we use the general expressions
for the FNS nuclear recoil effect derived in these studies to
perform rigorous numerical calculations for muonic atoms
without any expansion in the parameter Zα.

Relativistic units (h̄ = c = 1) and the Heaviside charge
units α = e2/(4π ) are used throughout the paper.

II. THEORY

General formulas for the nuclear recoil correction to ener-
gies of hydrogenlike atoms were derived by Shabaev [19,20].
These formulas are valid to all orders in the nuclear binding
strength parameter Zα. They were derived for the point nu-
clear model; within this model they can be applied both for
the electronic and the muonic atoms. The expression for the
nuclear recoil correction to the energy of a bound lepton in a
state a is

Erec = i

2πM

∫ ∞

−∞
dω

∑
n

1

εa + ω − εn(1 − i0)

× 〈a| �p − �D(ω)|n〉〈n| �p − �D(ω)|a〉, (1)

where M is the nuclear mass, �p is the momentum operator,
εa is the Dirac energy of the state a, �D(ω) is obtained from
the transverse part of the photon propagator in the Coulomb
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gauge Di j
C by

D j (ω) = −4πZα αi Di j
C (ω, �r),

and αi are the Dirac matrices. The summation over n in Eq. (1)
is carried out over the complete Dirac spectrum. The trans-
verse part of the photon propagator in the Coulomb gauge can
be expressed in terms of the scalar function D(ω, r) as

Di j
C (ω, �r) = δi j D(ω, r) + ∇ i∇ j

ω2
[D(ω, r) − D(0, r)]. (2)

In the case of the standard photon propagator describing the
interaction between the two pointlike particles, the function
D(ω, r) has a simple form [20]

D(ω, r) = −ei|ω|r

4πr
. (3)

It was recently demonstrated [25] that formula (1) can
be generalized to describe the nuclear recoil effect for an
extended-size nucleus if one replaces the standard photon
propagator by the generalized photon propagator describing
the interaction between a pointlike and an extended-size par-
ticle. The derivation of the generalized photon propagator
presented in Ref. [25] yields the following result for the func-
tion D(ω, r),

D(ω, r) =
∫

d3k

(2π )3
ei�k·�r ρ(�k2 − ω2)

ω2 − �k2
, (4)

where ρ(q2) is the charge form factor of the nucleus in
momentum space. An interesting feature of the generalized
photon propagator is that it requires knowledge of the charge
form factor ρ(q2) not only for the positive but also the nega-
tive arguments q2. Generally, for calculating the nuclear recoil
correction with the propagator (4), one needs the analytical
continuation of the charge form factor into the whole complex
plane of momenta.

Following Ref. [25], we use the exponential model of the
nuclear charge distribution. Within this model, the nuclear
charge density in coordinate and momentum space is given
by

ρ(r) = λ3

8π
e−λr, ρ(�k2) = λ4

(λ2 + �k2)2
, (5)

respectively, where the parameter λ is expressed in terms
of the root-mean-square nuclear charge radius rC as λ =
2
√

3/rC . Within this parametrization of the nuclear charge
distribution, the extended-size photon propagator is written in
coordinate space as [25]

D(ω, r) = − 1

4π

[
ei|ω|r

r
− ei

√
ω2−λ2r

r
− iλ2

2

ei
√

ω2−λ2r

√
ω2 − λ2

]
.

(6)

For numerical calculations, it is convenient to separate
the nuclear recoil correction (1) into several parts, which are
induced by the exchange of arbitrary number of Coulomb pho-
tons, by the Coulomb and one transverse photon (Etr1), and by
the Coulomb and two transverse photons (Etr2). Furthermore,
the Coulomb-photon part is separated into the leading-order
part EL and the higher-order Coulomb-photon part EC. We

thus write

Erec = EL + EC + Etr1 + Etr2. (7)

The leading-order contribution is

EL = 1

2M
〈a| �p 2|a〉. (8)

We note that EL has a form of an expectation value of the non-
relativistic reduced-mass operator �p 2/(2M ) with the Dirac
wave functions. The remaining Coulomb-photon contribution
is given by

EC = − 1

M

∑
εn<0

〈a| �p|n〉〈n| �p|a〉, (9)

where the summation is performed over the negative-
continuum part of the Dirac spectra. The correction EC is
suppressed by a factor of (Zα)3 as compared to the leading-
order contribution EL.

The one-transverse-photon and the two-transverse-photon
contributions are given by

Etr1 = − i

πM

∫ ∞

−∞
dω

∑
n

1

εa + ω − εn(1 − i0)

× 〈a| �p|n〉〈n| �D(ω)|a〉, (10)

Etr2 = i

2πM

∫ ∞

−∞
dω

∑
n

1

εa + ω − εn(1 − i0)

× 〈a| �D(ω)|n〉〈n| �D(ω)|a〉. (11)

The one-transverse-photon and the two-transverse-photon
contributions are suppressed with respect to the leading-order
contribution EL by factors (Zα)2 and (Zα)3, respectively.

III. NUMERICAL EVALUATION

We now bring the general formulas for the nuclear recoil
correction to the form suitable for the numerical evaluation.
The leading-order contribution EL is calculated after trans-
forming the matrix element as follows [26],

〈a| �p 2|a〉 = 〈a|(�α · �p)2|a〉 = 〈a|(εa − βm − Vnucl )
2|a〉, (12)

where β is the Dirac matrix, εa is the Dirac energy of the state
a, and Vnucl(r) is the nuclear binding potential. Performing
angular integration, we obtain

EL = 1

2M

∫ ∞

0
dr r2

{
[(εa − Vnucl )

2 + m2]
[
g2

a(r) + f 2
a (r)

]
− 2m(εa − Vnucl )

[
g2

a(r) − f 2
a (r)

]}
, (13)

where ga(r) and fa(r) are the upper and the lower radial
components of the wave function of the state a, defined as
in Ref. [27].

For calculating the remaining Coulomb-photon contribu-
tion EC it is convenient to apply the identity [26]

�p = 1
2 {�α, hD} − �α Vnucl, (14)

where {�α, hD} = �α hD + hD �α, and hD is the Dirac Hamilto-
nian

hD = �α · �p + βm + Vnucl(r), (15)
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with hD|a〉 = εa|a〉. Therefore,

〈a| �p|n〉 = 〈a|�α φ(r)|n〉, (16)

where φ(r) = (εa + εn)/2 − Vnucl(r). The angular integration
is performed analytically, yielding

EC = − 1

M

∑
εn<0

3

2 ja + 1
[RC (an)]2. (17)

Here, ja is the total angular momentum quantum number of
the state a and the radial integral RC is defined by

RC (an) =
∫ ∞

0
dr r2 φ(r)[ga(r) fn(r)S10(κa,−κn)

− fa(r)gn(r)S10(−κa, κn)], (18)

where κi is the Dirac angular-momentum quantum number of
the state i and SJL(κ1, κ2) are the standard angular coefficients
defined in the Appendix.

Calculations of the transverse-photon contribution are
more complicated than that of EC because of the integration
over the photon energy ω. First, we make the Wick rota-
tion of the ω integration contour. This rotation produces pole
terms originating from the intermediate states more or equally
deeply bound as the reference state. We obtain

Etr1 = − 2

M

∑
0<εn�εa

an〈a| �p|n〉〈n| �D(�an)|a〉

+ 2

πM

∫ ∞

0
dω

∑
n

�an

�2
an + ω2

〈a| �p|n〉〈n| �D(iω)|a〉,
(19)

Etr2 = 1

M

∑
0<εn�εa

an〈a| �D(�an)|n〉〈n| �D(�an)|a〉

− 1

πM

∫ ∞

0
dω

∑
n

�an

�2
an + ω2

〈a| �D(iω)|n〉〈n| �D(iω)|a〉,
(20)

where an = 1 for εn �= εa and an = 1/2 for εn = εa, and �an =
εa − εn.

The angular integration for the one-transverse-photon con-
tribution is carried out analytically using the standard Racah
algebra. The result is∑

μn

〈a| �p|n〉〈n| �D(ω)|a〉 = 3

2 ja + 1
RC (an)

[
R(1)

T (ω, an)

+ 1√
3

C1(κn, κa)R(2)
T (ω, an)

]
,

(21)

where μn is the momentum projection of the state n, the
angular coefficient CL(κ1, κ2) is defined in the Appendix, and
the radial integrals are

R(1)
T (ω, an) =

∫ ∞

0
dr r2 
1(ω, r)[ga(r) fn(r)S10(κa,−κn)

− fa(r)gn(r)S10(−κa, κn)], (22)

R(2)
T (ω, an) =

∫ ∞

0
dr r2 
2(ω, r)[ga(r)ga(r) + fa(r) fn(r)].

(23)

Furthermore,


1(ω, r) = − 4πZαD(ω), (24)


2(ω, r) = − 4πZα
εa − εn

ω2
[D′(ω) − D′(0)], (25)

and D′(ω) = d/(dr)D(ω, r).
Similarly, the integrand of the two-transverse-photon part

is evaluated as∑
μn

〈a| �D(ω)|n〉〈n| �D(ω)|a〉

= 3

2 ja + 1

[
R(1)

T (ω, an) + 1√
3

C1(κn, κa)R(2)
T (ω, an)

]2

.

(26)

IV. RESULTS

We performed numerical calculations of the nuclear recoil
corrections by representing the Dirac muon spectrum with
the finite basis set constructed with B splines, using the dual-
kinetic balance method [28]. The numerical procedure is very
similar to that developed for the electronic atoms in Ref. [29].
Numerical results are conveniently represented in terms of
dimensionless function Prec defined as

Erec = mμc2 mμ

M

(Zα)2

2n2
Prec(Zα), (27)

where Erec is the recoil correction to the energy level. In
the nonrelativistic limit α → 0, the nuclear recoil effect
reduces to the multiplication of the binding energy by the
reduced mass prefactor. Therefore, in the nonrelativistic limit
Prec(0) = 1.

Table I presents our numerical results for the nuclear
recoil correction obtained for the n = 1, n = 2, and n = 3
states of muonic atoms with the nuclear charge numbers
Z = 10 − 100. For each Z , we present the leading-order
contribution EL, the complete nuclear recoil correction Erec

calculated for the nuclear charge radius rC specified in the
table, and the derivative E ′

rec = dErec/drC . It is interesting
that the leading-order contribution EL yields a very reason-
able approximation for the complete recoil correction, even
in the high-Z region. For example, for Z = 90 the difference
between EL and Erec does not exceed 20%. This is in contrast
to the electronic ions, where the corresponding difference
for Z = 90 reaches 70% [21]. We conclude that for muonic
atoms the QED corrections to the nuclear recoil effect are less
prominent than for the electronic atoms. With the increase of
the principal quantum number n and the orbital momentum l ,
we see a clear tendency that both EL and Erec rapidly approach
the nonrelativistic limit of Prec(0) = 1.

In the point-nucleus limit the function Prec is the same for
electronic and muonic atoms. We checked that our numerical
calculations with the point nuclear model agree with the re-
sults of Refs. [21,22] for the n = 1 and n = 2 states and with
those of Ref. [30] for the n = 3 states. For the extended-size
nuclei, the results for the muonic and electronic atoms are very
much different. For the electronic atoms, the finite nuclear size
effect is a small correction, whereas for the muonic atoms it
changes the magnitude of the nuclear recoil effect drastically.
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TABLE I. Nuclear recoil correction with inclusion of the finite nuclear size for muonic atoms, in terms of the function Prec. For each Z , the
upper line presents results for the leading-order recoil correction EL, whereas the second and the third lines give the complete recoil correction
Erec and its derivative E ′

rec = d/(drC )Erec, in fm−1.

Z rC (fm) 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2

10 3.0055 EL 0.96805 0.98776 1.00573 1.00174 0.99269 1.00470 1.00205 1.00160 1.00071
Erec 0.95994 0.98114 1.00125 0.99994 0.98769 1.00112 1.00025 1.00029 1.00000
E ′

rec −0.02270 −0.01156 −0.00006 −0.00004 −0.00775 −0.00005 −0.00003 −0.00000 −0.00000
20 3.4776 EL 0.87756 0.95090 1.02196 1.00637 0.97030 1.01804 1.00773 1.00643 1.00285

Erec 0.85493 0.92996 1.00399 0.99910 0.95400 1.00373 1.00052 1.00116 0.99997
E ′

rec −0.05638 −0.03025 −0.00103 −0.00076 −0.02062 −0.00081 −0.00060 −0.00000 −0.00000
30 3.9283 EL 0.75975 0.89972 1.04420 1.01123 0.93888 1.03650 1.01500 1.01455 1.00641

Erec 0.72569 0.86303 1.00441 0.99506 0.90920 1.00489 0.99892 1.00258 0.99991
E ′

rec −0.07336 −0.04240 −0.00509 −0.00386 −0.02962 −0.00394 −0.00301 −0.00003 −0.00002
40 4.2694 EL 0.65040 0.84997 1.06504 1.01240 0.90861 1.05452 1.02086 1.02600 1.01137

Erec 0.60926 0.79817 0.99720 0.98451 0.86500 1.00069 0.99292 1.00450 0.99977
E ′

rec −0.07614 −0.04787 −0.01363 −0.01051 −0.03440 −0.01030 −0.00809 −0.00017 −0.00012
50 4.6519 EL 0.54921 0.79955 1.07352 1.00411 0.87760 1.06440 1.02101 1.04057 1.01752

Erec 0.50554 0.73483 0.97566 0.96297 0.82075 0.98653 0.97923 1.00663 0.99937
E ′

rec −0.07029 −0.04856 −0.02613 −0.02083 −0.03604 −0.01915 −0.01569 −0.00069 −0.00051
60 4.9123 EL 0.47194 0.75942 1.06937 0.98730 0.85370 1.06685 1.01636 1.05778 1.02451

Erec 0.42713 0.68243 0.94210 0.93242 0.78339 0.96475 0.95957 1.00849 0.99841
E ′

rec −0.06341 −0.04813 −0.03905 −0.03214 −0.03689 −0.02783 −0.02369 −0.00192 −0.00141
70 5.3108 EL 0.39779 0.71411 1.03855 0.95315 0.82513 1.05278 1.00047 1.07573 1.03114

Erec 0.35515 0.62843 0.88934 0.88633 0.74347 0.93068 0.92933 1.00852 0.99582
E ′

rec −0.05368 −0.04532 −0.05009 −0.04328 −0.03604 −0.03477 −0.03111 −0.00461 −0.00342
80 5.4648 EL 0.35068 0.68598 1.01045 0.92163 0.80935 1.04295 0.98798 1.09463 1.03764

Erec 0.30833 0.58982 0.83977 0.84305 0.71454 0.89989 0.90175 1.00698 0.99194
E ′

rec −0.04800 −0.04448 −0.05784 −0.05159 −0.03650 −0.03972 −0.03665 −0.00835 −0.00621
82 5.5012 EL 0.34186 0.68027 1.00324 0.91434 0.80607 1.04013 0.98489 1.09824 1.03876

Erec 0.29972 0.58225 0.82902 0.83366 0.70877 0.89324 0.89575 1.00628 0.99087
E ′

rec −0.04683 −0.04422 −0.05900 −0.05299 −0.03652 −0.04047 −0.03758 −0.00929 −0.00692
83 5.5211 EL 0.33747 0.67734 0.99935 0.91051 0.80436 1.03855 0.98323 1.10000 1.03929

Erec 0.29546 0.57844 0.82350 0.82882 0.70584 0.88981 0.89266 1.00587 0.99028
E ′

rec −0.04623 −0.04408 −0.05953 −0.05366 −0.03652 −0.04082 −0.03801 −0.00979 −0.00729
90 5.7848 EL 0.30219 0.64980 0.95782 0.87374 0.78631 1.01813 0.96452 1.10922 1.04084

Erec 0.26260 0.54731 0.77647 0.78709 0.68129 0.86019 0.86549 1.00007 0.98405
E ′

rec −0.04071 −0.04189 −0.06148 −0.05721 −0.03561 −0.04215 −0.04026 −0.01414 −0.01072
92 5.8571 EL 0.29309 0.64228 0.94545 0.86288 0.78133 1.01205 0.95897 1.11132 1.04090

Erec 0.25417 0.53886 0.76302 0.77504 0.67454 0.85173 0.85765 0.99786 0.98186
E ′

rec −0.03929 −0.04131 −0.06172 −0.05792 −0.03537 −0.04236 −0.04072 −0.01550 −0.01181
100 5.8570 EL 0.27316 0.62987 0.92314 0.83949 0.77628 1.00674 0.95158 1.12470 1.04425

Erec 0.23394 0.51805 0.72744 0.74374 0.65831 0.83026 0.83809 0.99208 0.97551
E ′

rec −0.03701 −0.04144 −0.06399 −0.06117 −0.03622 −0.04438 −0.04322 −0.02015 −0.01536

Figure 1 presents a plot of Prec as a function of the nuclear
radius rC , for Z = 90 and the 1s state. It is seen that the finite
nuclear size effect reduces the numerical value of the function
Prec by nearly an order of magnitude.

The dependence of Erec on the nuclear charge radius rC for
muonic atoms is thus quite strong. For Z = 90 and the 1s state,
a 10% change of the nuclear radius value given in Table I leads
to a 9% change of Erec. In order to facilitate the analysis of
the dependence of Erec on the nuclear radius, Table I presents
results for the first derivative of Erec on rC . The results for the
derivative can be used to obtain Erec for nuclear radii different
from the ones listed in the table.

Table II presents a comparison of the nuclear recoil cor-
rection evaluated within the leading-order approximation, EL,

the complete nuclear recoil correction evaluated within QED,
Erec, and the results obtained previously within an approxi-
mate relativistic treatment [18]. We observe that the previous
approach yields typically a slightly better approximation than
the leading-order approximation EL. However, the approxi-
mate results are systematically lower than the full-QED values
and the previous uncertainties underestimate the missing rela-
tivistic and QED effects.

In the present work we do not study the dependence of
the nuclear recoil correction on the model of the nuclear
charge distribution. The effect of this dependence is much
smaller and completely overshadowed by the model depen-
dence of the leading-order finite nuclear size contribution
[31,32].
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FIG. 1. Dependence of the nuclear recoil correction Prec(Zα) on
the root-mean-square nuclear charge radius rC , for Z = 90 and the 1s
state.

V. CONCLUSION

We have calculated the nuclear recoil effect for muonic
atoms rigorously within QED and to all orders in the nuclear
binding strength parameter Zα. This calculation significantly

TABLE II. Nuclear recoil correction to the energies of muonic
atoms, in keV. EL is the leading-order contribution, and Erec is the
complete nuclear recoil correction.

Atom rC (fm) State EL Erec Previous [18]

89
40Zr 4.2706 1s1/2 3.735 3.499 3.21(15)

2s1/2 1.220 1.146 1.09(2)
2p1/2 1.529 1.432 1.42(1)
2p3/2 1.454 1.414 1.40(1)
3s1/2 0.580 0.552 0.53(1)
3p1/2 0.673 0.639 0.64
3p3/2 0.652 0.634 0.63
3d3/2 0.655 0.641 0.64
3d5/2 0.645 0.638 0.63

147
62Sm 4.9892 1s1/2 3.810 3.438 2.88(8)

2s1/2 1.566 1.402 1.26(5)
2p1/2 2.224 1.947 1.92(5)
2p3/2 2.050 1.930 1.92(4)
3s1/2 0.787 0.719 0.66(2)
3p1/2 0.988 0.890 0.88(1)
3p3/2 0.941 0.885 0.88(1)
3d3/2 0.985 0.936 0.92(1)
3d5/2 0.952 0.926 0.91(1)

205
83Bi 5.5008 1s1/2 3.633 3.179 2.41(6)

2s1/2 1.820 1.554 1.33(4)
2p1/2 2.685 2.212 2.12(3)
2p3/2 2.445 2.226 2.26(1)
3s1/2 0.960 0.842 0.75(3)
3p1/2 1.239 1.062 1.02(3)
3p3/2 1.173 1.065 1.03(3)
3d3/2 1.311 1.199 1.19(2)
3d5/2 1.239 1.180 1.17(2)

improves the accuracy of the nuclear recoil correction as
compared to the previous treatments with partial inclusion of
relativistic effects. The results of the full QED treatment differ
from the nonrelativistic predictions for high values of Z and
the deeply bound states, but rapidly converge to the nonrel-
ativistic limit when Z decreases and (or) the highly excited
states are considered. The nuclear recoil correction was shown
to depend strongly on the nuclear charge radius. This depen-
dence should be taken into account when nuclear parameters
are extracted from experimental transition energies.

APPENDIX: ANGULAR COEFFICIENTS SJL AND CL

The coefficients CJ (κb, κa) are given by

CJ (κb, κa) = (−1) jb+1/2
√

(2 ja + 1)(2 jb + 1)

×
(

ja J jb
1
2 0 − 1

2

)
�(la, lb, J ), (A1)

where the symbol �(la, lb, J ) is unity if la + lb + J is even
and zero otherwise. Furthermore, κi is the Dirac angular-
momentum quantum number, ji = |κi| − 1/2, and li = |κi +
1/2| − 1/2.

The angular coefficients SJL(κa, κb) are nonvanishing only
for L = J , J ± 1 and can be written for J �= 0 as follows:

SJ J+1(κa, κb) =
√

J + 1

2J + 1

(
1 + κa + κb

J + 1

)
CJ (−κb, κa),

(A2)

SJ J (κa, κb) = κa − κb√
J (J + 1)

CJ (κb, κa), (A3)

SJ J−1(κa, κb) =
√

J

2J + 1

(
−1 + κa + κb

J

)
CJ (−κb, κa).

(A4)

In the case J = 0 there is only one nonvanishing coefficient
S01(κa, κb) = C0(−κb, κa).

It can be immediate seen that CJ (κb, κa) ∝ �( ja, jb, J ),
where � denotes the triangular condition. For the coefficients
SJL we have SJL(κa, κb) ∝ �( ja, jb, J )�(la, lb, L).

We note several useful symmetry relations of the angular
coefficients:

CJ (κa, κb) = CJ (−κa,−κb) = (−1) ja− jbCJ (κb, κa), (A5)

SJL(κa, κb) = (−1)J+L+1(−1) jb− ja SJL(κb, κa). (A6)

Several specific values of the angular coefficients relevant
for this study are

S10(−1,−1) =
√

2, S10(1, 1) = −
√

2

3
,

S10(−1, 2) = 0, S10(1,−2) = 4

3
. (A7)
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