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Algebraically solvable model for electron-phonon interactions in cycloacene molecules
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The intrinsic polygonal symmetry of a [h]cycloacene molecule is employed to find the normal modes of the
electronic and vibrational degrees of freedom using the interaction picture in a fixed molecule, i.e., without
rotational degrees of freedom. Instead of considering separable solutions, the dynamics is studied implementing
an electron-phonon linear coupling of first order. This coupling is described using an algebraic approach
analogous to the Jaynes-Cummings model for atoms in optical cavities. Criteria for transitions are given based
on the symmetry selection rules and conservation laws. A basis of electron-phonon dressed states is given and
distortion phenomena usually associated with the Jahn-Teller effect in crystals are predicted.
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I. INTRODUCTION

The Born-Oppenheimer approximation [1], which orig-
inated almost 100 years ago, has been for a long time a
reliable tool to study the behavior of molecules since it greatly
simplifies the complex equations that arise in multibody prob-
lems. Nowadays, however, it has become easier to deal with
such systems by numerical methods [2–6]. The study of
phenomena beyond this approximation, such as light-matter
interaction and luminescence [7,8], has drawn attention for its
influence in photophysical and photochemical processes and
the potential fabrication of light-emitting diodes [9,10]. In the
present work we introduce a coupling of nuclear observables
to the electronic Hückel approximation in a linear fashion.
By doing so, we obtain superpositions of terms algebraically
equivalent to the Jaynes-Cummings model. This is done in
a long organic molecule such as cycloacene. It should be
noted that in this molecular context, the bosonic elements are
attributed to the presence of phonons.

In contrast to the propagation of phonons in a periodic
lattice in solid-state physics [11–13], here the medium of
propagation of the phonons is the molecule itself. Hence
there is no need for a cavity that traps the bosons in a
cryogenic environment, as would be the case for the optical
Jaynes-Cummings model [14]. This not only makes bosonic
losses less frequent, it also offers the possibility of using
the electron-phonon interaction for the creation of qubits; for
systems that require ion traps, this is normally done with
photon-exciton couplings [15,16]. The interaction between
these degrees of freedom produces an effect analogous to
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fluorescence, in which an electronic state can transit either
to a lower-energy state plus a vibrational excitation or to a
higher-energy state by absorbing a quantum of vibration. In
Fig. 1 we show a representation of this process. This implies
that even an initial state with zero phonons can evolve into
a state with vibrational excitations. Another effect expected
from the coupling of electronic and vibrational degrees of
freedom is the perturbation of the ground state such that the di-
rect product of the lower electronic state and the zero-phonon
vibrational state is not the state of minimal energy of the full
system. In one-dimensional chains, this produces a Peierls
distortion.

In this regard, we should mention that, according to our
results, it is plausible to construct a two-level system with a
cycloacene molecule of five rings; higher multilevel systems
are also plausible and their prevalence increases with the size
of the molecule. In addition, our treatment does not consider
rotational degrees of freedom, as they are not involved in
the motion. In regard to experimental realizations, the neu-
tralization of rotations can be achieved with techniques such
as nanopore trapping. Arrangements of this type have been
demonstrated recently by experimentalists [17,18].

The structure of this article is as follows. In Sec. II we
obtain the energy spectrum of the cycloacene molecule, with a
procedure that has been employed previously [19,20], involv-
ing the polygonal symmetry of the molecule. We expand the
scope of that study by implementing the vibrational degrees
of freedom through a harmonic approximation and subse-
quently studying the linear coupling between the electronic
transitions and the vibrational excitations: a task undertaken
analytically for molecules of high complexity. In Sec. III A
we rewrite the linear coupling in terms of the electronic and
vibrational normal modes. Furthermore, in the same spirit as
in the Jaynes-Cummings model for electromagnetic cavities,
we implement the interaction picture and the rotating-wave
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FIG. 1. Transition between the Hückel eigenstates |AA, 8) and
|SA, 1) mediated by a phonon with frequency ωSS

7 along the ẑ
axis. The eigenstates and frequencies are defined in (17) and (21),
respectively

approximation to obtain stationary solutions. In Sec. III B we
discuss the existence of various selection rules that filter the
possible electron-phonon couplings beyond the conservation
of energy with criteria that involve conservation of parity and
Bloch momentum. In Sec. III C we introduce physical values
of molecular parameters to obtain viable realizations in cy-
cloacene. Some notorious examples are detailed in Sec. III D,
where the dynamics involve systems of two, three (here we
mention how a Peierls distortion is possible), and four inter-
acting electronic levels. Solutions to these systems are given
in the form of dressed states. In Sec. IV we discuss the impli-
cations of the obtained results.

II. MATHEMATICAL MODEL OF A CYCLOACENE
MOLECULE

We know that for organic compounds, the σ bonds that
keep each carbon atom connected to the molecule originate
from a basis of hybridized sp2 orbitals, which is orthogonal
to the remaining delocalized π orbital. For this reason, the
Hamiltonian can be split into a term that operates in the basis
of the atoms’ π orbitals HE and a term that involves the
dynamics of the molecule’s σ bonds Hv:

H = HE + Hv. (1)

We note that, in the basis of the sp2 orbitals, HE is degener-
ate per carbon atom, thus allowing us to consider the same
potential for all carbon-carbon interaction. This is equivalent
to implementing the Born-Oppenheimer approximation for
the dynamics in the σ bonds, but in the following we go
beyond this approximation for HE . The Hückel model will
be implemented for HE and a harmonic approximation will
enable a normal-mode description of Hv . We may also refer
to the π orbitals as the electronic degrees of freedom and the
nuclear observables as the vibrational degrees of freedom.

The segmentation of periodic systems is an effective
technique to deduce the eigenvalues of their Hamiltoni-
ans [20–22]. Proceeding in this manner, in Fig. 2(a) we
define the coordinate system and show the segmentation of the
cycloacene molecule (light shade) in identical units (darker
shade) and for the sake of clarity, in the following we will refer
to these units as benzene rings. In Fig. 2(b), in the context of
the carbon atoms’ π orbitals (see Sec. II A), we see how each
benzene ring is labeled by index i, which ranges from 1 to h.
Due to the periodicity of the system, it is possible to employ
the i modh notation. We also use two pairs of numbers (1 and
2) to label the positions of the four atoms in each ring: The first
number indicates if the atom is located in either the superior
(1) or inferior (2) chain and the second number indicates if
the atom is located in either an odd (1) position (meaning that
in these places, the superior and inferior chains are coupled)
or an even (2) position (here the superior and inferior chains
are not coupled). This position label will be shortened with a
single symbol w = 11, 12, 21, 22. Our notation will also be
employed to label the atomic position vectors. With this, we
can write the explicit Hamiltonians of the system in the next
section.

A. Electronic Hamiltonian

The energy levels available to a single electron can be
studied through the electronic Hamiltonian HE below. To that
end, we assume that, due to hybridization of the orbitals, each
carbon atom has a π orbital available, which implies that all σ

orbitals are occupied. These are the requirements needed for
the applicability of the Hückel model [23–25]. Additionally,
the local radial wave function R for each carbon atom is

R(r) = N re−r/λ, λ = 2a0

Z
, Z = 6. (2)

FIG. 2. Diagram and labeling of a [23] cycloacene molecule. (a) Coordinate system definition and segmentation of the molecule. (b) Four
C atoms per hexagonal cell and their π -orbital states. (c) Five relative vectors between nearest-neighbor C atoms per hexagonal cell.
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We should note that the constant evanescence length λ is one
order of magnitude smaller than the equilibrium separation R
between nearest neighbors λ/R ≈ 0.127. For this reason, we
consider a tight-binding model up to nearest neighbors. The
same considerations are occasionally made for the analysis of
the electronic structure of benzene beyond nearest-neighbor
tight-binding models [26]. In this fashion, the electronic
Hückel Hamiltonian is given by the expression

HE = E0

∑
all w

⎛
⎝ h∑

i=1

|w, i〉 〈w, i| +
∑

≺w,i;w′, j�
�w,i

w′, j |w, i〉 〈w′, j|
⎞
⎠,

�w,i
w′, j = 〈w, i|HE |w′, j〉 ≈ �(R)e−|rw

i −rw′
j |/λ, (3)

where the notation ≺ w, i; w′, j � indicates a sum carried
over nearest neighbors, rw

i are the position vectors of the
carbon atoms, �(R) is the hopping amplitude at rw

i = rw′
j

(nearest neighbors), and |w, i〉 are the electronic π -orbital
site kets of the carbon atoms; such orbitals are shown in
Fig. 2(b). We note that there are only off-diagonal correc-
tions due to ionic displacements; the lack of on-site oscillator
contributions can be justified as explained in Appendix B.
Furthermore, we can separate the electronic Hamiltonian by
expanding the exponential function about the equilibrium con-
figuration of the molecule,

dw,i
w′, j = ∣∣rw

i − rw′
j

∣∣, Rw,i
w′, j = Rw

i − Rw′
j ,

∣∣Rw,i
w′, j

∣∣ = R,

e−dw,i
w′ , j

/λ ≈ e−R/λ + ∂

∂dw,i
w′, j

e−dw,i
w′ , j

/λ

∣∣∣∣
dw,i

w′ , j
=R

(
dw,i

w′, j − R
)

≈ e−R/λ

(
1 − 1

λ
R̂w,i

w′, j · rw,i
w′, j

)
, (4)

where Rw
i are the atomic position vectors in the molecule’s

equilibrium configuration and rw,i
w′, j is defined in (9). In

Fig. 2(c) we show how vectors Rw,i
w′, j form a regular hexagon

minus one edge in each benzene ring and that the number
of edges is the same as the number of terms in the sum
over nearest neighbors (5h). We stress that this interaction
of the π orbitals with an ionic lattice does not follow the
Born-Oppenheimer approximation. In Appendix A we show
explicit forms of these sums. In this fashion, we can separate
the electronic Hamiltonian as

HE − E0 = He + Hi, (5)

He = �0

⎛
⎝ ∑

≺w,i;w′, j�
|w, i〉 〈w′, j| + H.c.

⎞
⎠, (6)

Hi = −1

λ
�0

∑
≺w,i;w′, j�

(
R̂w,i

w′, j

)T
rw,i
w′, j |w, i〉 〈w′, j| + H.c.,

(7)

where �0 = e−R/λ�(R) is the first-neighbor coupling energy
at equilibrium. It is important to give an interpretation of each
term: He is the untangled electronic Hamiltonian and Hi is
our interaction Hamiltonian, since this operator couples the
electronic and vibrational degrees of freedom. We will see that
there can be energy transfers between these degrees of free-
dom via a phenomenon analogous to the Jaynes-Cummings

effect in an optical cavity. It should be noted that the first
neighbor coupling �0 can vary in a certain atomic site if such
a carbon atom is saturated with a radical other than hydro-
gen, e.g., fluorination [27,28]. This would change the overall
ground state of the system as well as the highest-energy level,
thus affecting the results we present. For this reason, we leave
this possibility for future consideration.

It is important to note that even though we have made an
attempt to derive the interaction terms from a well-justified
Hamiltonian, it is always possible to propose an expression
similar to (7) on the grounds of the simplest interaction model
between electrons and phonons in the harmonic approxima-
tion, thus always linear in the nuclear coordinates. This would
entail the use of an empirical coupling constant that could be
fitted by spectroscopic data [29,30]; however, our approach
checks with experiments of microwave emission and absorp-
tion in the vibronic part, i.e., the constant has the correct order
of magnitude and a reasonable dependence on internuclear
distance and evanescent length, taken from an effective Bohr
radius for C atoms.

B. Vibrational Hamiltonian

For the vibrational Hamiltonian Hv we consider a harmonic
interaction given by

Hv = 1

2m

∑
all w

h∑
i=1

(
pw

i

)2 + Vhar, (8)

Vhar = 1

2
k

∑
≺w,i;w′, j�

(
rw,i
w′, j

)2
, rw,i

w′, j = rw
i − rw′

j − Rw,i
w′, j,

(9)

where the notation ≺ w, i; w′, j � once more indicates a sum
carried over nearest neighbors, m is the mass of the carbon
atom, the bond force constant k can be determined from spec-
troscopy (see Sec. III C), and pw

i are the momentum vectors of
the carbon atoms. For a model closer to reality, instead of the
harmonic approximation, we can propose an algebra based on
f oscillators that allows for a description beyond the harmonic
oscillator [31,32].

C. Solutions of the uncoupled systems

The diagonalization of the untangled electronic Hamilto-
nian He and the vibrational Hamiltonian Hv not only yields the
energy eigenvalues of the uncoupled systems, but also enables
us to work with their eigenbases, which allows us to write

He = h̄
∑
all Q

h∑
q=1

νQ
q σ QQ

qq , σ QP
qp = |Q, q)(P, p|, (10)

Hv = (4h)2 p2
c.m.

2MT
+

∑
all W

h∑
q=1

h̄ωW
q

(
aW

q
†
aW

q + 3

2

)
, (11)

where |Q, q) is an eigenstate of He (in the following, these
states will be derived as linear combinations of the orbital
kets |w, i〉); pc.m. is the momentum of the center of mass of
the molecule; MT is its total mass (ignoring the masses of the
hydrogen atoms); aW

q and aW
q

† are the annihilation and cre-
ation operators associated with the absorption and production
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of phonons, respectively; Q, P, and W are symmetry labels
which will be explained thoroughly in Sec. II C 1; and indices
q and b are the Bloch momenta of the electronic and vibra-
tional states, respectively. In this context, a Bloch momentum
represents the propagation of the wave function throughout
the molecule in a fashion analogous to the propagation vector
of photons in a continuum. In Fig. 1 we can visualize this
propagation as the periodicity of the waves.

Translational symmetry greatly simplifies the procedure of
finding the eigenstates of a periodic system, e.g., a crystalline
arrangement. Here we use the inherent Ch rotational symmetry
of the molecule to our favor. It will prove useful to remember
that the matrix representation of this group allows a diagonal-
ization through the following basis:

(M )rc = 1√
h

ei(2π/h)rc. (12)

1. Diagonalization of the untangled electronic Hamiltonian

The notation introduced in Sec. II A uses three numbers
to label the atoms in the molecule. Likewise, we will employ
direct products of three operators

O1O2O3 (13)

to write the untangled electronic Hamiltonian. Following the
labeling shown in Fig. 2(b), both O1 and O2 have a 2 × 2 ma-
trix representation: O1 includes all four permutations between
the upper and lower rows of each benzene ring (including the
identity operations), while O2 does the same for the even and
odd positions of the carbon atoms. Finally, O3 has an h × h
representation and accounts for the benzene ring label. Now
we write the untangled electronic Hamiltonian He as

He/�0 = P2(σ+T † + σ−1h) + σ+P11h + P1(σ+1h + σ−T ) + H.c. = 1(σ+K† + σ−K ) + σ1P11h,

P1 = |1〉 〈1| , P2 = |2〉 〈2| , σ+ = |1〉 〈2| , σ− = |2〉 〈1| ,
1 = P1 + P2, σ1 = σ+ + σ−, σ3 = P1 − P2,

1h =
h∑

i=1

|i〉 〈i| , T =
h−1∑
i=1

|i〉 〈i + 1| + |h〉 〈1| , K = 1h + T . (14)

We can write the matrix representation in the site basis of this operator as

He = �0

⎛
⎜⎜⎝

0 KT Ih 0
K 0 0 0
Ih 0 0 KT

0 0 K 0

⎞
⎟⎟⎠, K =

⎛
⎜⎜⎝

1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

⎞
⎟⎟⎠, (15)

where Ih is the h × h identity matrix. From (13) we recognize that in this conjunct 4h × 4h matrix representation, the operator
O1 determines the places of the four outer blocks (separated by lines). Likewise, the operator O2 determines the places of the
four subblocks contained inside the previous blocks. Finally, the entries of these subblocks are the representations of operator
O3. In the same fashion, we can diagonalize He by employing three unitary transformations

V1 = 1√
2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠, V2 =

⎛
⎜⎜⎝

M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

⎞
⎟⎟⎠,

V †
2 V †

1 HeV1V2 =

⎛
⎜⎜⎝

1 D† 0 0
D 0 0 0
0 0 −1 D†

0 0 D 0

⎞
⎟⎟⎠, (D)qp = δqp(1 + ei2πq/h), (16)

where δqp is a Kronecker delta. It is now evident that V †
2 V †

1 HeV1V2 can be diagonalized with the same ease as two 2 × 2 matrices.
We thus arrange a final V3 such that

V = V1V2V3, V †HeV = h̄ν, He|Q, q) = h̄νQ
q |Q, q), ν = diag(νSS, νSA, νAS, νAA), (νQ)qp = δqpν

Q
q ,

νSS
q = ν+

q , νSA
q = ν−

q , νAS
q = −ν−

q , νAA
b = −ν+

b , ν±
q = δqp

�0

2h̄

[
1 ±

√
1 + 16 cos2

(πq

h

)]
, �0 < 0, (17)

where ν is 4h × 4h and νQ is h × h. Here we employ la-
bels Q, P = SS, SA, AS, AA to classify the normal electronic
modes according to their symmetries in the following manner.
As can be inferred from Fig. 2(a), the system is invariant
under parity in the ẑ axis. Thus all states must be either sym-

metric or antisymmetric under this operation. In particular,
|SS, q) and |SA, q) [|AS, q) and |AA, q)] are the symmetric
(antisymmetric) eigenstates of this symmetry operation, i.e.,
we refer to the first symbol. Moreover, it is possible to define
a unitary operation π̂s such that π̂2

s = 1, πs|Q, q) = |Q, q)
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FIG. 3. Electronic spectrum of a cycloacene molecule with 30
benzene rings in terms of |�0|. It consists of four bands with 30
energy values; their explicit forms follow from (17).

for Q = SS, AS, and πs|Q, q) = −|Q, q) for Q = SA, AA, thus
allowing us to complete the labeling according to the symme-
tries. This last operation is neither a parity nor a permutation
between orbitals; however, it is approximately a permutation
between even and odd sites in the limit where the superior and
inferior chains are decoupled.

The energy spectrum of a cycloacene molecule with h =
30 benzene rings is shown in Fig. 3. It should be noted that
the coefficients for the change of bases are given by

〈w, i|Q, q) = V wQ
iq , (P, p| j,w′〉 = (

V w′P
j p

)∗
. (18)

2. Diagonalization of the vibrational Hamiltonian

The diagonalization of (8) is equivalent to finding the
vibrational modes of the classical molecule. We begin by
organizing the position vectors into a single position column
(though for ease in the notation we show the transpose coun-
terparts):

rT = ({(
r11

i

)T }
,

{(
r12

i

)T }
,

{(
r21

i

)T }
,

{(
r22

i

)T })
,{(

rw
i

)T } ≡ ((
rw

1

)T
, . . . ,

(
rw

h

)T )
, rw

i · x̂k = rw
ik . (19)

Here the labels of the position vectors are the same im-
plemented for the orbital site kets |w, i〉 and the index k
represents the Cartesian component. Note that we can anal-
ogously define a conjoint momentum column p canonically
conjugate to r. With this notation, we can write the harmonic
potential Vhar as

Vhar/k = rT Ar+bT r + 5hR2/2= r̃T Ar̃ + V0/k, r̃ = r + α,

2αT A = bT , V0 = 5hR2/2 − αT Aα,

A = 1

2

⎛
⎜⎜⎜⎜⎝

3Ih −KT −Ih 0

−K 2Ih 0 0

−Ih 0 3Ih −KT

0 0 −K 2Ih

⎞
⎟⎟⎟⎟⎠ ⊗ 13×3. (20)

Here the 3 × 3 identity represents the components of position
vectors in Cartesian coordinates and α are the constant posi-
tion vectors that enable us to complete the square; it is possible
to prove that V0 = 0.

We note how this matrix is very similar to (15), which is not
surprising since both the electronic and vibrational Hamilto-
nians have the same Ch symmetry. Its diagonalization follows

FIG. 4. Squared vibrational spectrum of a cycloacene molecule
with 30 benzene rings in terms of k/m. As in the electronic case,
it consists of four bands with 30 energy values; their explicit forms
follow from (21).

the same steps we implemented with He (only the third unitary
matrix is different):

U = V1V2U3, U †AU = m

2k
ω2,

ω = diag(ωSS,ωSA,ωAS,ωAA), (ωW )bd = δbdω
W
b ,

ωSS
b = ω−

b , ωSA
b = ω+

b , ωAS
b = 
−

b , ωAA
b = 
+

b ,

ω±
b =

√
2(k/m)[1 ± | cos(πb/h)|]


±
b =

√
(k/m)[3 ±

√
4 cos2(πb/h) + 1]. (21)

Here the symmetry classification W of the normal modes of
vibration is analogous to the classification Q of the electronic
modes. In Fig. 4 we can appreciate the normal frequencies
of vibration of a cycloacene molecule with 30 benzene rings.
Given that we are using a harmonic approach, the definition of
the following creation and annihilation operators is expected:

η = U †r̃, π = U †p, ηW
bk =

∑
all w

h∑
i=1

(
U wW

ib

)∗
r̃w

ik ,

πW
bk =

∑
all w

h∑
i=1

(
U wW

ib

)∗
pw

ik,
[
ηW

qk, π
W ′
pk′

†] = ihδWW ′δqpδkk′ ,

aW
b =

√
mωW

b

2h̄

(
ηW

b + i
πW

b

mωW
b

)
,

[
aW

bk, aW ′
dk′

†] = δWW ′δbdδkk′ .

(22)

In analogy to the Hückel eigenstates |Q, q), ηW
bk and πW

bk are
the components of the canonical position and momentum
vectors of the vibrational problem and allow us to rewrite the
vibrational Hamiltonian as

Hv =
∑
all W

h∑
b=1

(
1

2m
πW

b
†
πW

b + 1

2
mω2

bη
W
b

†
ηW

b

)
. (23)

From their definitions, these coordinates are complex; how-
ever, if required, it is possible to construct real counterparts
employing linear combinations of the pairs of canonical co-
ordinates whose associated frequencies are degenerate. In
our notation, ηSS

h is proportional to the center of mass of
the molecule with ωSS

h = 0. Using (22), it is possible to
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rewrite (23) as (11). In case we needed to consider anhar-
monicity and due to the fact that (23) is already separated by
modes, we could replace the second term by the appropriate
Morse potential [33,34]. For spectroscopic purposes, pc.m. =
0 is always chosen. Equation (22) allows us to interpret the
vibrational excitations (relaxations) of the molecule as the
production (absorption) of phonons propagating throughout
the molecule; molecular recoil will be ignored.

It can be proved that the position vectors defined in (20)
can be rewritten as

r̃w
i =

∑
all W

h∑
b=1

√
h̄

2mωb

[
U wW

ib aW
b + (

U wW
ib

)∗
aW

b
†] + rc.m.,

(24)
where terms W = SS and b = h are not included in the sum.
It also holds that for nearest neighbors r̃w

i − r̃w′
j = rw,i

w′, j .

III. INTERACTION HAMILTONIAN

The interaction Hamiltonian is the element of our model
that supersedes the Born-Oppenheimer approximation, pro-
ducing strong correlations between electrons and phonons,
thus requiring the definition of dressed states for the solution
of the whole system. We analyze these effects in the following.

A. Jaynes-Cummings treatment

We can rewrite (7) using the base of electronic modes
|W, q) and the annihilation and creation operators aW

b and aW
b

†;
it is convenient to introduce the chiral basis to rewrite the
components in the x̂ŷ plane of the creation and annihilation
operators:

aW
br = 1

2

(
aW

bx + iaW
by

)
, aW

bl = 1
2

(
aW

bx − iaW
by

)
. (25)

In this fashion, we obtain

Hi =
∑
W QP

h∑
b,q,p

r,l,z∑
k

[
γ bk

qp

W QP
bk,qpaW

bk + (
γ bk

pq 

W QP
bk,pq

)∗(
aW

bk

)†]
σ QP

qp ,

(26)
where W , Q, and P are symmetry labels. Furthermore, the
following definitions are made:



W QP
bk,qp = −�0

λ

√
h̄

32mh

5∑
c=1

AW c
bk√
ωW

b

[
BQPc

qp + (
BQPc

pq

)∗]
. (27)

The coefficients AW c
bk and BQPc

qp are explained in Appendix A
and the coefficients γ bk

qp are defined as

γ bz
qp = δb,q−p, γ br

qp = δb,q−p+1, γ bl
qp = δb,q−p−1. (28)

Analogously to what happens with the segment label (see
Fig. 2), in case these coefficients demand that q − p = b < 0,
we must instead take b modh, which gives rise to the umklapp
effect (details are given in Sec. III B 1). Now, as previously
stated, we can use an analogous method for the construction
of the Jaynes-Cummings model to find transition rates be-
tween electronic and vibrational modes by first introducing an
interaction picture; the procedure is well known in the litera-
ture [35]. We infer that by taking the unperturbed Hamiltonian

as

H0 = He + Hv, (29)

the interaction term in the interaction picture HI acquires a
time dependence of the form

HI =
∑
W QP

h∑
b,q,p

r,l,z∑
k

[
γ bk

qp

W QP
bk,qpaW

bkei(−ωb+νq−νp)t

+ (
γ bk

pq 

W QP
bk,pq

)∗(
aW

bk

)†
ei(ωb+νq−νp)t

]
σ QP

qp . (30)

This function provides the transition amplitudes via the
integral

c(t ) = − i

h̄

∫ t

t0

dt ′〈 f |HI (t ′)|i〉. (31)

In this expression it is assumed that the precise state of the
molecule is known at t = t0. The interaction term (30) is
the same as in the usual sudden application of a perturbative
field; however, it is not really applied to a stationary system.
Instead, the initial state is already chosen as a direct product
of electronic and vibrational degrees of freedom and evolves
according to the full Hamiltonian. The transition rates tend
to be more pronounced for those between states of similar
energy, in other words, transitions whose Bohr frequencies are
close to zero,

ωW
b(q,p) − ∣∣νQ

q − νP
p

∣∣ ≈ 0, (32)

where we consider that the index b can be written in terms
of indices p and q based on (28). Here we note that since
we exclude the motion of the molecule’s center of mass, we
always have ωW

b �= 0; thus we require electronic transitions
such that |νQ

q − νP
p | �= 0 (the degenerate states are automati-

cally excluded). Now, as in the case of the Jaynes-Cummings
model, we take this idea one step further and implement the
rotating-wave approximation, which is equivalent to the use
of an infinite upper integration limit in (31) and the disregard
of all the terms that do not satisfy the condition (32) in favor
of the few that do satisfy it.

The mathematical restrictions (28) and (32) over the Bloch
momenta and the selection rules implicit in (27) are all inde-
pendent of each another. A detailed analysis is now provided.

B. Selection rules

Although all possible combinations of electron-phonon
couplings are present in the interaction Hamiltonian (26),
there exist various selection rules that restrict the actual num-
ber of available couplings in the dynamics; such restrictions
are based on symmetry and conservation laws. The former
occurs in a manner analogous to the Laporte rule in electric
dipole transitions and the latter is addressed in the following.

1. Conservation of Bloch’s momentum and conservation of energy

The first selection rule that emerged in the system is
manifested in coefficients (28), which set a restriction for
the Bloch momentum of the vibrational normal modes and
Hückel eigenstates. When an electronic transition takes place,
the electronic Bloch wave propagated through the molecule

052823-6
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suffers a change in wavelength, which is allowed if the dif-
ference in momentum h̄b/λ = h̄(q − p)/λ is transmitted or
absorbed from the vibrational wave. In Fig. 1 we show a
representation of this process; the Hückel eigenstates are de-
picted with probability densities, while the vibrational mode
is represented with a deformation of the molecule.

From γ bz
qp it is evident that the Bloch momentum b of

the vibrational wave compensates for the transition from the
electronic state with Bloch momentum p to the electronic state
with Bloch momentum q. Note that if q < p, we would require
b to be negative, which would take it outside the analogous
Brillouin zone (ranging over the natural numbers from 1 to
h). Thus a multiple of h has to be added in order to keep
b > 0; from their definition, none of these indices can be
negative. We recognize this occurrence as a manifestation of
the umklapp scattering in a discrete medium.

For vibrations on the ẑ axis (transverse elastic waves) the
Bloch wave is orthogonal to the direction of its propagation.

This is not the case for waves in the x̂ŷ plane (which contain
longitudinal polarization). For this reason we lack an optical
equivalent for this kind of in-plane propagation. In order for
the in-plane waves to complete a cycle, they must bend from
site to site according to the structure of the molecule; as
a result, they either gain or lose an additional quantum of
angular momentum in each cycle, depending on the chirality
of the wave (left or right). The Bloch momentum conservation
must account for this effect in the polarization of the in-plane
vibrational waves, which is observed in γ br

qp and γ bl
qp in (28)

above.

2. Permutation symmetry

As previously stated, from Fig. 2(a) we can infer that the
system is invariant under parity on the ẑ axis or, equivalently,
under the permutation of the upper and lower chains π̂ , we
can deduce all the effects that this transformation has over all
the components of the molecule:

π̂2 = 1, π̂Heπ̂ = He, π̂Hvπ̂ = Hv, π̂Hiπ̂ = Hi, π̂ r̃11iπ̂ = r̃21i, π̂ r̃12iπ̂ = r̃22i, π̂ |11i〉 = |21i〉 ,

π̂ |12i〉 = |22i〉 , π̂R̂12i
11iπ̂ · ẑ = −R̂12i

11i · ẑ, π̂R̂11i
21iπ̂ = −R̂11i

21i, π̂R̂12i
11iπ̂ · x̂ = R̂12i

11i · x̂, π̂R̂12i
11iπ̂ · ŷ = R̂12i

11i · ŷ. (33)

Along with the effects of π̂s, these relations were used for the labeling of electronic and vibrational normal modes in Secs. II C 1
and II C 2. The operator π̂ thus changes the atomic position vectors, the (orbital) site kets, and the equilibrium position vectors
on the ẑ axis. Evidently, after implementing the change of bases, these modifications are reflected, respectively, in the creation
and annihilation operators, the Hückel eigenstates, and coefficients Rz (defined in Appendix A), explicitly,

π̂aSS
b π̂ = aSS

b , π̂aSA
b π̂ = aSA

b , π̂aAS
b π̂ = −aAS

b , π̂aAA
b π̂ = −aAA

b , π̂ |SS, q) = |SS, q), π̂ |SA, q) = |SA, q),

π̂ |AS, q) = −|AS, q), π̂ |AA, q) = −|AA, q), π̂Rc
z π̂ = −Rc

z , π̂Rc
xyπ̂ = Rc

xy, c = 1, 2, 3, 4, 5. (34)

We may now rewrite (30) as

Hi =
∑
W QP

h∑
b,q,p

r,l,z∑
k

5∑
c=1

CW c,QP
bk,qp HW c,QP

bk,qp + H.c.,

HW c,QP
bk,qp = Rc

kaW
bkσ

QP
qp , (35)

where the sum is carried over all indices and CW c,QP
bk,qp encapsu-

lates all the coefficients defined so far. Since Hi must remain
invariant under permutation of the upper and lower chains,
only the couplings that leave the overall sign untouched are al-
lowed; to achieve this, the three elements of each term HW c,QP

bk,qp
must coordinate to have an even number of sign changes. In
Table I we show all possible couplings and whether they are
allowed in the dynamics (

√
) or not (✗); the same rules apply

for terms containing creation operators. We note that the se-
lection rule is reversed on the ẑ axis compared to the x̂ŷ plane.

TABLE I. Couplings between electronic transitions σ and
phononic excitations a on the ẑ axis and x̂ŷ plane that are consistent
with the permutation symmetry (33).

Rz(Rxy ) aSS
b , aSA

b aAS
b , aAA

b

σ SS,SS
qp , σ SA,SA

qp , σ AS,AS
qp , σ AA,AA

qp ✗(
√

)
√

(✗)

σ AS,SS
qp , σ AA,SA

qp , σ SA,AS
qp

√
(✗) ✗(

√
)

This is due to the fact that the overall vibrational wave has
a different parity when the individual molecular sites vibrate
with the same periodicity but in different directions. In Fig. 5
we see some examples of this effect: The third symbol on the
left adjusts the symmetry of the first symbol at the center, e.g.,

FIG. 5. Symmetry of electronic transitions mediated by a
phonon. Oscillations are represented on (a) and (b) the ẑ axis and
(c) and (d) the x̂ŷ plane. The upper and lower chains oscillate in
synchrony in (a) and (c), while in (b) and (d) the oscillation is
mirrored.
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(a) (b) (c)

FIG. 6. Examples of level curves originated from the conservation of energy and Bloch momentum (solutions represented by crosses).
(a) Two electron-phonon systems of two levels in a [5]cycloacene molecule. (b) Three-level electronic system in a [10]cycloacene molecule.
(c) Magnified region of viable solutions for [21]cycloacene.

the label A, SS indicates all four carbon atom in each benzene
vibrate in synchrony; however, since it happens on the ẑ axis,
the overall symmetry of the oscillation is antisymmetric.

C. Physical realizations

From the expressions (17) and (21) and after introducing
the known parameters (obtained from spectroscopy experi-
ments [29,30,36])

|�0| = 2.7 eV,
√

k/m = 3.94 × 1014 Hz,

|�0|/(h̄
√

k/m) ≈ 0.096, (36)

we can deduce all the possible couplings inside the molecule
by first interpreting indices q and p as continuum variables;
thus the restriction (32) becomes a transcendental equation.
By inspection of Fig. 3, we note that |νQ

q − νP
p | generates five

different expressions, but only three of them lead to quantities
that have the same order of magnitude as the four vibrational
bands ωW

b(q,p); thus the total number of relevant level curves
is 12. We note that since many pairs of energy levels have
the same separation, a given level curve may explain more
than one electronic transition. In order to find the plausible
electron-phonon couplings, we only have to overlay the point
lattice spanned by q and p and recognize all the points that
overlap approximately with the level curves (see the crosses
in Fig. 6). In our procedure, h is the only free parameter
which allows us to study the presence of simplified vibronic-
electronic couplings as functions of the size. One last thing
to discuss is the fact that due to the discrete nature of the
indices, it is unlikely that we will obtain an exact zero from
the subtraction in (32), which demands a factor of tolerance.
The simplest answer is to take only the transitions that lead
to differences below the lowest vibrational normal frequency,
which depends on h; therefore we define

Oh = h̄
√

k/m

�0

√
2 − 2 cos

(π

h

)
(37)

as the maximum tolerance for an effective zero. In this man-
ner, we give a precise numerical margin for (32),

OW QP
bqp (h) = (

ωW
b(q,p) − ∣∣νQ

q − νP
p

∣∣)/Oh < 1
4 , (38)

where we choose a fourth of the maximum tolerance to
make it half the zero-point energy of phonons, which follows
from (11).

In Figs. 6(a)–6(c) we show three examples of the level
curves that can be obtained for transverse elastic waves. The
abscissa (ordinate) indicates the Bloch momentum of the ini-
tial (final) state. The gray dots are the lattice of points truly
spanned by (q, p) [the Bloch momenta of states |Q, q) and
|P, p), respectively] and the crosses highlight the couplings
found in each case; only these dots satisfy the established
tolerance (38). The pair of symbols at the center indicates
the symmetry of the vibrational mode mediating the electronic
transition. Finally, the black arrows indicate that the electronic
state with Bloch momentum q(p) can transit to more than one
final state, giving rise to a multilevel system.

D. Multilevel systems on the ẑ axis

Once we have factored in all the selection rules, we may
study an arbitrary multilevel system under the approxima-
tion of conserved excitations. First, we note that since the
restrictions (32) and (38) are invariant under q → h − q and
p → h − p, we always encounter an even pair of couplings,
regardless of the number of benzene rings in the molecule.

1. Two-level system (ẑ axis)

Each cross present in Figs. 6(a)–6(c) is indicative that an
electronic transition σ QP

qp such that νQ
q − νP

p > 0 is coupled
to the annihilation of the phonon aW

b . If instead we have
νQ

q − νP
p < 0, the coupling occurs with the creation of such

a phonon aW
b

†. In Fig. 6(a) we show the simplest possible
coupling. We note that both transitions between the bands
νSS ↔ νAS and νAA ↔ νSA lead to the same numeric tolerance
and since the level curve includes crosses (for the reason
stated in Sec. III D), we have a total of four transitions and
the corresponding interaction Hamiltonian is

HI = 
W,AS,SS
bz,pq aW

bzσ
AS,SS
pq + (


W,AS,SS
bz,pq

)∗(
aW

bz

)†
σ AS,SS

qp

+ 
W,AS,SS
b̄z,p̄q̄

aW
b̄zσ

AS,SS
p̄q̄ + (


W,AS,SS
b̄z,p̄q̄

)∗(
aW

b̄z

)†
σ AS,SS

q̄p̄
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FIG. 7. Phonon-assisted transition diagrams for two-, three-, and
four-level systems and their parity rules. (a) Two-level system.
(b) Three-level system with twofold degeneracy. (c) Four-level sys-
tem with two doublets. The symmetry labels are explained in Fig. 5

+ 
W,AA,SA
b̄z,qp

aW
b̄zσ

AA,SA
qp + (


W,AA,SA
b̄z,qp

)∗(
aW

b̄z

)†
σ AA,SA

pq

+ 
W,AA,SA
bz,q̄ p̄ aW

bzσ
AA,SA
q̄p̄ + (


W,AA,SA
bz,q̄ p̄

)∗(
aW

bz

)†
σ AA,SA

p̄q̄ ,

(39)

where b̄ := h − b and q̄ := h − q. This formula applies for
both W = SS, SA. In particular, W = SS is illustrated in
Fig. 7(a). We note that from (21) we can guarantee that ωb =
ωb̄; this can also be inferred from Fig. 4. Furthermore, we can
prove that |
W QP

bz,pq| = |
W QP
b̄z,p̄q̄

| (note that if d = b̄, then d̄ = b);
therefore we can write (39) in the following way:

HI = |
′|(aσ ′
+ + a†σ ′

− + bτ ′
+ + b†τ ′

−)

+ |
|(aσ+ + a†σ− + bτ+ + b†τ−). (40)

In this expression, σ±, τ±, σ ′
±, τ ′

± operate on different elec-
tronic states such that each line in (40) is identical to two
uncoupled Jaynes-Cummings Hamiltonians, explicitly,

HJC2 = aσ+ + a†σ−. (41)

The system described by this expression is illustrated in
Fig. 7(a), where we see that there are only two states upon
which this operator can act. Moreover, the vibrational phonon
(zigzag arrow) mediates the transition between the electronic
levels (horizontal lines) and the symbol A in A, SS indicates
that the transition occurs for transverse waves (ẑ axis). The
latter is antisymmetric under the parity operation (33). We
infer

HJC2|gn] = √
n|e, n − 1], HJC2|e, n − 1] = √

n|gn],

|gn] = |SA, p)
∣∣nSS

bz

〉
,

|e, n − 1] = (
/|
|)|AA, q)
∣∣(n − 1)SS

bz

〉
, (42)

where |nW
bz〉 is the occupation state corresponding to creation

and annihilation operators (22). It is well known that solutions

to this type of systems are given in terms of dressed states,

|K2ε] = 1√
2

(|e, n − 1] + ε|gn]), HJC2|K2ε]=ε
√

K2/2|K2ε],

K2 = 2n, ε = −1, 1, (43)

with the exception HJC2|g0] = 0. It is noteworthy that the
infinite set of states |gn], |e, n − 1] can be divided into sets of
2 × 2 representations. This is due to the following conserved
quantity, i.e., an operator that commutes with HI :

K̂2 = 2a†a + σz + 1, σz = [σ+, σ−],

K̂2|gn] = K2|gn], K̂2|e, n − 1] = K2|e, n − 1]. (44)

It should be mentioned that the phonon in the first (second)
line of (39) appears again in the fourth (third) line; therefore,
the algebraic description is the same as a Tavis-Cummings
model in which two two-level electronic systems are coupled
to the same bosonic mode.

Each cross is indicative of one term of the type (41). This
is true for all transitions; however, not all of them lead to two-
level systems.

2. Three-level system (ẑ axis)

In Fig. 6(b) we show an example of an electronic state
with Bloch momentum h that can transit to either of the states
with Bloch momenta 1 and h − 1, meaning that we have a
three-level system. Note that although we have four crosses, in
this case, two of them are reiterations; this happens due to the
fact that this is an intraband transition and indices q and p are
interchangeable in this case only. This is true for transitions
between the bands νSS ↔ νSS , νSA ↔ νSA, νAS ↔ νAS , and
νAA ↔ νAA. In Sec. III D 1 we included all the possibilities;
here we will only focus on the νSS ↔ νSS case, which is
illustrated in Fig. 7(b). The interaction Hamiltonian in this
case is

HI = 
W,SS,SS
1z,1,h aW

1zσ
SS,SS
1,h + (


W,SS,SS
1z,1,h

)∗
aW

1z
†
σ SS,SS

h,1

+ 
W,SS,SS
1̄z,1̄,h

aW
1̄z,1̄σ

SS,SS
1̄,h

+ (

W,SS,SS

1̄z,1̄,h

)∗
aW

1̄z,1̄
†
σ SS,SS

h,1̄
, (45)

where W = AS, AA are both possible. We abbreviate (45) in
the following manner:

HI = |
|HJC3,

HJC3 = aσ+ + a†σ− + bτ+ + b†τ−. (46)

This expression is similar to (40); this time, however, σ± and
τ± share the same lower state, which can be appreciated in
Fig. 7(b). We note that the phonons mediating each electronic
transition are different. As a result, HJC3 is now diagonalized
in 3 × 3 blocks. To see that we first note that

HJC3|gnanb] = √
na|e, na − 1, nb] + √

nb|ēna, nb − 1], HJC3|ena − 1, nb] = √
na|gnanb],

HJC3|ēna, nb − 1] = √
nb|gnanb], |gnanb] = (
∗/|
|)|SS, h)

∣∣nW
bz

〉 ∣∣nW
b̄z

〉
,

|e, na − 1, nb] = |SS, 1)
∣∣(n − 1)W

bz

〉 ∣∣nW
b̄z

〉
, |ēna, nb − 1] = |SS, 1̄)

∣∣nW
bz

〉 ∣∣(n − 1)W
b̄z

〉
. (47)
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These relations allow us to derive the eigenstates of the coupled system:

|K3k0] =
√

nb

na + nb
|e, na − 1, nb] −

√
na

na + nb
|ēna, nb − 1],

|K3k,±1] = ± 1√
2
|gnanb] +

√
na

2(na + nb)
|e, na − 1, nb] +

√
nb

2(na + nb)
|ēna, nb − 1],

K3 = 3(na + nb), k = na − nb, k = −K3/3,−K3/3 + 2, . . . , K3/3 − 2, K3/3, HJC3|K3kε] = ε
√

K3/3|K3kε],

ε = −1, 0, 1. (48)

If either na = 0 or nb = 0, these solutions reduce to a two-level system in accordance with (43). Once again we have found
finite representations from an infinite set of states. In contrast with the two-level case, now we have two occupation numbers
na = 0, 1, 2, . . . and nb = 0, 1, 2, . . ., hence the requirement of the conserved quantities K3 and k, originated from the following
operators:

K̂3 = 3(a†a + b†b) + σz + τz + 2, k̂ = a†a − b†b + σz − τz, τz = [τ+, τ−], K̂3|K3kε] = K3|K3kε], k̂|K3kε] = k|K3kε].
(49)

Not only are the results for the transitions between the bands
νSA ↔ νSA, νAS ↔ νAS , and νAA ↔ νAA analogous to (49), but
the phonons mediating their energy eigenstates are the same.
This allows us to draw another parallel to a Tavis-Cummings
model, but with a three-level electronic system. In this context
we have the occurrence of the following phenomenon.

3. Peierls distortion

The eigenstates of the three-electronic-level system (48)
are also eigenstates of the unperturbed Hamiltonian (29) with
the same eigenvalue:

H0|K3kε] = [
h̄νSS

h + h̄ωW
1 (na + nb)

]|K3kε]. (50)

For the sake of clarity, the energy contribution from the re-
maining occupation numbers and the vibrational rest energy
were omitted. This is due to the fact that νSS

1 = νSS
1̄

and ωW
1 =

ωW
1̄ and due to the condition of conservation of energy (32).

These eigenvalues are the energies of the uncoupled problem
and are simply the sum of both degrees of freedom. However,
the complete Hamiltonian requires the corrections made by
HI , thus generating an adjustment to the energy eigenvalue of
the full system. In particular, we are interested in the eigen-
value of |K3k,−1]:

H |K3k,−1] = E |K3k,−1],

E = [
h̄νSS

h + h̄ωW
1 (na + nb) − |
|√na + nb

]
.

(51)

This dressed state is able to produce an energy below the
ground state of the unperturbed Hamiltonian (which is h̄νSS

h ),
which generates a Peierls distortion where the state of minimal
energy of the complete system includes an excited vibrational
state. In Fig. 8 we see how the energy eigenvalue varies as a
function of the ratio h̄ω/|
| and we note that at K3 = 0 we
have the unperturbed system. We also note that at x ≈ 0 the
energies are below the unperturbed ground state, as expected
(Peierls distortion), and at x � 0 the separation in energy
levels tends to the usual harmonic behavior. The suggested
values of molecular parameters considered in Sec. III C do not
lead to a distortion of this kind. In order to achieve it, we need

to either reduce the vibrational amplitude
√

k/m or increase
the electronic coupling �0.

4. Four-level systems (ẑ axis)

In full similarity to the systems presented so far, each
black rectangle of Fig. 6(c) illustrates a scenario in which
the electron can transit through four different states (here we
analyze only one of the rectangles, since the description is the
same for both). It is remarkable that this coupling can only
occur between the νSA ↔ νAS electronic bands, which points
to a realization of a Jaynes-Cummings model generalized to
four levels. The corresponding interaction Hamiltonian is

HI = 
SA,SA,AS
bz,qp aSA

bz σ SA,AS
qp + (


SA,SA,AS
bz,qp

)∗
aSA

bz
†
σ AS,SA

pq

+ 
SA,SA,AS
b̄z,q̄ p̄

aSA
b̄z σ SA,AS

q̄p̄ + (

SA,SA,AS

b̄z,q̄ p̄

)∗
aSA

b̄z
†
σ AS,SA

p̄q̄

+ 
SA,SA,AS
dz,qp̄ aSA

dz σ
SA,AS
qp̄ + (


SA,SA,AS
dz,qp̄

)∗
aSA

dz
†
σ AS,SA

p̄q

+ 
SA,SA,AS
d̄z,q̄p

aSA
d̄z σ

SA,AS
q̄p + (


SA,SA,AS
d̄z,q̄p

)∗
aSA

d̄z
†
σ AS,SA

pq̄ , (52)

which can be written as

HI = |
|(aσ+ + a†σ− + bτ + b†τ−)

+ |
̄|(āσ̄+ + ā†σ̄− + b̄τ̄ + b̄†τ̄−). (53)

Unlike the previous cases, this coupling can only occur with
the W = SA symmetry. Although the algebraic description is
similar to the two- and three-level systems, the degeneracy

FIG. 8. Energy eigenvalue (51) as a function of x = h̄ω/|
| in
dimensionless units. Each line represents a different value of K3/3.
The black vertical line indicates the point (x = 2.9) that coincides
with the parameters implemented in (36) and Fig. 6(b).
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changes the nature of the couplings, and from Fig. 7(c) we in-
fer that this system is more complex than the aforementioned
two. It is possible to find a conserved quantity by first defining
the operator

K4 = 4(a†a + b†b + ā†ā + b̄†b̄) + σz + τz + σ̄z + τ̄z,

(54)

which divides the system into blocks where the sum of active
phonons is conserved; further reductions are beyond the scope
of the present work.

IV. CONCLUSION

We have successfully developed an algebraic model of the
cycloacene molecule that couples its internal degrees of free-
dom, allowing deformations beyond the Born-Oppenheimer
approximation. Due to the symmetry of the molecule, we
were able to define a phononic basis to study its vibrations
in a fashion similar to media with discrete symmetry such
as graphene [37]. Moreover, we also found phenomena com-
monly associated with these systems such as the umklapp
effect in the conservation of Bloch momentum. A connection
to models of atoms inside an electromagnetic cavity was made
as well, since the process in which the electronic transitions
may occur is described in an analogous manner to the Jaynes-
Cummings model, which is algebraically solvable.

As expected from a molecule rich in symmetry, the elec-
tronic transitions were limited by selection rules that included
parity invariance, conservation of energy, and conservation of
the total Bloch momentum. From these rules a criterion sim-
ilar to the Laporte rule was obtained and a collection of level
curves that describe the possible solutions in the parameter
space was found.

Regarding our methods, most of the vibrational spec-
troscopy of a chemical compound, leaving aside their plas-
ticity limit (Morse oscillators), can be described by adjacency
matrices that share the system’s symmetry under discrete op-

erations. It is to be expected that universal shapes have similar
spectroscopy in other physical realizations such as elastic
systems, successfully demonstrated in recent works [38]. Al-
though elastic vibrations of a material have been employed
as both a realization of localized electronic orbitals and true
vibrations of a compound, the physical-chemical counterpart
also demands an interaction between these; while not directly
evident in vibrational emulations of metallic structures, the
decay laws governed by symmetry should be present as well
in macroscopic systems subjected to perturbations (Fermi’s
golden rule).

Since we provided the complete spectrum of the molecule,
by resorting to thermodynamical equilibrium, it is possible
to obtain the probability distribution of all energy transitions
as a function of temperature. This can prove beneficial in
applications to quantum computing, where it is desirable to
have a transition probability that favors a particular block of
the Hamiltonian. Proposals of this type have been considered
in the past [39].

It is noteworthy that a recurrent phenomenon in lattice
systems such as Peierls distortion was found (with a polygonal
symmetry in our case instead of the linear molecule). This
implies that the ground state of the whole structure exhibits
vibrational modes.

Since our results include excitations of phonons due to
electronic transitions, they could be utilized to analyze lu-
minescence in thermodynamic equilibrium. Moreover, given
the structural analogy with other ring polymers, it is expected
that the absorption spectrum of small cycloacene molecules
is highly sensitive to the total number of segments within the
system; this property has already been reported for methylene-
bridged [n]cycloparaphenylenes [7].
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APPENDIX A: EXPLICIT INDEX NOTATION

In Sec. II we mentioned that there are five nearest neighbors in each benzene ring, following the direction of the arrows in
Fig. 2(c). We define

w2(1) = 12, w2(2) = 11, w2(3) = 22, w2(4) = 21, w2(5) = 11, w1(1) = 11, w1(2) = 12, w1(3) = 21,

w1(4) = 22, w1(5) = 21, I (1, i) = I (3, i) = I (4, i) = I (5, i) = i, I (2, i) = i + 1,

J (1, i) = J (2, i) = J (4, i) = J (5, i) = i, J (3, i) = i + 1, (A1)

where I (c, i) and w2(c) mark the final end of the arrows while J (c, i) and w1(c) mark their beginning. We can now write the
Hamiltonians (6), (7), and (8) as

He = �0

(
5∑

c=1

h∑
i=1

|w2(c), I (c, i)〉 〈w1(c), J (c, i)| + H.c.

)
, (A2)

Hi = − 1

λ
�0

5∑
c=1

h∑
i=1

(
R̂w2(c), I (c,i)

w1(c), J (c,i)

)T (
rw2(c), I (c,i)
w1(c), J (c,i)

) |w2(c), I (c, i)〉 〈w1(c), J (c, i)| + H.c., (A3)

Vhar = 1

2
k

5∑
c=1

h∑
i=1

(
rw2(c), I (c,i)
w1(c), J (c,i)

)2
, (A4)
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respectively. We can also write the coefficients AW c
bk and BQPc

qp explicitly:

AW c
bk = Rc

kAW c
b , R5

z = R̂11i
21i · ẑ = 1 ∀ i, R1

z = R4
z = −R2

z = −R3
z = R̂12i

11i · ẑ = 1
2 ∀ i, Rc

r = Rc
l = Rc

xy,

R5
xy = R̂11i

21i · x̂ = 0 ∀ i, R1
xy = R2

xy = −R3
xy = −R4

xy = R̂12h
11h · x̂ =

√
3/2, AW c

b = 2
√

h
(
U w2(c),W

i(c),b − U w1(c),W
j(c),b

)
,

BQPc
b = 2h

(
V w2(c),Q

i(c),q

)∗
V w1(c),P

j(c),p , i(1) = i(3) = i(4) = i(5) = h, i(2) = 1, j(1) = j(2) = j(4) = j(5) = h, j(3) = 1.

(A5)

APPENDIX B: EXPANSION OF THE COUPLING INTEGRALS

Here we present our evaluation of the couplings 〈w, i|HE |w′, j〉 introduced in (3). Recalling that we are studying the dynamics
of a single electron throughout the delocalized π orbitals, we begin by writing a general expression of the electronic Hamiltonian
HE :

HE = p2

2m
−

∑
all w

h∑
i=1

Zeffe2

|r − rw
i | . (B1)

Since we are working with a tight-binding model, we make the analysis considering only a neighboring pair in the sum over
atomic sites. Likewise, we only need a basis of two π orbitals |1〉 and |2〉. From the Hückel model we know that

E0(d ) = 〈1|HE |1〉 ≈ Eπ − 〈1| Zeffe2

|r − r2| |1〉, Eπ = 〈1|
(

p2

2m
− Zeffe2

|r − r1|
)

|1〉, (B2)

where d = |d|. Furthermore, d is the deviation from the equilibrium position of these neighbors and Eπ is the ionization energy
of the π bond. We proceed with

E0(d ) − Eπ = Zeffe
2
∫

dV
|ψπ (r − r1)|2

|r − r2| , (B3)

where ψπ (r − r1) is the wave function of a π orbital centered at r1. We now recall that the nuclear variables engage in an
oscillatory motion about an equilibrium position R,

r2 − r1 − R = d, (B4)

which allows us to substitute r1 in terms of r2:

E0(d ) − Eπ = Zeffe
2
∫

dV
|ψπ (r − r2 − R − d)|2

|r − r2| . (B5)

We note that the predominant part of the integrand is the region around r2, where the following approximation is valid:

|η| ≡ |r2 − r1| � |R + d|. (B6)

Therefore,

|ψπ (η + R + d)| ≈ |ψπ (η)|e−|R+d|/λ, (B7)

which in turn yields the result

E0(d ) − Eπ = 〈V 〉 e−2|R+d|/λ, 〈V 〉 = Zeffe
2
∫

dV
|ψπ (η)|2

|η| . (B8)

Using the virial theorem, we can prove that 〈V 〉 = 2E0(d ). On the other hand, we have the nearest-neighbor coupling

�0(d ) = 〈1|HE |2〉 =
∫

dV ψ∗
π (r − r1)

(
p2

2m
− Zeffe2

|r − r1| − Zeffe2

|r − r2|
)

ψπ (r − r2). (B9)

This time, in order to employ (B7), we must focus on both regions centered around r1 and r2. After making the appropriate
substitutions, it is straightforward to derive

�0(d ) = 2e−|R+d|/λ
(

E0(d ) − Zeffe
2
∫

dV
|ψπ (η)|2

|η + R + d|
)

. (B10)

We can now expand our results in powers of e−|R+d|/λ:

E0(d ) = Eπ + O2
(
e−|R+d|/λ), �0(d ) = �(R)e−|R+d|/λ + O2

(
e−|R+d|/λ). (B11)

By comparing the lowest-order correction due to nuclear observables in the diagonal and off-diagonal elements, we immediately
see that e−2|R+d|/λ � e−|R+d|/λ. Finally, it is acceptable to introduce such a correction only in the off-diagonal terms.
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