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The self-consistent-field method proposed recently [Wang et al., Phys. Rev. Lett. 128, 013001 (2022)] is
discussed in more detail. The method leads to self-consistent eigenvalue equations for the natural spin orbitals
and Fermi-Dirac distribution for the orbital occupation numbers. The entropic functional contains two parameters
(κ and b), which can be fitted to various experimental or theoretical data such as the dissociation energy, entropy,
and total energy at a given geometry, etc. Calculations are demonstrated on the square H4 and hydrogen chains
of H50, which are representative cases of degenerate or nondynamically correlated systems.
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I. INTRODUCTION

In the configuration interaction (CI) method, the wave
function is expressed as a linear combination of Slater deter-
minants �i

�(12 · · · N ) =
∑

i

ci�i(12 · · · N ). (1)

The coefficients ci satisfy an eigenvalue problem∑
j

< �i|H |� j > c j = Eci. (2)

For an N-electron system spanned by 2M spin orbitals, the
total number of possible Slater determinants is on the order of( M

N/2

)2
for a spin-unpolarized system. For example, for a sys-

tem with N = 50 electrons, using minimum basis set such as
STO-3G, there will be M = 100 spin orbitals, the number of
possible determinants will be on the order of 1046. Symmetry
restrictions may reduce this number, but the resulting size of
matrix 〈�i|H |� j〉 or the number of expansion coefficients ci

will still be too large for today’s computer technology.
Many determinants (or configurations) have almost zero

coefficients ci, but usually it is difficult to find them and get
rid of them from the beginning. Alavi et al. [1] once designed
a Monte Carlo algorithm, i.e., a game of life, death, and
annihilation, to eliminate such determinants.

The contribution of each determinant to the energy state
is roughly weighted by |ck|2, so each orbital in the kth de-
terminant can be assigned the weight |ck|2. A quantity that
measures the total contribution of an orbital to the energy state
is

〈�|a†
i ai|�〉 =

∑
k

|ck|2, with orbital, i ∈ �k, (3)

where a†
i and a j are the creation and annihilation operators for

the one-particle basis {ϕi} that generates the CI wave function.

*jwang572@hotmail.com

The above quantity includes contribution from all the related
determinants, even those with nearly zero ci which account
for the weak dynamic correlation. If one takes 〈�|a†

i ai|�〉 as
variables, one need not worry about how to select the effective
configurations (or active space), to get rid of the vast number
of configurations with nearly zero coefficient ci.

A more elegant quantity is the one-particle reduced density
matrix (1RDM) [2,3],

γ (1, 1′) =
∑

i j

〈�|a†
i a j |�〉ϕ∗

i (1)ϕ j (1
′). (4)

The matrix elements 〈�|a†
i a j |�〉 are Hermitian and depend

on the CI expansion coefficients ci. Diagonalization of the
matrix γ (1, 1′) leads to an eigenvalue expansion

γ (1, 1′) =
∑

i

niχ
∗
i (1)χi(1

′) (5)

with the eigenfunctions, χi(1), named as the natural (spin)
orbitals and the eigenvalues, ni, their occupation numbers,
which has the property

∑
ni = N , and 1 � ni � 0. The natu-

ral orbitals and their occupation numbers have the nice feature
that they are nearly invariant under a variety of choices of ba-
sis set, i.e., the wave function expressed in the natural orbitals
is almost invariant to the choice of the basis set [4,5].

The natural orbital expansion allows one to express the
electronic energy of atoms and molecules in a concise form

E =
∑

i

nihii +
∫

�(1, 2)

r12
d1d2, (6)

where hii = 〈χi|ĥ|χi〉 is the one-electron energy with the
operator

ĥ = −1

2
∇2

1 −
∑

A

ZA

r1A
(7)

in atomic units. Note that only the diagonal terms hii survive.
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The pair density �(1, 2) can be expressed as

�(1, 2) = 1
2

∑
i jkl

〈�|a†
i a†

j al ak|�〉 χ∗
i (1)χ∗

j (2)χk (1)χl (2)

=
∑
i jkl

�i j,klχ
∗
i (1)χ∗

j (2)χk (1)χl (2), (8)

where �i j,kl are quadratic functions of the CI expansion coef-
ficient ci. Some properties of the coefficients �i j,kl are obvious
from its definition. Since it is the expectation value of the
operator a†

i a†
j al ak , it is both Hermitian and antisymmetric,

�i j,kl = −� ji,kl .
In the density-matrix functional theory (DMFT) [6], the

natural orbitals and their occupation numbers are taken as the
variables. Both the kinetic energy and the nucleus-electron
Coulomb energy are expressed exactly with 1RDM, only the
two-electron repulsion energy need be modeled as a functional
of 1RDM.

In his original paper of DMFT, Gilbert [6] tried to derive
the eigenvalue equation for the orbitals as the Kohn-Sham
equation in the density-functional theory (DFT) [7]. To his
surprise, he found that the orbital energies for orbitals with
fractional occupancy are all degenerate. In his own words,
it is “unexpected and paradoxical.” The degeneracy problem
was later further investigated by Pernal [8], and a level-
shift method was proposed to accelerate the solution of the
pseudoeigenvalue problem. Piris and Ugalde [9] proposed an
alternative method for the pseudoeigenvalue problem. With-
out proper eigenvalue for the orbital energy, it is sometimes
awkward to interpret energy levels in molecules or band struc-
ture in solids [10,11].

A genuine eigenvalue equation for the spin orbitals in
DMFT was recently obtained with the observation that the
correlation energy in DMFT is proportional to the information
entropy for 1RDM [12],

S = −
∑

i

[ni ln ni + (1 − ni ) ln (1 − ni )]. (9)

For 1 > ni > 0, the logarithmic function is negative, then
S > 0. For ni = 0 or 1, S = 0. The method is thus named as
i-DMFT for its connection to information entropy [13].

Besides the eigenvalue equation for the spin orbitals, it
also leads to efficient calculation for the occupation numbers
as a Fermi-Dirac distribution. Previously, the Fermi-Dirac
distribution is invoked as ad hoc convenience to accelerate
convergence [14,15] or to introduce fractional virtual orbitals
heuristically in DFT exchange-correlation functional [16,17].
In Ref. [12], the Fermi-Dirac distribution becomes a rigorous
solution derived from the variational Lagrangian function.

The purpose of this paper is to present more detail of
the i-DMFT method and its application to prototypical non-
dynamically correlated systems, i.e., the square H4 and the
linear chains of 50 hydrogen atoms. The square H4 system is
interesting because both Hartree-Fock and DFT fail due to the
frustration in assigning electron occupation to the degenerate
orbitals, while the linear chains of 50 hydrogen atoms have
too many determinants for the full CI method.

II. CUMULANT ENTROPIC FUNCTIONAL

The i-DMFT method is based on the cumulant decomposi-
tion of the pair density [18–20].

�(1, 2) = 1
2 [γ (1, 1)γ (2, 2) − γ (1, 2)γ (2, 1)] + λ(1, 2).

(10)

The two-electron energy is then written as∫
�(1, 2)

r12
d1d2 = Y + Ecum, (11)

where Y contains the direct and exchange parts of the two-
electron energy, both are functional of 1RDM,

Y = 1

2

∫∫
γ (1, 1)γ (2, 2) − γ (1, 2)γ (2, 1)

r12
d1d2

= 1

2

∑
i j

nin j[〈i j|i j〉 − 〈i j| ji〉]. (12)

The cumulant energy is then defined by

Ecum =
∫

λ(1, 2)

r12
d1d2, (13)

which has been identified as the correlation energy in
DMFT [21]. The exact form of Ecum is unknown, however,
it has a rigorous bound

Ecum � 0 (14)

as a consequence of Lieb’s theorem [22]. The nonpositive
property of Ecum relieves one from the phase dilemma in
functional reconstruction of �i j,kl in DMFT [23,24].

The conventional strategy of functional modeling in DMFT
is to reconstruct the matrix elements of pair density or its
cumulant term by term with functionals of 1DM. Based on
the paradigm of two-electron theory [25], the square-root
functional

√
ni is popular among various functional mod-

els [26–39]. A close functional form is the power function
nα

i with optimized α ≈ 0.656 [40–42]. According to Eq. (8),
there are four indexes {i j, kl} in �i j,kl , the number of different
elements is in the order of M4, where M is the number of or-
bitals, symmetry consideration may reduce distinct elements
of �i j,kl , but still there are too many elements to be modeled.
So in real practice, only a limited number of elements are
modeled, typically the JK elements [43], while other elements
are neglected.

After the careful comparison of DMFT functional models
with the pair density from the wave function [44,45], we found
some general shortcomings in conventional DMFT models,
regarding nonuniqueness, symmetry dependence, and univer-
sality. To overcome those shortcomings, and at the same time,
to go beyond JK-only functional type and avoid the phase
dilemma problem, we try to model the integral of Eq. (13) as a
whole, instead of modeling elements of λ(1, 2) term by term.

Collins [46] once conjectured the correlation energy was
proportional to the information entropy. In his conjecture,
the correlation energy is defined as Ecor = Eexact − EHF as in
traditional quantum chemistry [47]. The information entropy
used was based on Shannon’s definition for probabilities [48],
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FIG. 1. The cumulant energy with respect to the entropies, SJ and
S, from wave function analysis with the basis set cc-pVDZ. SJ is from
Table II of Ref. [12].

or more exactly Jaynes’ definition for the density matrix [49],

SJ = −
∑

i

ni ln ni, (15)

which is also in the spirit of von Neumann entropy [50].
However, Collins’s conjecture has not been substantiated,

with, for instance, large deviations for the simple H2 molecule
along the internuclear coordinate [51,52]. After making a
careful analysis on each part of the total energy, including
the kinetic energy, two-electron energy, and cumulant en-
ergy [12,53], we found that the cumulant energy has the
expected linear relationship with the information entropy SJ.

However, the entropy form of SJ leads to Boltzmann distri-
bution for the occupation numbers [54],

ni = exp

[
μ − εi

κ
− 1

]
= n0exp

[
−εi

κ

]
. (16)

In this form, it is possible that some ni becomes greater than
1, which violates the Pauli principle. Because electrons are
identical and indistinguishable particles, which follows the
Fermi-Dirac statistics, the desirable entropy is Eq. (9) [55].
The additional term from 1-ni increases the entropy S over
SJ. Does the entropy S also hold a linear relation with the
cumulant energy? In Table I, we employ the same data set
as used for H2O in Ref. [12], recalculate the entropy using
Eq. (9). The cumulant energies with respect to both entropies,
SJ and S, are compared in Fig. 1. To a good approximation, a
linear relation still holds, only the slope has changed,

Ecum = −κS − b, (17)

where κ and b are constant depending on the system.
The above relation is physically appealing because electron

correlation reduces the energy, the negative minimum corre-
lation energy can be sought through the positive maximum
entropy. The cumulant is extensive, the cumulant energy is
also an extensive quantity [20]. The information entropy is
also additive for independent events or groups [48,56]. In this
respect, the equation is consistent.

TABLE I. Entropy and the correlation energy Ecum (in a.u.) of
H2O in different geometries, calculated with the basis set cc-pVDZ.
R1 and R2 are the two H-O bond lengths in bohr. θ is the angle
between R1 and R2 in degree. In the column κS + b, κ = 0.10928
and b = 0.19872. The error is  = −Ecum − (κS + b).

R1 R2 θ S −Ecum κS+b error 

1.5 1.5 104 0.827369 0.292481 0.289132 0.003349
1.8 1.8 104 0.980903 0.310823 0.305910 0.004913
2.0 2.0 104 1.117670 0.326621 0.320856 0.005765
2.0 2.0 90 1.143829 0.331368 0.323715 0.007653
2.0 2.5 104 1.414363 0.359273 0.353279 0.005994
1.5 3.0 104 1.703884 0.385724 0.384919 0.000805
2.5 2.5 104 1.720543 0.393399 0.386739 0.006660
2.0 3.0 104 1.892864 0.409800 0.405571 0.004229
2.5 3.0 90 2.201364 0.445860 0.439284 0.006576
2.5 3.0 104 2.213900 0.446331 0.440654 0.005677
3.0 3.0 90 2.674029 0.480264 0.490938 −0.010674
3.0 3.0 80 2.683345 0.498437 0.491956 0.006481
3.0 3.0 104 2.705745 0.482863 0.494404 −0.011541
3.0 3.0 120 2.801007 0.492003 0.504814 −0.012811
2.0 4.0 104 2.959595 0.524455 0.522145 0.002310
3.0 3.5 90 3.259834 0.544781 0.554956 −0.010175
3.0 3.5 80 3.273371 0.562797 0.556435 0.006362
3.0 3.5 104 3.303197 0.548979 0.559694 −0.010715
2.0 5.0 104 3.396455 0.572692 0.569886 0.002806
3.0 3.5 120 3.420204 0.561060 0.572481 −0.011421
3.0 4.0 90 3.762673 0.601068 0.609907 −0.008839
3.0 4.0 104 3.800557 0.604960 0.614047 −0.009087
3.5 3.5 104 3.929460 0.619154 0.628133 −0.008979
3.0 5.0 80 4.229828 0.653541 0.660958 −0.007417
3.0 5.0 104 4.243364 0.654838 0.662437 −0.007599
3.0 5.0 120 4.269684 0.657830 0.665314 −0.007484
4.0 4.0 80 4.923086 0.734728 0.736719 −0.001991
4.0 4.0 104 4.945478 0.736814 0.739166 −0.002352
4.0 5.0 90 5.350569 0.785682 0.783435 0.002247
4.0 4.5 104 5.472077 0.813650 0.796713 0.016937
5.0 5.0 104 5.695376 0.828640 0.821116 0.007524

If we compare it to the free energy F = E − T S [57,58],
κ can be considered as playing the role of the effective tem-
perature T . A system with a large value of κ is effectively in
a state of high temperature or strong correlation. While we
focus on the cumulant energy in i-DMFT, a noninteracting
kinetic free energy at the fictitious temperature is introduced
along with the entropy in the thermally assisted occupation
DFT (TAO-DFT) method [17]. Obviously, the entropy there is
used to add more flexibility in the modeling of noninteracting
kinetic energy.

Recently, Mazziotti et al. [59,60] introduced a functional of∑
i ni − n2

i = N − ∑
i n2

i to correct the noninteracting kinetic
energy in DFT. For Hartree-Fock approximation, ni = 1 or
0, then ni = n2

i , which is idempotent [2]. When 1 > ni > 0,
then ni > n2

i . Thus nonidempotency has been proposed as a
measure of correlation [51,61]. Interestingly, they showed that
the nonidempotency can be derived from Eq. (9) using the
Taylor expansion of the logarithmic function,

S ≈ 5

2

∑
i

ni − n2
i . (18)
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TABLE II. The parameters κ and b for atoms in the basis set
cc-pVDZ. κ is determined by the entropy of the occupation numbers
from CI wave function, b is calibrated to the total energy. All quanti-
ties are in atomic unit.

Atom Entropy Energy κ b

He 0.188572 −2.887594 0.23812 0.024864
Li 0.003391 −7.432637 0.01192 0.000201
Be 1.455016 −14.617409 0.05938 0.024798
B 1.247217 −24.590629 0.06582 0.042337
C 3.793661 −37.707295 0.09138 0.030535
N 3.333223 −54.380166 0.14643 −0.076230
O 3.594539 −74.833036 0.13776 0.037254
F 0.716118 −99.529518 0.124295 0.134215
Ne 0.698732 −128.680881 0.27169 0.158932

This suggests another reason why the entropy functional is
also relevant to the correlation energy. However, one should
be aware that this function does not lead to the Fermi-Dirac
distribution during Lagrange variation with respect to ni.

Since the parameters κ and b are introduced in i-DMFT
based on empirical observation between Ecum and S, there is
no first-principles derivation yet. In practice, there are several
ways to choose the parameters. In general, one may choose
two or several points on the potential energy curve (or sur-
face), then optimize the parameters via the cost function

E =
∑

i

∣∣ECI
i − E iDMFT

i (κ, b)
∣∣, (19)

where ECI
i is the total energy from CI calculations.

Since parameter b is a constant shift in the total energy,
it does not affect the difference of two energies, such as
dissociation energy (De), which is the difference between
two energies, one at equilibrium and another at the disso-
ciation limit. Experimental De is available for many small
molecules [62]. One can set b = 0 at the beginning. From the
energy difference of two geometries, the optimal parameter κ

can be adjusted by simple trial and error. Once κ is obtained,
b can be calibrated by the total energy at any geometry.

The parameter b also does not enter the eigenvalue equa-
tions for the orbitals, so it does not affect the orbital energies,
and so the entropy. In principle, the occupation numbers
from i-DMFT should reproduce those of 1RDM from the
wave function. So κ can also be fitted to the the entropy
of 1RDM from wave function calculation. In the TAO-DFT
method [17], the fractional occupation numbers are defined
with the Kohn-Sham orbital energies through the Fermi-Dirac
distribution, they are not connected with the eigenvalues of
1RDM, so the parameter of fictitious temperature can not be
determined from the knowledge of 1RDM.

At the dissociation limit, the total energy and entropy can
be readily obtained by adding the individual values of the
atoms. Table II lists the relevant data for atoms from the
MOLPRO code [63] with the basis set cc-pVDZ. The parameter
κ is chosen to reproduce the entropy of 1RDM, and b is then
calibrated to the total energy. The data can be of help in search
of κ for molecules. The rule of thumb for the parameters κ

from one molecular system to another is still to be studied. It

FIG. 2. The total energy curves of different methods for the
ground state of H4 square with the basis set STO-3G. The parameters
in i-DMFT are κ = 0.149623 and b = −0.0550800366 (a.u.).

is possible in the future to search the parameter κ by machine
learning from a large data set [64].

III. UNIFORM STRETCHING OF SQUARE H4

The H4 model has been a classic model system to test
various computational methods [65–67]. Study on linear H4

has been reported with the i-DMFT method [60]. Here we
concentrate on the square H4 model under uniform stretch-
ing with a minimum basis set (STO-3G). There are four
symmetry-adapted orbitals a1g, eux, euy, and b2g. Because eux

and euy are degenerate, the assignment of four electrons in the
orbitals is frustrated in the closed-shell single-determinant de-
scription of the Hartree-Fock or the Kohn-Sham DFT method.
As Fig. 2 shows, both the Hartree-Fock and the DFT lo-
cal density approximation (LDA) lead to too high energies
from equilibrium distance all the way to the dissociation
limit.

There are a total of
( M

N/2

)2 = 36 determinants in the full

CI wave function. For the 1B1g ground state with the D4h

symmetry, the wave function is reduced to the following Slater
determinants built from the orbitals [44],

�4 = c1
(∣∣a2

1ge2
ux

∣∣ − ∣∣a2
1ge2

uy

∣∣) + c2
(∣∣b2

2ge2
ux

∣∣ − ∣∣b2
2ge2

uy

∣∣)
+ c3

∣∣∣∣a1geuxeuyb2g
1

2
√

3
[ααββ + ββαα

+αβαβ + βαβα − 2(αββα + βααβ )]
∣∣∣, (20)

with c3 =
√

1 − 2c2
1 − 2c2

2. The eigenvalues of the 1RDM are
then, for σ = α or β,

naσ
1g

= 1
2 + c2

1 − c2
2, (21)

nbσ
2g

= 1 − naσ
1g
, (22)

neσ
ux

= neσ
uy

= 1
2 . (23)

Thus the spin-summed occupation number for the orbital of
either eux or euy is exactly 1.
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TABLE III. The HF, DFT-LDA, FCI, and i-DMFT total energies
(in a.u.) for the ground state of H4 on a square with the internuclear
distance R, calculated with the basis set STO-3G. The i-DMFT data
are calculated with κ = 0.149623 and b = −0.0550800366 (a.u.).

R(Å) HF DFT-LDA FCI i-DMFT

0.9 −1.706763 −1.772384 −1.846741 −1.856366
1 −1.761075 −1.835708 −1.915107 −1.922480
1.1 −1.782551 −1.866981 −1.951594 −1.956456
1.2 −1.782361 −1.877366 −1.967550 −1.969922
1.3 −1.767816 −1.874061 −1.970377 −1.970376
1.4 −1.743877 −1.861757 −1.965081 −1.963195
1.6 −1.680637 −1.822578 −1.942939 −1.938919
2 −1.541255 −1.730882 −1.897849 −1.894355
2.5 −1.400853 −1.642249 −1.873174 −1.872071
3 −1.311334 −1.592107 −1.867495 −1.867296
4 −1.229731 −1.559107 −1.866348 −1.866345
5 −1.198050 −1.554575 −1.866328 −1.866328
6 −1.179943 −1.554165 −1.866327 −1.866327

In the i-DMFT method, there are two parameters: κ and
b. Since b is only a shift in the total energy, it does not
affect the difference of two energies, such as the dissocia-
tion energy De. Here we approximate the dissociation limit
with R = 6 Å. One can use experimental or theoretical De

to determine κ . For the square H4, the full CI calculation
gives De = | − 1.970377 (at R = 1.3 Å) −(−1.866327 (at
R = 6 Å)) | = 0.104050 (a.u.). After a few trial-and-error cal-
culations (starting from, say κ = 0.1), we find κ = 0.149623
will give De = 0.104049 (a.u.). Since i-DMFT calculation is
fast, it does not take much time to find κ . Once κ is settled, one
can use the CI total energy at R = 6 Å to calibrate b, which is
just a shift to match to the corresponding CI energy. Table III
lists all the total energy values with different methods, which
are displayed in Fig. 2.

TABLE IV. The occupation numbers of the a1g, b2g, eux , and euy

orbitals (spin summed) in H4 calculated with the i-DMFT and full CI
methods using the basis set STO-3G. The parameters in i-DMFT are
κ = 0.149623 and b = −0.0550800366 (a.u.).

i-DMFT full CI

R(Å) a1g b2g eux, euy a1g b2g eux, euy

0.9 1.98993 0.00327 1.00346 1.96026 0.03974 1
1 1.98215 0.00818 1.00483 1.94773 0.05227 1
1.1 1.97000 0.01784 1.00608 1.93220 0.06780 1
1.2 1.95350 0.03366 1.00642 1.91292 0.08708 1
1.3 1.93150 0.05747 1.00551 1.88908 0.11092 1
1.4 1.90305 0.08904 1.00328 1.85988 0.14012 1
1.6 1.82367 0.18387 0.99624 1.78269 0.21731 1
2 1.58045 0.44425 0.98764 1.55801 0.44199 1
2.5 1.27460 0.73859 0.99340 1.27480 0.72520 1
3 1.10755 0.89620 0.99812 1.11176 0.88824 1
4 1.01234 0.98777 0.99994 1.01340 0.98660 1
5 1.00099 0.99900 0.99999 1.00111 0.99889 1
6 1.00092 0.99907 1.00000 1.00006 0.99994 1

FIG. 3. The occupation numbers of the a1g, b2g, and eux orbitals
of H4 square as a functional of nuclear separation. The occupation
number of the euy orbital (not shown in the figure) equals that of eux .
For the CI case, the occupation number of the eux orbital is exactly 1.
The data are calculated with the basis set STO-3G. The parameters
in i-DMFT are κ = 0.149623 and b = −0.0550800366 (a.u.).

Table IV compares the spin-summed occupation numbers
from both the i-DMFT method and the full CI method, which
are displayed in Fig. 3. The overall agreement with the full
CI results is quite good. Even though neux and neux in i-DMFT
do not give exactly the number 1 from the Fermi-Dirac dis-
tribution, they are very close to the wave function result. The
system thus provides a simple yet interesting model to com-
pare with Hartree-Fock and DFT calculations, and benchmark
the i-DMFT method.

IV. LINEAR CHAIN OF 50 HYDROGEN ATOMS

The linear chain of hydrogen atoms is a prototype exam-
ple of strong electronic correlation [68–71]. It is known that
one needs fractional occupation number to describe the static
or nondynamic correlation even in H2 [16,72]. The density
matrix renormalization group (DMRG) method is particularly

TABLE V. Total energies for symmetric dissociation of H50 with
the basis set STO-6G. The RHF and DMRG energies are from
Ref. [68]. i-DMFT energies are calculated with κ = 0.14251 and
b = 0.219552 (a.u.).  is the difference of DMRG and i-DMFT
energies. All energies are in a.u..

R (bohr) RHF DMRG i-DMFT 

1.0 −16.864876 −17.284066 −16.964971 −0.319095
1.2 −22.461267 −22.947647 −22.703113 −0.244534
1.4 −25.029763 −25.593783 −25.430992 −0.162791
1.6 −26.062253 −26.719443 −26.640413 0.079030
1.8 −26.265983 −27.038653 −27.038653 0.000000
2.0 −26.008202 −26.926092 −26.994034 0.067942
2.4 −24.835761 −26.160571 −26.313916 0.153345
2.8 −23.360813 −25.274803 −25.439828 0.165025
3.2 −21.896331 −24.568281 −24.691067 0.122786
3.6 −20.574288 −24.102768 −24.165967 0.063199
4.2 −18.955948 −23.749708 −23.749940 0.000232
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FIG. 4. The potential energy curves for symmetric dissociation
of H50 with the basis set STO-6G. In the i-DMFT calculation, κ =
0.14251 and b = 0.219552 (a.u.).

adapted to one-dimensional problems, previously the linear
hydrogen chain of H50 has been studied by Chan et al. using
the DMRG method [68].

Following Chan et al., we consider two cases, one is
symmetric dissociation with all 49 bonds of 50 equidistant
H atoms symmetrically and simultaneously stretching, and
another is asymmetric dissociation with alternating bonds of
Rinter and Rintra, with Rintra kept fixed at 1.4 bohr. Thus the
structure models 25 equidistant H2 molecules distributed on
a line. The calculations are carried out in the basis set of
STO-6G.

Table V and Fig. 4 show the results of symmetric bond
stretching. The i-DMFT result is obtained with κ = 0.14251
and b = 0.219552 (a.u.). The parameters are chosen by fitting
to two DMRG energies, one at R = 1.8 bohr and another at
R = 4.2 bohr. First, the parameter κ is chosen to reproduce the
energy difference of the two energies, then b is used to shift the
energy at R = 1.8 bohr to the corresponding DMRG value. In
Table VI and Fig. 5, the results of asymmetric dissociation are
displayed. The i-DMFT result is obtained with κ = 0.06 and
b = 0.50916936 (a.u.). The parameters are chosen by fitting
to the DMRG energies at R = 1.4 bohr and R = 1.6 bohr.
One may choose two different energy points on the curve

TABLE VI. Total energies for asymmetric dissociation of H50

with the basis set STO-6G. The RHF and DMRG energies are
from Ref. [68]. i-DMFT energies are calculated with κ = 0.06 and
b = 0.50916936 (a.u.).  is the difference of DMRG and i-DMFT
energies. All energies are in a.u..

R (bohr) RHF DMRG i-DMFT 

1.4 −25.029763 −25.593783 −25.593783 0.000000
1.6 −25.963707 −26.487377 −26.487990 0.000613
1.8 −26.617685 −27.127165 −27.133553 0.006388
2.0 −27.071820 −27.577320 −27.584640 0.007320
2.4 −27.609241 −28.117611 −28.119937 0.002326
2.8 −27.873616 −28.387066 −28.383616 −0.003450
3.2 −28.004679 −28.521239 −28.514377 −0.006862
3.6 −28.069652 −28.587362 −28.579196 −0.008166
4.2 −28.111003 −28.628583 −28.620434 −0.008149

FIG. 5. The potential energy curves for asymmetric dissociation
of H50 with the basis set STO-6G. In the i-DMFT calculation, κ =
0.06 and b = 0.50916936 (a.u.).

to determine the parameter set, it is possible to find slightly
different values for the parameters, but the result is almost the
same quality.

In the i-DMFT method, all electrons are correlated in
the full orbital space in the functional manner. Because the
DMRG method also introduces approximation in setting the
size of the renormalized density matrix, some difference in
the total energy between DMRG and i-DMFT methods is
expected. However, the overall agreement with the DMRG
results is still impressive.

V. DISCUSSION AND CONCLUSION

Electron correlation has been the focus of many theoreti-
cal and computational efforts over the past decades [73–87].
One of the challenging problems is the N-representability
problem of the density matrix [88,89]. The N-representability
problem of 1RDM has been almost solved thanks to Kly-
achko [90,91]. It is now clear that there are additional
constraints on the natural orbital occupation numbers, besides
1 � ni � 0 to comply with the Pauli principle. The 1RDM in
DMFT is only constrained by 1 � ni � 0 at the moment, so
some discrepancy with the wave function result of occupation
number is expected [92].

In the i-DMFT method [13], the eigenvalue equation for
the natural spin orbital is[

ĥ +
∑

j

n j (Ĵ j − K̂ j )

]
χi(1) = εiχi(1), (24)

where Ĵ j and K̂ j are the Coulomb and exchange op-
erators as in the Hartree-Fock method [93]. When the
occupation numbers n j are either 1 or 0, it becomes the
Hartree-Fock equation. So the equation looks like just
a natural extension of the Hartree-Fock equation to the
general case when ni become fractional. One can imple-
ment i-DMFT calculation with minimal modification of the
existing Hartree-Fock code. The method can be readily ex-
tended to open-shell systems [94], just as the unrestricted
Hartree-Fock method [95] extends the restricted Hartree-Fock
method [96].
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As the Hartree-Fock equation, the above equation is a
mean-field approximation. The exact equation satisfied by
the natural spin orbital is much more complicated [2]. There
is certainly room to improve the i-DMFT method, such as
a first-principles estimation of the parameter set κ and b,
and invoking orbital dependence in the cumulant energy. The
advantage of the current form is its cost efficiency. As a
correlation method, it is much cheaper than the full CI or other
correlated wave function method.

The DFT method has been widely used for electronic
structure calculations, especially near equilibrium geometry.
Its shortcoming is in the description of static electron correla-
tion, which may be improved by combining with the DMFT

method [97,98]. The calculations with the square H4 and
hydrogen chain of H50 demonstrate that the i-DMFT method
is able to achieve reasonable results across weak (or dynamic)
and strong (or static) correlation regions.
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