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Associative ionization in collisions of H+ + H− and H(1s) + H(ns)
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Associative ionization in collisions of H+ + H− as well as H(1s) + H(ns) with n = 2, 3, 4 is studied the-
oretically. Relevant adiabatic potential curves and nonadiabatic couplings are calculated ab initio and the
autoionization from the lowest electronic resonant states in the 1�+

g/u and 3�+
g/u symmetries are considered.

The cross sections are obtained by solving the coupled Schrödinger equation, including a complex potential
matrix, in a strict diabatic representation. The importance of using a nonlocal description of autoionization
is investigated. Associative ionization is also studied for different isotopes of hydrogen. Calculated cross
sections are compared with results from measurements.
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I. INTRODUCTION

Associative ionization (AI) is a reactive scattering pro-
cess where the translational energy of the colliding atoms is
transferred into kinetic energy of a free electron, resulting in
a molecular ion in its ground or excited rovibrational state.
Here, we are interested in the following AI processes:

H(1s) + H(ns) → H+
2 + e−, (1)

where n = 2, 3, or 4, and

H+ + H− → H+
2 + e−. (2)

We also study the corresponding reactions where one or two
of the hydrogen atoms or ions are replaced by deuterium.
The main reaction mechanism by which these processes take
place is through autoionization from doubly excited (resonant)
states of the H2 reaction complex. At low collision energies,
the reaction predominantly proceeds via the lowest-lying reso-
nant state of 1�+

g symmetry, which crosses the potential of H+
2

close to its minimum. The situation is more complex at higher
energies where there are several resonant states, of different
electronic symmetries, that contribute. A theoretical treatment
of these processes requires not only the potentials of these res-
onant states and their couplings to bound electronic states and
the ionization continuum, but also the nonadiabatic couplings
between the bound electronic states at various internuclear
distances.

An understanding of the full dynamics of the AI pro-
cess may offer valuable insight into the reverse processes
dissociative recombination and ion-pair formation, and more
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specifically into the branching fractions of the former. Another
interesting aspect is that AI between two metastable H(2s)
atoms has been considered as a possible pathway of producing
the antimatter counterpart of H+

2 [1], which can be utilized
to perform sensitive tests of the charge parity time (CPT)
theorem [2]. There is also a possibility that process (1) with
n = 3 and n = 4 could be used for this purpose, owing to
the relatively large cross sections at small collision energies
[3]. One advantage of using this alternative pathway to H

−
2

would be that the competing process of collisional ionization
is not energetically allowed at the small collision energies
considered.

Associative ionization in collisions of hydrogen atoms is
also important in astrophysics. Process (1) [with H(ns) re-
placed by H(n)] has been found to be a major contributor
to the formation of H+

2 in astrophysical environments that
depart from local thermodynamic equilibrium. For instance,
it has been found to be an important intermediate step in the
formation of H2 in the outflow of young stellar objects [4] and
for the formation of H+

3 in the envelope of supernovae [5].
Together with collisional ionization, it is also of importance
in the physics of stellar atmospheres [6–8].

The first and so far the only measurement on AI of two op-
positely charged hydrogen ions [reaction (2)] was performed
by Poulaert et al. [9] in 1978 using a merged beam apparatus.
On the theoretical side, a calculation of the cross section of
process (2) was performed by Urbain et al. [10], using multi-
channel quantum defect theory (MQDT), where they included
the contributions from the molecular states of 1�+

g symmetry.
Their calculation did not include the nonadiabatic couplings
at large internuclear distances (R > 8 a0), but instead they se-
lected the entrance channel in the autoionization region based
on the most likely pathway according to the Landau-Zener
probabilities at the curve crossings between the ion-pair state
and the covalent n = 3 and n = 2 states. Despite this approx-
imative treatment of the dynamics, they were able to capture
the essential features as well as the magnitude of the measured
cross section. Process (1) with n = 2 has been measured by
Urbain et al. [11]. An interesting feature in the measured
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cross section is a local minimum around 2 eV. This minimum
was explained as arising from an interference between the
two possible pathways along the diabatic 2s and 2p states,
which are degenerate at large internuclear distances. They also
provided an MQDT calculation of the cross section which
supported this idea. Their calculated cross section is overall
in good agreement with the measured one. In the high-energy
range they underestimate the cross section which is due to
their first-order treatment of loss due to the H + H(n � 3)
channels. The cross section of process (1) with n = 3 has
been measured by Nehari et al. [12]. They also performed
a semiclassical calculation of the cross section where they
considered the contribution from the 1�+

g symmetry. This
calculation was able to reproduce some of the main features of
the cross section, but failed to reproduce the magnitude. This
is in part due to the neglect of the other symmetries. Process
(1) with n = 4 has been measured by Brouillard et al. [3], but
no calculations of the cross section have been published as far
as we know.

In this paper, we study processes (1) and (2) using a close-
coupling approach in a strict diabatic representation. In our
treatment we include the contributions from all the possible
symmetries 1�+

g/u and 3�+
g/u. Nonlocal effects, which may

be important at low collision energies, are included using an
iterative method. Whereas the autoionization occurs at small
internuclear distances where the resonant states are embed-
ded in the ionization continuum, transitions between bound
electronic states of H2 may occur at all ranges of internuclear
distance where the nonadiabatic couplings are significant in
size. In order to include the full long-range dynamics of the
AI process it is thus important to include these couplings.
We have previously performed ab initio calculations of the
adiabatic potential curves and nonadiabatic couplings of states
of 1�+

g/u symmetries, among others, correlating with the n � 4
asymptotic limits [13]. Here, we extend these calculations to
also include the three lowest states of 3�+

u symmetry.
The outline of the paper is as follows. In Sec. II, the

adiabatic potential curves and nonadiabatic couplings of the
relevant states are discussed. Details of the nuclear dynamics
calculations are also presented in this section. The results are
presented and discussed in Sec. III. Throughout the paper
atomic units are used, unless otherwise stated.

II. THEORY

A. Potential curves and couplings

The possible symmetries contributing to process (1) are
1�+

g , 3�+
g , 1�+

u , and 3�+
g , while only the singlet symmetries

have an ion-pair state contributing to process (2). In order to
calculate the cross sections of these processes, it is essential to
include accurate data not only of the position and width of the
relevant resonant states, but also the adiabatic potential curves
and nonadiabatic couplings associated with these symmetries.
We have previously computed accurate ab initio adiabatic
potential curves and nonadiabatic couplings (including rota-
tional couplings), diabatic quantum defects, as well as the
potentials and autoionization widths of the lowest resonant
states in the 1�+

g/u symmetries [13]. In the present work,
we extend these calculations to also include triplet states.
For the 3�+

u symmetry, we perform ab initio multireference

configuration interaction (MRCI) calculations to obtain the
adiabatic potential curves and nonadiabatic couplings of the
three lowest states. We use the same basis set [13] as in
our previous study. The molecular orbitals are obtained from
state-averaged complete active space self-consistent field
(CASSCF) calculations using an active space consisting of
all molecular orbitals composed of the n � 3 atomic orbitals
(6σg, 3πg, 1δg, 6σu, 1πu, and 1δu orbitals). The reference con-
figurations of the MRCI calculation were generated using the
same active space, and single and double external excitations
out of the reference configurations were included. The lowest
resonant state in this symmetry diabatically connects with
the n = 2 asymptotic limit. The two states correlating with
the H(1s) + H(2s) and H(1s) + H(2p) asymptotic limits are
degenerate at large internuclear distances, and it is essential
to include the nonadiabatic coupling between these two states
for a good description of the 2s AI process. For the 3�+

g sym-
metry, on the other hand, the lowest resonant state diabatically
connects with the n = 3 limit. We were not able to obtain the
nonadiabatic couplings needed for all the states that correlate
with this limit. Therefore, we use a quasidiabatic represen-
tation of the potentials in this symmetry. Since the lowest
resonant state of the 3�+

g symmetry does not directly couple
to the n = 2 states, we are therefore not able to obtain the
cross section for the 2s process in this symmetry. Given that
this resonant state does not directly couple to the n = 2 states
and that the autoionization width is small, the contribution to
the 2s AI cross section will likely be small.

In addition to the radial nonadiabatic couplings, there are
also rotational couplings that couple electronic states that
differ in the quantum number � (projection of the electronic
orbital angular momentum onto the molecular axis) by one
unit. These couplings were considered in our previous study
of mutual neutralization [13]. We have included rotational
couplings in preliminary calculations of the cross sections of
processes (1) and (2) and it was found that their inclusion
has a negligible influence on the cross sections (the relative
difference was at most 3% at the energies considered). They
are therefore neglected in the final calculations presented in
this paper.

In our previous study [13], we have performed electron
scattering calculations to include the lowest resonant states
of 1�+

g/u symmetries. To determine the potentials of the low-
est resonant states in the 3�+

g/u symmetries as well as total
and partial autoionization widths, we have performed electron
scattering calculations using the complex Kohn variational
method [14] with a similar basis set as described in Ref. [13].
While the scattering calculations are performed for geome-
tries where the potentials of the resonant states lie above the
ion potential, we use the optimization procedure described
in Ref. [13] for geometries where the resonant states have
crossed the ion. Here we used the accurate adiabatic potential
curves calculated by Kurokawa et al. [15] for excited states in
3�+

g/u symmetries.
While the adiabatic potential curves and nonadiabatic cou-

plings can be used to describe the dynamics among the bound
electronic states at both small and large internuclear distances,
a quasidiabatic model is introduced in order to describe au-
toionization, which occurs at small internuclear distances.
In this model we include the lowest resonant state and an
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arbitrary number of Rydberg states in a given symmetry. We
let the Rydberg states couple to the resonant state but assume
there are no couplings among the Rydberg states. The poten-
tials of the Rydberg states are given by the Rydberg formula

Vi(R) = Vion(R) − 1

2
[
ni − μd

l (R)
]2 , (3)

where μd
l (R) is the diabatic quantum defect, ni is the princi-

pal quantum number, and l is the orbital angular momentum
quantum number of the outer electron. The couplings between
the resonant state and the Rydberg states are given by the
scaling relation [16]

Vri(R) =
√

�l (R)

2π

[
ni − μd

l (R)
]−3/2

, (4)

where �l (R) is the partial autoionization width. We consider
the s and d partial autoionization widths in 1�+

g symmetry, p
and f partial autoionization widths in 1�+

u and 3�+
u symme-

tries, and the s partial autoionization width in 3�+
g symmetry.

The total autoionization width is given by the sum of the
partial widths, �(R) = ∑

l �l (R). Using these definitions, a
quasidiabatic potential matrix is set up and diagonalized.
The adiabatic potentials, obtained via the transformation
Vad = ST Vqd S, approximates the Born-Oppenheimer adia-
batic potentials at small internuclear distances. From the
transformation matrix S, it is possible to obtain approxima-
tive nonadiabatic couplings for these potentials. In order to
connect the short-range electronic interactions responsible for
autoionization with the interactions arising from nonadiabatic
couplings at various internuclear distances, the approximative
adiabatic potentials and nonadiabatic couplings are combined
with those calculated ab initio. The resulting adiabatic poten-
tials are illustrated in Figs. 1 and 2.

The adiabatic potentials are then transformed to a strict
diabatic representation by the transformation Vd = TT Vad T.
The adiabatic to diabatic orthogonal transformation matrix T
is a solution of the equation [17]

(
I

d

dR
+ τ(R)

)
T(R) = 0, (5)

where I is the identity matrix and τ is a matrix consisting of
the first derivative nonadiabatic couplings. Within the Born-
Oppenheimer approach, it is a well-known problem that some
nonadiabatic couplings do not go to zero asymptotically [18].
This induces transitions between electronic states at arbitrarily
large internuclear distances. The effect can be significant if
the asymptotic values of the couplings are large, but can
readily be dealt with using the reprojection method [18–21].
Applying this method in the present case, it was found that
the asymptotic values of the nonadiabatic couplings are too
small to significantly influence the cross sections (the relative
difference was found to be at most 5% and on average 0.7%).
In the asymptotic region, we therefore assume that all the
first derivative nonadiabatic couplings go to zero and that T
is equal to the identity matrix.
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FIG. 1. Adiabatic potential energy curves of (a) 1�+
g and (b) 1�+

u

symmetries. The ground state potential is not shown in (a).

B. Nuclear dynamics

To study the AI process, we use a close-coupling approach.
In order to allow for loss due to autoionization we use a com-
plex Schrödinger equation which is derived using the P and Q
projection operator formalism [22,23]. We let |φi〉 represent
the bound electronic states and |φ�ε〉 represent the electronic
continuum. A division of the electronic Hamiltonian is ob-
tained by introducing the two projection operators Q and P,

Q =
∑

i

|φi〉〈φi|, P =
∫

d�ε|φ�ε〉〈φ�ε |. (6)

Writing the total wave function as |
〉 = Q|
〉 + P|
〉,
we find

P(E − H )P|
〉 = PHQ|
〉,
Q(E − H )Q|
〉 = QHP|
〉. (7)

By considering only outgoing waves in the P space, these
two equations lead to a coupled Schrödinger equation for
the nuclear states of the Q space. This equation contains a
nonlocal operator which is given by

F+
i j ( �R, �R′) = 〈φi|HPG+

P ( �R, �R′)PH |φ j〉, (8)
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FIG. 2. Adiabatic potential energy curves of (a) 3�+
g and (b) 3�+

u

symmetries. In (b), the potential of the lowest state is not shown.

where G+
P is the Green’s operator corresponding the the

homogeneous P-space equation. The nuclear kinetic energy
operator, which is contained in H , will introduce first and
second derivative couplings between the Q and P spaces.
These sorts of couplings describe the indirect mechanism and
are usually neglected in the close-coupling equations. This is
also done in the present case.

By extending the work of Bieniek [24] to the multichannel
case, using a strict diabatic representation, we can derive the
coupled Schrödinger equation, which takes the form

d2

dR2
�J (R) + fJ (R)�J (R) =

∫
dR′g(R, R′)�J (R′), (9)

where J is the angular momentum quantum number of the
formed molecular complex, � is the wave function matrix,
and fJ is given by

f J
i j (R) = 2μ

[
Eδi j − J (J + 1)

2μR2
δi j − V d

i j (R)

]
. (10)

Since we are studying processes (1) and (2) for different
isotopes of the hydrogen atoms and ions, different values are
used for the reduced mass μ. The diabatic potential matrix
is given as a transformation, Vd = TT Vad T, of the adiabatic
potential matrix. Equation (9) contains a nonlocal potential on

the right-hand side which is imaginary and is responsible for
loss due to autoionization. Explicitly, we have [16,25]

gi j (R, R′) = −iμ
∑

mnνJ ′l

(2J ′ + 1)

(
J J ′ l

0 0 0

)2

× T T
im(R)ST

mr (R)
√

�l (R)χ J ′
ν (R)

× χ J ′
ν (R′)

√
�l (R′)Srn(R′)Tn j (R

′). (11)

The sum over m and n runs over the diabatic states, ν over the
vibrational channels of H+

2 that are open at a given collision
energy, l over the angular momentum quantum number of
the ejected electron, and J ′ over the angular momentum of
the ion. The subscript r refers to the resonant state. In the
present case, the resonant state potential in a given symmetry
crosses the ion potential at an internuclear distance Rc. This
means that there is some portion of the vibrational channels
that are closed at low collision energies. An approximation
commonly applied is the assumption that the open vibra-
tional channels form a complete set at any energy, i.e., that∑

ν χ J ′
ν (R)χ J ′

ν (R′) = δ(R − R′), which leads to the so-called
local approximation [26–29]. Carrying out the integral on the
right-hand side of Eq. (9) under this assumption, one finds that

d2

dR2
�J (R) + fJ (R)�J (R) = W(R)�J (R). (12)

The matrix W(R) is now a local complex potential given by

Wi j (R) = −iμ
∑
mn

T T
im(R)ST

mr (R)�(R)Srn(R)Tn j (R), (13)

where �(R) is the total autoionization width. The local ap-
proximation is expected to be less valid for low collision
energies where a large portion of the vibrational channels are
closed. By having these two sets of equations, we can test the
validity of this approximation.

Once Eq. (9) has been solved for the nuclear wave func-
tions, �J (R), the partial cross section going from an initial
state of J to a final state of J ′ and ν can be calculated from the
expression [24]

σ
(
E , EJ ′

ν

) = g
4π3

k2
i

(2J ′ + 1)
∑

Jl

(2J + 1)

(
J J ′ l

0 0 0

)2

×
∣∣∣∣∑

mn

〈
χ J ′

ν

∣∣Tmn(R)Srm(R)

√
�l (R)

2π

∣∣ψJ
ni

〉∣∣∣∣
2

,

(14)

where i is the initial state. To obtain the total AI cross section,
the partial cross sections σ (E , EJ ′

ν ) are summed over all quan-
tum numbers J ′ and ν of all final rovibrational states that are
energetically open.

Equation (9) is an integro-differential equation. Here we
apply an iterative procedure to solve this equation, i.e., we
solve the equation

d2

dR2
�J

i (R) + fJ (R)�J
i (R) =

∫
dR′g(R, R′)�J

i−1(R′). (15)

As a first guess of the wave function matrix to start the
iteration, we use the local wave function �J

0 (R) found by
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solving Eq. (12) using the renormalized Numerov method
[30]. Since the wave function from the previous step is known,
the right-hand side of Eq. (15) becomes a known function of
R. The resulting inhomogeneous equation can be solved for
the wave function matrix, �J

i (R), using an extension of the
renormalized Numerov method [31]. Once �J (R) is known,
the cross section is calculated from Eq. (14) by extracting
the column of the wave function matrix that corresponds
to the correct boundary conditions. When the relative dif-
ference of two successive partial cross sections is less than
10−5, we consider the iteration to be converged. Applying
the iterative method in test calculations, it was found that the
partial cross sections calculated from the wave functions of
(15) did not converge. In order to obtain convergence, the
alternative equation

d2

dR2
�J

i (R) + fJ (R)�J
i (R) − W(R)�J

i (R)

=
∫

dR′g(R, R′)�J
i−1(R′) − W(R)�J

i−1(R) (16)

was used instead. Once a convergence is reached, the two
terms containing the local complex potential cancel and a
solution of Eq. (16) is therefore identical to a solution of
Eq. (15). In all calculations, the average number of iterations
needed to reach convergence was of the order of ten iterations.

C. Asymptotically degenerate states

In the asymptotic region, the excited states correlating with
n � 2 are degenerate. This implies that the molecular states
will be linear combinations of atomic states in this region. In
order to select a specific initial state corresponding to some
value of the quantum numbers (n, l , λ), one therefore has
to determine this linear combination. Following the work of
Ref. [32], we write the molecular electronic wave function as
a linear combination of the degenerate atomic states

�mol = B�at, (17)

where the matrix B is orthogonal.
Equations that determine the B matrix can be set up by

writing the ab initio calculated first derivative nonadiabatic
couplings as linear combinations of the couplings calculated
using an atomic basis. In an atomic basis, one has [18,19]

〈
φat

i

∣∣ ∂

∂R

∣∣φat
j

〉
∞

= γ [Vi(∞) − Vj (∞)]
〈
φat

i

∣∣z∣∣φat
j

〉
, (18)

where 〈φat
i |z|φat

j 〉 are atomic transition dipole moment that
can be calculated analytically using the eigenstates of atomic
hydrogen. The factor γ is given by 1/2 in the present case.
Since the molecular states are written as linear combinations
of atomic states with the same n, we can parametrize the B
matrix by blocks of n × n orthogonal matrices. We neglect any
mixing between the n = 4 states because not all of them are
calculated ab initio. Therefore, we parametrize the B matrix
using block matrices composed of 2 × 2 and 3 × 3 rotation
matrices while the rest of the B matrix contains ones along
the diagonal and zeros otherwise.

By using the notation τmol
i j for the asymptotic values of the

nonadiabatic couplings in a molecular basis and τ at
i j for those

TABLE I. The relevant elements Bi j of the B matrix for 1�+
g

symmetry.

�
��i
j

2 3 4 5 6

2 0.9992 −0.0410 0 0 0
3 0.0410 0.9992 0 0 0
4 0 0 −0.0187 −0.0317 0.9993
5 0 0 −0.0934 −0.9951 −0.0333
6 0 0 0.9955 −0.0939 0.0157

in an atomic basis, we have the relation

τmol
i j =

∑
kl

Bikτ
at
klB jl . (19)

By using the selection rules for the hydrogen transition dipole
moments, this set of equations was reduced further and was
then minimized using least squares to obtain the relevant
elements of the B matrix. The optimization was done sepa-
rately for the symmetries 1�+

g and 1�+
u . A comparison of the

ab initio calculated nonadiabatic couplings of 3�+
u symmetry

with the couplings calculated using Eq. (18) shows that there
is no mixing among the n = 2 states in that symmetry, and the
corresponding B matrix will therefore be equal to the identity
matrix. Performing the optimization for the symmetries 1�+

g

and 1�+
u , we obtain the values of the elements of the B matrix

as given in Tables I and II, respectively.
To include the B matrix in the nuclear dynamics calcula-

tions, one must modify the boundary conditions slightly. The
new scattering matrix, which we denote by S, is written in
terms of the old scattering matrix as S = BT SB. The corre-
sponding boundary conditions are written as

�J (RN ) ∼ ĥ−
J,N B − ĥ+

J,N BS, (20)

where [ĥ±
J,N ]i j = 1√

k j

ĥ±
J (k jRN )δi j and where ĥ±

J are Riccati-

Hankel functions (or the corresponding functions for
Coulomb or closed channels).

III. RESULTS AND DISCUSSION

A. H+ + H−

Using the model described in Sec. II, we are able to add an
arbitrary number of Rydberg states to our calculations. These
additional states are expected to reduce the cross section be-
cause some flux is lost from the electronic autoionizing state

TABLE II. The relevant elements Bi j of the B matrix for 1�+
u

symmetry.

�
��i
j

1 2 3 4 5

1 −0.1122 0.9937 0 0 0
2 −0.9937 −0.1122 0 0 0
3 0 0 0.0292 0.0184 −0.9994
4 0 0 0.0014 −0.9998 −0.0184
5 0 0 −0.9996 −0.0009 −0.0292
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FIG. 3. Calculated H+ + H− AI cross section obtained by in-
cluding higher excited Rydberg states going to the asymptotic limits
n = 4, 5, 6, 7.

to the bound Rydberg states. In Fig. 3, we show the total
H+ + H− AI cross section, obtained by a summation of the
cross sections calculated in the 1�+

g and 1�+
u symmetries

using a statistical weight of 1/2, including covalent states
associated with the n � 4, 5, 6, 7 limits. The cross section is
reduced whenever new states are added to the calculations.
The reduction is largest when states correlating with the n = 5
limit are added and gradually becomes smaller for each new
n. For n = 7, the cross section is converged with respect to
the number of states that are included, and we see similar
results in our calculations of the cross sections of process (1).
The remaining results therefore include states up to the n = 7
limit, a total of 15 states of 1�+

g symmetry, 13 states of 1�+
u

and 3�+
u symmetries, and five states of 3�+

g symmetry.
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FIG. 4. Calculated H+ + H− AI cross section: 1�+
g (dashed dot-

ted orange), 1�+
u (densely dash-dot dotted green) and total (solid

blue). The total cross section calculated with the local approximation
is shown in dashed magenta. Also shown are the experimental result
of Ref. [9] and calculated cross section of Ref. [10].

In Fig. 4, we show the H+ + H− AI cross section calcu-
lated including states of 1�+

g and 1�+
u symmetries together

with the total cross section. Also shown in the figure are the
measured cross section by Poulaert et al. [9] and the calculated
one by Urbain et al. [10]. The present result is in reasonably
good agreement with the measured cross section, although
it slightly overestimates it at low collision energies (about
a factor of 2 below 0.2 eV). At low collision energies, the
cross section goes as 1/E , which is expected from Wigner’s
threshold law [33]. The 1�+

g symmetry is most important at
low collision energies due to the favorable location of the res-
onant state potential. At higher energies, the 1�+

u symmetry
becomes increasingly important. The rapid decrease of the
cross section above 0.75 eV is due to competition with the
collisional ionization process

H+ + H− → H+ + H + e−, (21)

which is not considered in the present study.
There are two different kinds of structures that appear in

the cross section. First, we have sharp resonances that appear
due to the inclusion of asymptotically closed states, which
allows the system to become temporarily trapped in bound
rovibrational states of the collision complex. The addition of
angular momentum causes these resonances to be washed out.
As is seen in Fig. 3, these resonances are not present in the
n = 4 cross section since the n � 4 channels are open at the
energies considered. Second, we have oscillations in the cross
section which are due to interference between different path-
ways along the potential landscape. As shown in Fig. 4, these
oscillations are largest in the 1�+

u symmetry. Using a set of
quasidiabatic potentials, excluding the nonadiabatic couplings
around 36 a0 among the n = 3 states and the ion-pair state, no
such oscillations are present in the cross section. Furthermore,
a calculation including only the states (3 − 6)1�+

u is able to
reproduce the oscillations in the cross section. This suggests
that the oscillations are due to accumulated phase differences
along the possible paths among the (3 − 6)1�+

u states.
We have investigated how important a nonlocal description

of autoionization is by also performing a calculation using
the local approximation [Eq. (12)], which is also shown in
Fig. 4. Including a nonlocal potential slightly increases the
cross section, which is due to less loss of flux into the ioniza-
tion continuum. We see that in the case of H+ + H− AI, the
local approximation reproduces the experimental result well,
especially for higher energies.

To investigate the isotope effect, we have also calculated
the AI cross section in collisions of H+ + D− and D+ + D−.
The result is shown in Fig. 5. At low collision energies, the
cross section increases as the reduced mass of the nuclei is
increased, while the reverse is true at high collision energies.

B. H(1s) + H(4s)

The total H(1s) + H(4s) AI cross section is shown in Fig. 6
together with the contribution from the different possible sym-
metries in comparison with the measured cross section of
Ref. [3]. For this process, the 1�+

u and 3�+
u symmetries are

the most important ones for the energy range considered here.
The measured cross section displays a 1/E dependence at low
collision energies, which is not reproduced in the calculated
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FIG. 5. Calculated AI cross sections for different isotopes of
ionic hydrogen.

cross section. At high energies, the present result is smaller
than the measured cross section (about a factor of 6 at 1 eV
and more at higher energies). This may be due to higher-lying
resonant states that were not included in the calculation.

The present calculation of the total cross section does not
reproduce the oscillations that are seen in the experimental
cross section. These oscillations probably have an origin in
terms of interference between different reaction pathways [3].
Such oscillations can be seen to some extent in the calculated
1�+

g/u cross sections, which are the only symmetries in which
states correlating with the n = 4 limit are included in a strict
diabatic representation. However, there are four states corre-
lating with the n = 4 limit in each symmetry, out of which
only two in the 1�+

g symmetry and one in the 1�+
u symmetry

are included in the present calculation. In the triplet sym-
metries, the n = 4 states are included using a quasidiabatic
representation. A better description of these states, including
the relevant first derivative nonadiabatic couplings, would
likely improve the present result.
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FIG. 6. Calculated H(1s) + H(4s) AI cross section in compari-
son with the experimental result of Ref. [3].
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FIG. 7. Calculated 4s AI cross sections for different isotopes of
atomic hydrogen.

When one or both hydrogen atoms are replaced with deu-
terium, as seen in Fig. 7, we see a similar result in terms of the
ordering of the cross sections as was seen in the case of ionic
collision partners.

C. H(1s) + H(3s)

The H(1s) + H(3s) total AI cross section has been cal-
culated for energies between 0.01 and 3.5 eV and the result
is displayed in Fig. 8. For a better comparison with the ex-
periment, the calculated total cross section is averaged with
a Gaussian distribution over the experimental energy resolu-
tion [34]. At low collision energies, only the 1�+

g symmetry
contributes. The 3�+

u and 3�+
g symmetries become impor-

tant around 0.3 eV and 0.7 eV, respectively, while the 1�+
u

cross section contributes mainly at higher energies. These

10−1 100

Collision energy (eV)

10−17

10−16

10−15

C
ro

ss
se

ct
io

n
(c

m
2 )

1Σ+
g

1Σ+
u

3Σ+
u

3Σ+
g

Total

Nehari et al. [12]

Nehari et al. [12]

FIG. 8. Calculated H(1s) + H(3s) AI cross section. Also shown
in the figure are the measured and calculated cross sections of
Ref. [12]. The solid gray curve is the total cross section and the
smoothed solid blue curve is the same data averaged over the ex-
perimental energy resolution.
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symmetries are responsible for the increase in the total cross
section, starting at a collision energy of about 0.2 eV. The
rapid decrease of the cross section above 1.5 eV is due to
competition with the collisional ionization process.

At intermediate energies, the total cross section displays a
rich pattern of sharp resonances superimposed by oscillations
which likely are due to competition between different path-
ways in the potential landscape. We are not able to reproduce
the magnitude of the measured cross section in the region
of energies between 0.2 and 0.8 eV, but the shape of the
calculated cross section agrees well with the measured cross
section. For the 3�+

u symmetry, our model is limited since we
use a quasidiabatic description of the states correlating with
the n = 3 asymptotic limit. Including the nonadiabatic cou-
plings associated with these states would likely improve the
present result. At higher energies, the disagreement between
theory and experiment could be due to higher-lying resonant
states not considered in the calculation. The present result
is an improvement compared with the calculation by Nehari
et al. [12], which is not surprising given the semiclassical
nature of their calculation and the fact that they only included
electronic states of 1�+

g symmetry.
We have also calculated the AI cross section in collisions

of H(1s) + D(3s) and D(1s) + D(3s). The results of these
calculations are shown in Fig. 9. The H(1s) + H(3s) and
D(1s) + D(3s) experimental cross sections go as 1/E for low
collision energies. This low-energy behavior, which is not
typical for neutral reactants, has been proposed to arise from
the requirement that the rotational energy of H+

2 (or D+
2 ) does

not exceed its binding energy [3,12]. The calculated cross
sections have the same behavior between 0.1 and 0.02 eV, but
deviate from it for lower collision energies.

In Fig. 9(b), we compare the calculated D(1s) + D(3s) AI
cross section with the experimental result of Ref. [12]. There
is a reasonable agreement with the experiment in terms of
the magnitude and shape of the cross section, especially in
the region 0.02–0.3 eV. At collision energies of about 0.7 eV
and 1.6 eV, there are two distinct peaks in the experimental
cross section which are not reproduced in the calculated cross
section. It is possible that these peaks are due to higher-lying
resonant states which have not been included in the present
calculation.

D. H(1s) + H(2s)

In Fig. 10, the calculated H(1s) + H(2s) AI cross sec-
tion including contributions from the symmetries 1�+

g and
3�+

u is shown in comparison with previous theoretical [11]
and experimental [11] results. The 1�+

u cross section is at
most of the order of 10−21 cm2 and is therefore neglected. At
around 0.7 eV, the process has a threshold where the lowest
rovibrational state of the ion becomes energetically open. The
local minimum of the cross section around 2 eV results from
an interference between the two pathways along the two po-
tentials of 1�+

g symmetry that correlate with the n = 2 limit.
In addition to the results shown in Fig. 10, we have performed
a calculation of the cross section with the 2p state as the
initial state. The result (not shown in the figure), do indeed
oscillate 180 degrees out of phase with the 2s cross section,
which demonstrates that this interpretation is correct. This

10−2 10−1 100

Collision energy (eV)

10−17

10−16

10−15

C
ro

ss
se

ct
io

n
(c

m
2 )

(a)

H(1s) + H(3s)

H(1s) + D(3s)

D(1s) + D(3s)

10−2 10−1 100

Collision energy (eV)

10−17

10−16

10−15

C
ro

ss
se

ct
io

n
(c

m
2 )

(a)

H(1s) + H(3s)

H(1s) + D(3s)

D(1s) + D(3s)

10−2 10−1 100

Collision energy (eV)

10−17

10−16

10−15

C
ro

ss
se

ct
io

n
(c

m
2 )

(b)

Present calculation - D(1s) + D(3s)

Nehari et al. - D(1s) + D(3s) [12]

10−2 10−1 100

Collision energy (eV)

10−17

10−16

10−15

C
ro

ss
se

ct
io

n
(c

m
2 )

(b)

Present calculation - D(1s) + D(3s)

Nehari et al. - D(1s) + D(3s) [12]

FIG. 9. In (a), the calculated 3s AI cross section is compared
for different isotopes of atomic hydrogen. In (b), the calculated
D(1s) + D(3s) AI cross section (solid gray) is compared with the
experimental result of Ref. [12]. The cross section averaged over the
experimental energy resolution is shown in solid blue.
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FIG. 10. Calculated H(1s) + H(2s) AI cross section in compari-
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smoothed (solid blue) curve is the total (nonlocal) cross section
averaged over the experimental energy resolution.
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interference is also responsible for the third broad peak seen
in the 1�+

g cross section, which is centered around 5.5 eV.
This peak yields a structure in the calculated total cross sec-
tion which is also seen in the experimental cross section. The
second peak of the cross section, centered at about 3.5 eV,
is in part due to competition with the collisional ionization
process which becomes energetically possible at this energy
and in part due to the strong oscillations in the 1�+

g cross
section.

The present result is in reasonably good agreement with
the measurement of Ref. [11], although it underestimates the
measured cross section at higher energies. At the 3.5 eV peak,
the present result is smaller than the measured cross section by
a factor of about 1.4. This could be due to contribution from
higher-lying resonant states that were not included in the cal-
culation, or due to the fact that we neglected the contribution
from the 3�+

g symmetry. The calculated cross section displays
sharp resonances, especially at collision energies below 2 eV,
which are due to asymptotically closed channels. In Ref. [11],
they neglected the 3�+

u symmetry due to its relatively high-
lying resonant state and its small autoionization width. The
present results indicate that this symmetry is important for the
H(1s) + H(2s) AI process. Also shown in Fig. 10 is a calcula-
tion performed using the local approximation. Although there
are only a few vibrational channels open at small collision
energies, the difference between the local and nonlocal cross
sections is small.

In Fig. 11(a), the calculated 2s AI cross section is shown
for different isotopes of atomic hydrogen. As the reduced
mass of the system is increased, the local minimum which is
present at around 2 eV for H(1s) + H(2s) is shifted to lower
energies. When one or two hydrogen atoms are replaced with
deuterium, one more local minimum appears at around 2.7 eV.
This minimum has the same origin as the first local minimum
but is less pronounced due to the rapid increase of the 3�+

u
cross section. This is demonstrated in Fig. 11(b), where we
compare the calculated D(1s) + D(2s) cross section to the
experimental result of Ref. [3]. The local minimum at 2.7 eV
is also present in the experimental cross section. For high col-
lision energies, the present result for the D(1s) + D(2s) cross
section is smaller than the experimental cross section (about
a factor of 2 at the 3.5 eV peak). Overall, a reasonable agree-
ment is found between the theoretical and experimental cross
sections, especially in terms of the structure. The inclusion
of higher-lying resonant states in the calculation would likely
improve the agreement with the experiment at higher collision
energies.

IV. SUMMARY

We have studied associative ionization in collisions of
H+ + H− and H(1s) + H(ns) with n = 2, 3, 4 and we con-
sidered contributions from electronic states in the 1�+

g/u and
3�+

g/u symmetries. Although 1�+
g is the most dominant sym-

metry at low energies [except in the case of H(1s) + H(4s)],
the other symmetries contribute significantly at higher en-
ergies, and it is therefore crucial that these symmetries are
included in the description of these processes. We have in-
vestigated the inclusion of covalent states associated with
asymptotic limits of n > 4. For all the processes considered
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FIG. 11. In (a), the calculated 2s AI cross section is compared
for different isotopes of atomic hydrogen. In (b), the calculated
D(1s) + D(2s) AI cross section (solid gray) is compared with the
experimental result of Ref. [3]. The total cross section averaged over
the experimental energy resolution is shown in solid blue.

here, it was found that states up to the n = 7 limit needed to
be added in order for the cross sections to be converged with
respect to the number of states included. Rotational couplings
were included in test calculations, but were found to have a
negligible influence on the cross sections. Overall, the present
results are in good agreement with the experimental data. The
exception is process (1) with n = 4, likely because we are
lacking ab initio data of the adiabatic potentials and nonadia-
batic couplings for some of the states correlating with the n =
4 limit. We have also investigated the importance of a nonlocal
description of the AI process. For all processes considered in
this paper, it was found that the cross section obtained using
the local approximation does not differ significantly from the
cross section obtained using a nonlocal complex potential.
The isotope effect has been studied by replacing one or two
of the hydrogen ions or atoms with deuterium. In general, the
cross sections involving the different isotopes have a similar
magnitude, but different structures.

The method applied here has previously been applied in
the study of mutual neutralization in collisions of H+ with H−
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[13], but can also be applied to study other processes such
as double charge transfer, dissociative recombination, and
resonant ion-pair formation, using the same set of potentials
and couplings. The model is not limited to the H2 system, but
can also be applied to other diatomic systems for which it is
possible to carry out accurate structure calculations of excited
states.
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