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Developing effective methods to measure the enantiomeric excess of chiral mixtures is one of the major topics
in chiral molecular research but remains challenging. An enantiodetection method via two-dimensional (2D)
spectroscopy based on a four-level model containing a cyclic three-level system (CTLS) of chiral molecules was
recently proposed and demonstrated, but with a strict condition of one-photon resonance (where three driving
fields are exactly resonantly coupled to the three electric dipole transitions) in the CTLS and narrow-band probe-
pulse assumption. Here, we extend the 2D spectroscopy method to more general experimental conditions, with
three-photon resonance (where the sum of the two smaller frequencies among the three driving fields equals
the third one) and a broadband probe pulse. Our method remains effective on enantiodetection with the help
of experimental techniques such as the chop-detection method, which is used to eliminate the influence of the
other redundant levels that exist in the real system of chiral molecules. Under these more general conditions, the
enantiomeric excess of the chiral mixture is estimated by taking an easily available standard sample (usually the
racemic mixture) as the reference.
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I. INTRODUCTION

Chiral molecules have two species, i.e., enantiomers,
which are mirror images of each other. Enantiomers have al-
most the same physical properties, e.g., energy level structures
but act disparately in their biological activities and chemical
interaction [1], leading to successive interest in the investiga-
tion of enantioseparation [2–10], enantioconversion [11–16],
and enantiodetection [17–28]. Enantiomers often have subtle
differences in their optical activities, which is an exception
to their identical physical properties [17–19]. This makes it
possible to detect the enantiomeric excess of a chiral mixture
optically. However, traditional spectroscopic methods, such as
circular dichroism [17,18] and Raman optical activity [19],
typically suffer from a weak signal originating from magnetic
dipole or electric quadrupole interactions.

In recent years, new spectroscopic methods of enantiode-
tection taking advantage of the strong electric dipole coupling
have been investigated theoretically [26,27,29,30] and exper-
imentally [22–25], benefiting from the study of the cyclic
three-level system (CTLS) of chiral molecules [31–36], in
which three electromagnetic driving fields are coupled to three
electric dipole transitions among the three energy levels of
the chiral molecules. Typically, most of these methods re-
quire a standard enantiopure sample for the reference [22–25].
However, acquiring the enantiopure sample itself remains
challenging for most chiral molecules. We recently proposed
enantiodetection methods that do not require an enantiopure
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sample using either one-dimensional (1D) or two-dimensional
(2D) spectroscopy [26,27]. In the method using the 2D spec-
troscopy, three probe pulses are applied in a sequence to detect
the chirality-dependent energy shifts engineered by the three
electromagnetic driving fields in the CTLS [26,27]. Signals
from different enantiomers are naturally categorized in the
2D spectrum because any two diagonal peaks corresponding
to different enantiomers have no off-diagonal correspon-
dence [27,37]. This feature of the 2D spectroscopy provides
an advantage over the 1D case, where additional procedures
are required for peak categorization.

We have demonstrated the effectiveness of our enan-
tiodetection method [27] via 2D spectroscopy under ideal
experimental conditions, e.g., one-photon resonance [38] of
the driving fields in the CTLS and the use of narrow-band
probe pulses for single-transition excitation. However, in the
case of one-photon resonance, all three driving fields are reso-
nantly coupled to the three electric dipole transitions without
detuning. This demands a full understanding of the energy
levels of the investigated chiral molecules, limiting the univer-
sal application of this method to enantiodetection. Moreover,
generating narrow-band pulses covering only one transition
is challenging. In existing experiments with 2D spectroscopy,
the bandwidth of the probe pulses is usually broad, and mul-
tiple transitions from the ground level to the excited levels
can be induced [39–41], which poses a challenge for this
method on enantiodetection, as induced multiple transitions
may affect the ability of the 2D spectroscopy to distinguish
between different enantiomers.

In this paper we extend the 2D-spectroscopy-based enan-
tiodetection method to more general cases. Specifically, we
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(a)
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FIG. 1. (a) The basic model with a CTLS and the ground level of
the chiral molecules. In the subsystem, three driving fields are nearly
resonantly coupled to the three transitions |eα

j 〉 ↔ |eα
l 〉 with Rabi

frequencies � jl , detunings � jl , and overall phases ϕα . The probe
pulses �kp (p = a, b) induce only the transition |gα〉 ↔ |eα

1 〉 with Rabi
frequencies �p. (b) The probe pulse sequence. Two probe pulses �ka

and �kb, denoted by the rectangles, are separated by an interval τ . The
signal denoted by the curve is detected at time t after the second
probe pulse �kb. The two probe pulses have the same duration δtp.

demonstrate that different enantiomers can still be distin-
guished by their separate chirality-dependent peaks in the
2D spectrum even under three-photon resonance [26,31] and
with the use of broadband probe pulses. Under three-photon
resonance, the three driving fields are coupled to the corre-
sponding transitions with detunings, and the sum of the two
smaller frequencies of the driving fields equals the third one.
This condition is preferred in experiments, compared to the
one-photon resonance, when one has only rough knowledge
of the enantiomers of interest. We demonstrate that under
three-photon resonance, the enantiomeric excess of a chiral
mixture is estimated by taking the easy-to-get racemic mixture
as the reference. In more general situations where transitions
from the ground state to all three working excited states,
as well as other redundant states, are induced by broadband
probe pulses, we prove that these induced multiple transi-
tions do not affect the enantiodetection via the 2D spectrum.
To achieve enantiodetection in these general situations, we
adopt advanced experimental techniques, i.e., the chop detec-
tion [39–41] and truncation method to eliminate the influence
of the other redundant levels.

II. THREE-PHOTON RESONANCE

The CTLS, in which three electric dipole transitions among
the three energy levels are all allowed, is forbidden in natural
atoms but universally exists in chiral molecules whose sym-
metry is naturally broken. With this fact, we propose the basic
model of this paper in Fig. 1(a). The model consists of a CTLS
with three excited states |eα

j 〉 ( j = 1, 2, 3) and a ground state

|gα〉 for left-handed (α = L) and right-handed (α = R) chiral
molecules [30,42,43]. Three constant electromagnetic driving
fields (typically in the microwave region) with central fre-
quencies ν jl ( j > l) are applied to couple the corresponding
electric dipole transitions |eα

j 〉 ↔ |eα
l 〉 with detunings � jl =

ω j − ωl − ν jl under three-photon resonance (ν21 + ν32 = ν31,
i.e., �21 + �32 = �31). Here, ω j are eigenenergies of states
|e j〉 with ground-state energy ω0 = 0. The Hamiltonian of
the system is given in the interaction picture with respect to
H ′

α = ∑
j ω

′
j |eα

j 〉〈eα
j | as (h̄ = 1, ω′

1 = ω1, ω′
2 = ω1 + ν21, and

ω′
3 = ω1 + ν31)

V α
cyc = �21

∣∣eα
2

〉〈
eα

2

∣∣ + �31

∣∣eα
3

〉〈
eα

3

∣∣ + (�21

∣∣eα
2

〉〈
eα

1

∣∣
+ �31

∣∣eα
3

〉〈
eα

1

∣∣ + �32eiϕα ∣∣eα
3

〉〈
eα

2

∣∣ + H.c.). (1)

Here, � jl are Rabi frequencies, and ϕα is the effective
overall phase, which differs by π for the different enan-
tiomers [31,32], i.e., ϕR = ϕL + π .

In the proposed model, two pulses with wave vector �kp

(p = a, b), short duration δtp, and interval τ are applied to
probe the chirality-dependent shifts induced by the driving
fields [26]. The pulse sequence is illustrated in Fig. 1(b).
An assumption is made that the probe pulses induce only
the transition |gα〉 ↔ |eα

1 〉 with central frequency νp = ω1 and
narrow bandwidth δνp � {ω21, ω31}, where ωi j = |ωi − ω j |.
The Hamiltonian within the short duration of the probe pulse
is given in the interaction picture with respect to Hα

0 =∑
j ω j |eα

j 〉〈eα
j | as

V α
p � �pei�kp·�r∣∣eα

1

〉〈
gα

∣∣ + H.c., (2)

where �r is the spatial location of the chiral molecule and
�p is the Rabi frequency corresponding to the transition
|gα〉 ↔ |eα

1 〉 under the square pulse approximation. Note that
the Hamiltonian presented in Eq. (2) is an approximate result,
wherein we have neglected the interaction of the CTLS during
the short duration of the probe pulses. This approximation
is based on the assumption that the driving fields are signif-
icantly weaker than the probe pulses, i.e., |� jl | � |�p|.

In our previous work [27], a strict condition of one-photon
resonance (� jl = 0) and a narrow-bandwidth probe-pulse as-
sumption were considered. In this section, we release only the
condition of one-photon resonance to show how the properties
of the driving field impact the shape of the 2D spectra. We will
show in Sec. III that pulses with a broad bandwidth could also
be applied as probe pulses.

Starting from the initial state |ψα
0 〉 = |gα〉 in the

Schrödinger picture, the final state of the system after inter-
action with the sequence of the two pulses is

|ψα (τ, t )〉 = U α
cyc(τ + t + 2δtp, τ + 2δtp)U α

b

× U α
cyc(τ + δtp, δtp)U α

a

∣∣ψα
0

〉
, (3)

where U α
p = exp[−iHα

0 δtp] exp[−iV α
p δtp] and U α

cyc(s +
s′, s′) = exp[−iH ′

α (s + s′)] exp[−iV α
cycs] exp[iH ′

αs′] are
evolution operators inside and outside the pulse duration,
respectively. We note that U α

cyc(s + s′, s′) is the evolution
operator in the Schrödinger picture, and a similar operator
in Ref. [27] should be corrected but does not affect the main
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result. The final polarization Pα (τ, t ) ≡ 〈ψα (τ, t )|μ̂α

|ψα (τ, t )〉 will yield signal fields along multiple phase-
matching directions [44–46], and we sort only the rephasing
signal that is emitted along −�ka + 2�kb.

In the final polarization, the rephasing part is calculated as
Pα

RP(τ, t ) = Aα (τ, t )ei(−�ka+2�kb)·�r . Here,

Aα (τ, t ) = N 2
a N 2

b β∗
a |βb|2

∑
j′

∣∣nα
1 j′

∣∣2
ei(ω′

1+Eα
j′ )τ

×
∑

j

∣∣nα
1 j

∣∣2
e−i(ω′

1+Eα
j )tμ01 (4)

is the amplitude of the rephasing signal, μ̂α is the transition
dipole operator, μα

01 = μ01 is the transition dipole moment
corresponding to the transition |gα〉 ↔ |eα

1 〉, βp = −i�pδtp

are transition amplitudes, Np = (1 + |βp|2)−1/2 are nor-
malized constants, nl j = 〈eα

l |dα
j 〉 are transformation-matrix

elements, and |dα
j 〉 and Eα

j are eigenvectors and eigenvalues of
V α

cyc. Adding the decoherence of the system during the whole
process, the rephasing signal in Eq. (4) is modified as

Aα (τ, t ) = N 2
a N 2

b β∗
a |βb|2

∑
j′

∣∣nα
1 j′

∣∣2
ei(ω′

1+Eα
j′ )τ e−
τ

×
∑

j

∣∣nα
1 j

∣∣2
e−i(ω′

1+Eα
j )t e−
tμ01, (5)

where 
 = γrl/2 + γdp is the decoherence rate and γrl and γdp

are, respectively, the relaxation and pure dephasing rates of
the excited states.

For a mixture, the total signal from the two enantiomers is

Amix(τ, t ) = NLAL(τ, t ) + NRAR(τ, t ), (6)

where NL and NR are the numbers of left- and right-handed
molecules in the mixture sample. The 2D spectrum

Ã
mix

(ωτ , ωt ) ≡ F[Amix(τ, t )] (7)

is obtained by Fourier transforming [47] Amix(τ, t ) with re-
spect to both the delay time τ and data-collecting time t .

We take the gaseous 1,2-propanediol, whose skeletal for-
mula is shown in Fig. 2(a), as our example in this study
and present a numerically simulated 2D spectrum of the
racemic mixture (50:50 mixture of two enantiomers) in
Fig. 2(c), which is zoomed in around (ω′

1,−ω′
1). Neglect-

ing the chirality index, the working states are chosen to be
|g〉 = |vg〉|00,0,0〉, |e1〉 = |ve〉|11,1,1〉, |e2〉 = |ve〉|22,1,2〉, and
|e3〉 = |ve〉|22,0,1〉, where the vibrational ground (first-excited)
state is denoted as |vg〉 (|ve〉) and the rotational states are
denoted in the |JKa,Kc,M〉 notation [48]. With these work-
ing states, the transition frequencies are ω10/2π � 4.33 THz,
ω21/2π � 29.21 GHz, ω31/2π � 29.31 GHz, and ω32/2π �
100.76 MHz [27,49,50]. The relaxation and pure dephas-
ing rates are approximately taken as γrl/2π � 1 kHz and
γdp/2π � 0.1 MHz [43,51]. The CTLS is assumed to have
detunings �21/2π = 1 MHz and �31/2π = 1.5 MHz of the
driving fields; Rabi frequencies �21/2π = 4 MHz, �31/2π =
4 MHz, and �32/2π = 4.5 MHz; and overall phases ϕL =
2π/7 and ϕR = 9π/7. The probe pulses have duration
δtp � 0.5 ns with Fourier-limited bandwidth δν � 2π ×
1.8 GHz � {ω21, ω31} and corresponding Rabi frequencies

OH

H3C

OH

OH

H3C

OH

Left-handed Right-handed

FIG. 2. (a) The skeletal formulas of two enantiomers of 1,2-
propanediol, which is taken as an example. (b) The 1D and (c) 2D
spectra of the racemic mixture (50:50 mixture of two enantiomers)
of gaseous 1,2-propanediol. The 1D spectrum is the projection of
the 2D spectrum on the axis of ωτ . The 2D spectrum is obtained by
taking only the absolute value of the Fourier transform. (c) KL and KR

denote the amplitudes of the two strongest peaks that belong to left-
handed and right-handed enantiomers, respectively. (d) The error δ =
εe − ε between the enantiomeric excess εe estimated by the intensity
ratio of the peaks denoted in (c) and the real value ε. The parameters
for the simulation are chosen to be �p/2π � 100 MHz, �21/2π =
4 MHz, �31/2π = 4 MHz, �32/2π = 4.5 MHz, �21/2π = 1 MHz,
�31/2π = 1.5 MHz, γrl/2π � 1 kHz, γdp/2π � 0.1 MHz, ϕL =
2π/7, and ϕR = 9π/7.

�p/2π � 100 MHz. The time-domain signal is scanned from
0 to 20 µs with a step size of 0.01 µs.

According to Eq. (5), each enantiomer has nine peaks in the
2D spectrum in Fig. 2(c) at locations (ω′

1 + Eα
j′ ,−ω′

1 − Eα
j ).

Those nine peaks form a grouped pattern, with three diag-
onal peaks resulting in six off-diagonal ones. The lack of
off-diagonal correspondence between any two diagonal peaks
indicates that they belong to opposite chiralities. For instance,
nine peaks enclosed by red lines in Fig. 2(c) share the same
chirality (i.e., left-handed chirality), and the other nine peaks
enclosed by orange lines share the opposite chirality (i.e.,
right-hand chirality). We note that such a direct categorization
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is not possible within a single 1D spectrum [e.g., the one in
Fig. 2(b)] without an additional procedure [26,29].

We remark that the distinct nine-peak pattern is the general
case and different patterns with fewer than nine peaks may
appear due to the degeneracy of Eα

j [27] or the inequality of
|nα

1 j |2. Nevertheless, the chirality categorization can always be
achieved by referring the off-diagonal peaks.

After the chirality categorization, the enantiomeric excess
ε = (NL − NR)/(NL + NR) of the chiral mixture is estimated
using the intensity ratio of the peaks in the 2D spectrum.
To clarify the notation used in our analysis, we denote the
amplitudes of the two strongest diagonal peaks belonging to
different enantiomers at locations (ωL,−ωL ) and (ωR,−ωR)
as KL and KR, where

Kα = NL|ÃL
(ωα,−ωα )| + NR|ÃR

(ωα,−ωα )|, (8)

where ωα = ω′
1 + Eα

2 , with EL
2 /2π = −1.060 MHz and

ER
2 /2π = 2.566 MHz. Since the peaks belonging to different

enantiomers are well separated, the left-handed enantiomer
makes very few contributions to KR and vice versa,
i.e., |ÃL

(ωL,−ωL )| � |ÃR
(ωL,−ωL )|, |ÃR

(ωR,−ωR)| �
|ÃL

(ωR,−ωR)|, and

Kα � Nα|Ãα
(ωα,−ωα )|. (9)

In the one-photon resonance case (� jl = 0) of the
CTLS, the enantiopure signal intensities are always equal,
|ÃL

(ωL,−ωL )| = |ÃR
(ωR,−ωR)|, due to the equality of the

absolute value [27] of the corresponding transformation-
matrix elements |nL

1 j | = |nR
1 j |. The enantiomeric excess is

estimated using the equation εe = (KL − KR)/(KL + KR).
However, in the general three-photon resonance

case (�21 + �32 = �31), the absolute values of the
transformation-matrix elements are typically not equal
and are often unknown beforehand. Therefore, we use
the racemic mixture of chiral molecules, which is easily
accessible and readily available, as the reference sample to
obtain the parameter

λ = K rm
L

K rm
R

, (10)

and the enantiomeric excess is estimated as

εe = KL − λKR

KL + λKR
. (11)

We demonstrate the numerical estimation error δ = εe − ε as
a function of ε in Fig. 2(d), and we observe that the absolute
value of the error is consistently less than 0.5 × 10−2.

In our previous work [27], three one-photon resonances
(a special case of the three-photon resonance) of the CTLS
were utilized. Such a condition demands that one know the
energy levels of the investigated chiral molecule precisely and
possesses three microwave fields with specific frequencies,
which remains challenging for most molecules. When the
energy levels of the chiral molecules are only roughly known,
the three driving fields will typically couple to the correspond-
ing transitions with slight detunings, breaking the one-photon
resonance condition. In such a case, we demonstrated in
this section that three-photon resonance of the CTLS can be

used and our method remains applicable for enantiodetec-
tion. Compared with the one-photon resonance condition, the
three-photon resonance merely demands precise frequency
control of the driving fields to satisfy the relation ν21 + ν32 =
ν31, making it more easily attainable in experimental prac-
tice. In addition, we remark that three-photon resonance is
a necessity in our method for the CTLS to yield consistent
chirality-dependent energy shifts.

III. BROADBAND PROBE PULSE

In the above discussion, we have assumed that only one
transition |gα〉 ↔ |eα

1 〉 is induced by the probe pulses with
the narrow-band assumption. However, in experimental con-
ditions, the pulse bandwidth is usually much broader, on
the order of several terahertz [39–41], which means that all
three transitions |gα〉 ↔ |eα

j 〉 may be induced (if the selec-
tion rule [32,34,35] permits). Despite the specifically chosen
working states, some other redundant states can get involved
in the probing process as noise.

We prove in this section that the chiral molecules are
still distinguishable in the 2D spectrum even if more than
one transition is induced by the probe pulses. Furthermore,
the influence of other redundant states is eliminated by the
chop-detection method, which is typically used in optical
experiments [39–41].

A. Inducing transitions to multiple excited working states

Instead of the narrow-band assumption, we here and in the
following assume that the bandwidth of the probe pulses is
so broad that all transitions |gα〉 ↔ |eα

j 〉 are nearly resonantly
induced [52]. Thus, the Hamiltonian of the system within the
pulse duration is given in the interaction picture with respect
to Hα

0 as

V α
p,3e =

∑
j

�α
p, je

i�kp·�r∣∣eα
j

〉〈
gα| + H.c., (12)

and the rephasing signal is correspondingly modified as

Aα
3e(τ, t ) = [

N α
a,0

]2N α
b,0

∑
m,m′

[
βα

a,m

]∗
βα

b,m′

×
∑

j,l

[
nα

l j

]∗
nα

m jN α
b,l

[
βα

b,l

]∗

×
∑
j′,l ′

nα
l ′ j′

[
nα

m′ j′
]∗

e−i(ω′
l′ +Eα

j′ )t e−
t

× ei(ω′
l +ω′

m′ −ω′
l′+Eα

j )τ e−
τμα
0l ′ . (13)

Here, μα
0 j and �α

p, j are transition dipole moments and
Rabi frequencies corresponding to transitions |gα〉 ↔ |eα

j 〉,
βα

p, j = −i�α
p, jδtp are transition amplitudes, and N α

p, j = (1 +
|βα

p, j |2)−1/2 and N α
p,0 = (1 + ∑

j |βα
p, j |2)−1/2 are normalized

constants. We specify the transition dipole moments as μL
01 =

μR
01 = μ01, μL

02 = −μR
02 = μ02, and μL

03 = −μR
03 = μ03 to

fulfill the cyclic conditions of the new cyclic structures formed
by levels |gα〉, |eα

j 〉, and |eα
j′ 〉 ( j �= j′). For the special case

with the selection rule considered, one or two of the transitions
|gα〉 ↔ |eα

j 〉 may be forbidden, i.e., μ0 j = 0. Especially, when
two of the three transitions are forbidden, the rephasing signal
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FIG. 3. (a) The 2D spectrum of the racemic mixture of gaseous
1,2-propanediol when both transitions |gα〉 ↔ |eα

1 〉 and |gα〉 ↔ |eα
2 〉

are induced by the probe pulses. (b) The error of the estimation of
the enantiomeric excess estimated by the intensity ratio of the peaks
denoted in (a). In the simulation, the Rabi frequencies between the
ground state and the excited states are chosen to be �L

p,1 = �R
p,1 =

2π × 100 MHz and �L
p,2 = −�R

p,2 = 2π × 100 MHz, and the tran-
sition |gα〉 ↔ |eα

3 〉 is forbidden. The other parameters are the same as
those in Fig. 2.

in Eq. (13) retains the one in Eq. (5) where only one transition
is considered. We note that the phases accumulated during the
pulse interaction are neglected in Eq. (13) because of the short
duration of the pulses (see the Appendix for detailed result).

The 2D spectrum is obtained by Fourier transform-
ing Aα

3e(τ, t ) with respect to τ and t . We still zoom in
around (ω′

1,−ω′
1), where the peaks correspond to terms with

{l, l ′, m′} = 1 in Eq. (13). The phase factors containing τ and
t of such terms are exactly the same as those in Eq. (5).
Thus, the peaks still locate at positions (ω′

1 + Eα
j′ ,−ω′

1 − Eα
j )

even though broadband probe pulses are applied. However,
the peak amplitudes change due to the different interaction.

The simulated 2D spectrum of the racemic mixture
with two transitions |gα〉 ↔ |eα

1 〉 and |gα〉 ↔ |eα
2 〉 induced is

presented in Fig. 3(a) by taking the working states of 1,2-
propanediol as |g〉 = |vg〉|00,0,0〉, |e1〉 = |ve〉|11,1,1〉, |e2〉 =
|ve〉|11,0,1〉, and |e3〉 = |ve〉|22,0,1〉.

The transition frequencies in the CTLS are ω21/2π �
846.79 MHz, ω31/2π � 29.31 GHz, and ω32/2π �
28.46 GHz [49,50]. We maintain the same assumptions
regarding the detunings, Rabi frequencies, and overall phases
of the CTLS as described in Sec. II. However, we modify
the assumption of the probe pulses to have a bandwidth of
δν/2π � 0.9 THz (with duration δtp � 1 ps) and central
frequency of νp/2π � 4.33 THz. With such a broad band-
width, all three transitions |gα〉 ↔ |eα

j 〉 are covered, but the

transition |gα〉 ↔ |eα
3 〉 is forbidden since �J = 2 [32,34,35].

Moreover, we take �L
p,1 = �R

p,1 = 2π × 100 MHz and
�L

p,2 = −�R
p,2 = 2π × 100 MHz.

To determine the enantiomeric excess, we also denote the
amplitudes of the two strongest diagonal peaks belonging
to different enantiomers as KL and KR in Fig. 3(a). These
two peaks locate at (ω′

L,−ω′
L ) and (ω′

R,−ω′
R), respectively,

where ω′
L = ω′

1 + EL
3 and ω′

R = ω′
1 + ER

1 , with EL
3 /2π =

8.861 MHz and ER
1 /2π = −7.145 MHz. The estimation of

enantiomeric excess is obtained using Eq. (11) by taking the
racemic mixture as the reference. Figure 3(b) shows that the
errors of such estimation are still well below 1 × 10−2 in most
regions even with broadband probe pulses.

B. Inducing transitions to redundant excited states

Apart from the chosen working states, real chiral molecules
have complex rotational levels [41], which will yield massive
redundant peaks on the 2D spectrum, disturbing the catego-
rization of the chirality of the peaks. For the case in Sec. III A,
the transition between the ground state and a redundant ex-
cited state |erd〉 = |ve〉|10,1,1〉 could also be induced by the
probe pulses. Such a state will not introduce an additional
cyclic loop since the transition frequencies between |erd〉 and
|eα

j 〉 (2π × 4.89 GHz, 2π × 5.74 GHz, and 2π × 34.20 GHz)
are all significantly nonresonant with the frequencies of the
driving fields. We take into account this redundant state and
modify the Hamiltonian within the pulse duration in the inter-
action picture with respect to Hα

0 as V α
p,me = V α

p,3e + V α
rd , where

V α
rd = �p,rdei�kp·�r∣∣eα

rd

〉〈gα| + H.c. (14)

and �p,rd is the Rabi frequency corresponding to the transi-
tion |gα〉 ↔ |eα

rd〉. Given this Hamiltonian, the final rephasing
signal is Aα

me = Aα
3e + Aα

rd1 + Aα
rd2, with

Aα
rd1(τ, t ) = [

N α
a,0

]2N α
b,0Nb,rdβ

∗
a,rd|βb,rd|2eiωrdτ e−
τ

× e−iωrdt e−
tμrd (15)

and

Aα
rd2(τ, t ) = [

N α
a,0

]2N α
b,0Nb,rd[βa,rdβb,rd]∗

×
∑

m

βα
b,m

∑
j,l

nα
l j

[
nα

m j

]∗
e−i(ω′

l +Eα
j )t e−
t

× ei(ωrd+ω′
m−ω′

l )τ e−
τμα
0l

+ [
N α

a,0

]2N α
b,0βb,rd

∑
m

[
βα

a,m

]∗ ∑
j,l

N α
b,l

[
βα

b,l

]∗

× [
nα

l j

]∗
nα

m je
i(ω′

l +Eα
j )τ e−
τ e−iωrdt e−
tμrd, (16)

where ωrd is the eigenenergy of the redundant level
|eα

rd〉; βp,rd = −i�p,rdδtp is the transition amplitude; N α
p, j =

(1 + |βα
p, j |2)−1/2, Np,rd = (1 + |βp,rd|2)−1/2, and N α

p,0 = (1 +
|βp,rd|2 + ∑

j |βα
p, j |2)−1/2 are the normalized constants; and

μα
rd = μrd is the transition dipole moment corresponding to

the transition |gα〉 ↔ |eα
rd〉.

According to Aα
rd1(τ, t ) in Eq. (15), there is an addi-

tional diagonal peak at location (ωrd,−ωrd ) in the Fourier-
transformed 2D spectrum. This peak has no chiral feature
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FIG. 4. (a) Chop-detected 2D spectrum of the racemic mixture
of gaseous 1,2-propanediol. The deep negative peak at the center
corresponds to the free eigenstate |eα

1 〉 of 1,2-propanediol. (b) The
truncated 2D spectrum of (a) neglecting all the negative values.
(c) The error of the estimated enantiomeric excess with chop detec-
tion and truncation. For the simulation, the parameters here are taken
to be the same as those in Fig. 3.

(N L
p,0 = N R

p,0) and is not affected by the driving fields in the
CTLS. We thus eliminate it through chop detection [39–41]
by conducting two experiments with driving fields on and
off. The chop-detected signal is given in the frequency
domain as

Ã
α

chop(ωτ , ωt ) = ∣∣Ãα

3e,on(ωτ , ωt )
∣∣ − ∣∣Ãα

3e,off (ωτ , ωt )
∣∣

+ ∣∣Ãα

rd2,on(ωτ , ωt )
∣∣ − ∣∣Ãα

rd2,off (ωτ , ωt )
∣∣.
(17)

The two terms |Ãα

rd2,on(ωτ , ωt )| and |Ãα

rd2,off (ωτ , ωt )| have
only off-diagonal peaks and thus would not disturb the chi-
rality categorization of the diagonal peaks.

Figure 4(a) shows the chop-detected 2D spectrum of the
racemic mixture. On the spectrum, a deep negative peak

is located at (ω′
1,−ω′

1). This negative peak corresponds to
the subtraction of |Ãα

3e,off (ωτ , ωt )| and strongly overshadows
other chirality-dependent peaks. To eliminate its disturbance,
we make a truncation in Ã

α

chop(ωτ , ωt ) by neglecting all the
negative values, and the result is presented in Fig. 4(b). The
truncated spectrum is almost the same as the one in Fig. 3(a)
and still gives good estimations of the enantiomeric excess
with sufficiently low errors, e.g., those below 1 × 10−2 in
Fig. 4(c).

IV. SUMMARY AND DISCUSSION

This study has successfully demonstrated the effectiveness
of the enantiodetection method via 2D spectroscopy [27]
under more general experimental conditions. The previous
method [27] was proposed with a strict condition of one-
photon resonance in the CTLS and a narrowband probe-pulse
assumption, limiting its applicability. However, in this study,
we have shown that even with three-photon resonance in the
CTLS and broadband probe pulses, different enantiomers can
still produce chirality-dependent peaks in the 2D spectrum. It
is important to note that identifying the chirality categoriza-
tion of the peaks is not possible in the 1D spectrum without
further information. Therefore, this method provides a signif-
icant advantage over traditional techniques. Additionally, we
have found that the peak intensities for different enantiomers
are not equal due to the inequality of the transformation matrix
under three-photon resonance. Therefore, the enantiomeric
excess of the chiral mixture is estimated using the racemic
mixture as the reference.

Besides the advantage of distinguishing the chiral signal,
our method also presents adequate accuracy for determining
the enantiomeric excess. We have shown with numerical sim-
ulation that the error in our estimation of the enantiomeric
excess is typically below 0.01, comparable to what has
been reported in three-wave mixing approaches [22,23], e.g.,
0.025 ± 0.005 for a chiral mixture of gaseous 1,2-propanediol
with a known 0.02 enantiomeric excess [23].

Real systems of chiral molecules contain massive redun-
dant levels that can disturb the chirality categorization. To
eliminate this disturbance, we have implemented chop detec-
tion and truncation. These methods have proven to be effective
in reducing the influence of redundant levels and ensuring
accurate enantiodetection results.

Overall, this study has provided valuable insights into
the effectiveness of the enantiodetection method via 2D
spectroscopy and its applicability under more general experi-
mental conditions.
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APPENDIX: CALCULATION OF THE FINAL STATE AND POLARIZATION WITHOUT A REDUNDANT STATE

In this Appendix, we calculate the final state and polarization of the system under three-photon resonance with broadband
probe pulses inducing all three working transitions |gα〉 ↔ |eα

j 〉.
For initial state |gα〉 or |eα

l 〉 at time s′ of the system, the evolved states after an evolution time s without the probe pulses are
given in the Schrödinger picture as

U α
cyc(s + s′, s′)|gα〉 = |gα〉, (A1)

U α
cyc(s + s′,s′)

∣∣eα
l

〉 =
∑
j, j′

nα
j′ j

[
nα

l j

]∗
e−iEα

j se−iω′
j′ (s+s′ )eiω′

l s
′ ∣∣eα

j′
〉
, (A2)

where U α
cyc(s + s′, s′) = exp[−iH ′

α (s + s′)] exp[−iV α
cycs] exp[iH ′

αs′] is the evolution operator outside the pulse duration.
On the other hand, the evolved states after the whole pulse duration are given in the Schrödinger picture as

U α
p,3e|gα〉 = cos

(
�α

p,3eδtp
)|gα〉 − i sin

(
�α

p,3eδtp
)
ei�kp·�r

∑
j

�α
p, j

�α
p,3e

e−iω jδtp
∣∣eα

j

〉
, (A3)

U α
p,3e

∣∣eα
j

〉 = − i
�α

p, j

�α
p,3e

sin
(
�α

p,3eδtp
)
e−i�kp·�r |gα〉 +

⎡
⎣1 −

(
�α

p, j

�α
p,3e

)2[
1 − cos

(
�α

p,3eδtp
)]⎤⎦e−iω jδtp

∣∣eα
j

〉

+
∑
l �= j

⎡
⎣−�α

p, j�
α
p,l(

�α
p,3e

)2

[
1 − cos

(
�α

p,3eδtp
)]⎤⎦e−iωl δtp

∣∣eα
l

〉
, (A4)

where �α
p,3e =

√
�2

p,1 + �2
p,2 + �2

p,3 and U α
p,3e = exp[−iHα

0 δtp] exp[−iV α
p,3eδtp] is the evolution operator within the pulse

duration. In the perturbative regime, i.e., |�α
p,3eδtp| � 1, the evolved states are approximately

U α
p,3e|gα〉 = N α

p,0

⎛
⎝|gα〉 + ei�kp·�r

∑
j

βα
p, je

−iω jδtp
∣∣eα

j

〉⎞⎠, (A5)

U α
p,3e

∣∣eα
j

〉 = N α
p, j

(∣∣eα
j

〉 + e−i�kp·�rβα
p, je

−iω jδtp |gα〉
)
. (A6)

Here, βα
p, j = −i�α

p, jδtp are transition amplitudes, and N α
p, j = (1 + |βα

p, j |2)−1/2 and N α
p,0 = (1 + ∑

j |βα
p, j |2)−1/2 are normalized

constants.
In our proposed experiment with the sequence of two probe pulses, the final state of the system with initial state |ψα

0 〉 = |gα〉
is calculated as ∣∣ψα

3e(τ, t )
〉 = U α

cyc(τ + t + 2δtp, τ + 2δtp)U α
b U α

cyc(τ + δtp, δtp)U α
a

∣∣ψα
0

〉
= N α

a,0N α
b,0ei�kb·�r

∑
m

βα
b,me−iωmδtp

∑
j,l

nα
l j

[
nα

m j

]∗
e−iEα

j t e−iω′
l (τ+t+2δtp)eiω′

m (τ+2δtp)
∣∣eα

l

〉

+ N α
a,0ei(�ka−�kb)·�r ∑

m

βα
a,me−iωmδtp

∑
j,l

nα
l j

[
nα

m j

]∗
e−iEα

j τ e−iω′
l (τ+δtp)eiω′

mδtpN α
b,lβ

α
b,l |gα〉

+ N α
a,0ei�ka·�r

∑
m

βα
a,me−iωmδtp

∑
j,l

nα
l j

[
nα

m j

]∗
e−iEα

j τ e−iω′
l (τ+δtp)eiω′

mδtpN α
b,l e

−iωl δtp

×
∑
j′,l ′

nα
l ′ j′

[
nα

l j′
]∗

e−iEα
j′ t e−iω′

l′ (τ+t+2δtp)eiω′
l (τ+2δtp)

∣∣eα
l ′
〉 + N α

a,0N α
b,0|gα〉. (A7)

With the final state, the polarization after the delay time τ and data-collecting time t is given by Pα
3e(τ, t ) =

〈ψα
3e(τ, t )|μ̂α|ψα

3e(τ, t )〉. Adding the decoherence during τ and t , the amplitude of the rephasing part of the final polarization

with phase factor ei(−�ka+2�kb)·�r is

Aα
3e(τ, t ) = [

N α
a,0

]2N α
b,0

∑
m,m′

[
βα

a,m

]∗
βα

b,m′ei(ωm−ωm′ )δtp
∑

j,l

[
nα

l j

]∗
nα

m je
i(ω′

l −ω′
m )δtpN α

b,l

[
βα

b,l

]∗

×
∑
j′,l ′

nα
l ′ j′

[
nα

m′ j′
]∗

e−i(ω′
l′ +Eα

j′ )t e−
t ei(ω′
l +ω′

m′−ω′
l′+Eα

j )τ e−
τ e2i(ω′
m′ −ω′

l′ )δtpμα
0l ′ . (A8)
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The result here is similar to Eq. (13), except that the phase fac-
tors exp[i(ωi − ω j )δtp] and exp[i(ω′

i − ω′
j )δtp] are neglected

there because the pulse duration is typically so short that

{|(ωi − ω j )δtp|, |(ω′
i − ω′

j )δtp|} � 1. Letting μα
02 and μα

03 be
zero (i.e., only the transition |gα〉 ↔ |eα

1 〉 can be induced by
the probe pulses), Eq. (A8) thus matches Eq. (5).
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