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Relativistic calculation of nondipole effects in high-order harmonic generation
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We present results of relativistic calculations of even-order harmonic generation from various atomic targets.
The even-order harmonics appear due to the relativistic nondipole effects. We take these relativistic effects into
account by using an approach based on the solution of the time-dependent Dirac equation. The spectra of the
nondipole even harmonics look qualitatively similar to the spectra of the dipole harmonics obeying the same
classical cutoff rule. The temporal dynamics of the formation of the nondipole harmonics is, however, distinctly
different from the process of dipole harmonics formation. Even-order harmonics emission is strongly suppressed
at the beginning of the laser pulse, and the emission times of the nondipole harmonics are shifted with respect
to the bursts of the dipole emission. These features are partly explained by a simple modification of the classical
three-step model which takes into account selection rules governing the emission of harmonic photons.
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I. INTRODUCTION

One can expect relativistic effects to play an important
role in the dynamics of the processes of atomic or molecu-
lar interactions with strong laser pulses for laser intensities
over 1018 W/cm2 [1], when, with increasing ponderomotive
energy, electron velocity can approach the speed of light in
the vacuum. It has been realized since the pioneering paper
by Reiss [2], however, that relativistic effects may reveal
themselves even for moderately intense (1013–1014 W/cm2)
low-frequency infrared (IR) laser fields. For instance, even for
the IR laser fields of intensity of the order of 1013 W/cm2,
the relativistic effects are visible in the photoelectron spec-
tra [3–9] in the tunneling regime of ionization, characterized
by the values γ � 1, where γ = ω

√
2|Ip/E0 is the Keldysh

parameter [10], and ω, E0, and Ip are the field frequency,
field strength, and ionization potential of the target system
expressed in atomic units. These relativistic nondipole effects
are due to the influence of the magnetic field component of
the laser pulse which induces a non-negligible momentum
transfer to the photoelectrons [3,11]. Alternatively, if we pre-
fer the photon picture of light, one might say that an IR
photon carries small momentum, but a large number of the
photons participating in the process of the tunneling ionization
[12] deliver non-negligible momentum to the ionized electron
[13,14].

The momentum delivered by the photons to the photoelec-
tron was measured experimentally under the typical parame-
ters of the tunneling ionization regime [11]. This momentum
manifests itself, on average, as a shift of the photoelectron
momentum distributions (PMDs) in the pulse propagation
direction. A more detailed picture, which emerges as a result
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of the complex interplay of the magnetic and Coulomb forces,
includes the so-called direct electrons which never recollide
with the parent ion and are driven in the direction of the laser
photon momentum, and the slow electrons which experience
recollisions and may acquire momentum opposite to the pho-
ton momentum [5].

Theoretical study of these effects clearly necessitates meth-
ods which go beyond the commonly used nonrelativistic
dipole approximation. A number of theoretical procedures
allowing to consider relativistic nondipole effects have been
described in the literature, including the relativistic strong-
field approximation [8,9,15,16], time-dependent Schrödinger
equation (TDSE) with nondipole corrections [6,13,14,17], an
approach based on the nondipole strong-field-approximation
Hamiltonian [18], and the time-dependent Dirac equa-
tion (TDDE) [19–22].

The nondipole effects manifest themselves as well in other
processes occurring when atoms or molecules interact with
laser fields. The process that interests us in the present work
is the process of the high-order harmonic generation (HHG).
The nondipole effects are known to produce several modifica-
tions in the HHG spectra. It was found [23] that the nondipole
interactions lead to decrease of harmonic intensity and shift of
odd-order harmonics in the spectra. A detailed investigation of
the effect of the pulse magnetic field on harmonic spectra was
reported in Refs. [24–26]. It was found [24] that the nondipole
magnetic field effects result in the emission of photons po-
larized along the propagation direction which, for the laser
pulse wavelength of 800 nm and intensity of the order of
5 × 1015 W/cm2, is several orders of magnitude weaker than
the photon emission polarized parallel to the driving pulse
polarization direction. For stronger pulses with intensities of
the order of 1017 W/cm2, the magnetic field effects start play-
ing a crucial role [26]. Electron drift in the laser propagation
direction due to the magnetic-field component of the laser
pulse prevents recollisions and hence, as one could expect on
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the basis of the picture provided by the celebrated three-step
model of HHG [27,28], leads to the decrease of the harmonic
emission.

Perhaps one of the most striking manifestations of the
nondipole effects is the appearance of even-order harmonics
in the HHG spectra [29–31], presenting an example of a rela-
tively small perturbation producing not only relatively minor
quantitative modifications of the spectra, but introducing a
qualitative change: harmonics with frequencies forbidden in
the dipole approximation. The appearance of the even-order
harmonics can be understood as a result of the breakup of
the well-known symmetry which the electron trajectories re-
sponsible for the emission of the harmonic photons exhibit
in the dipole approximation [27]. Magnetic field effects break
this symmetry, and thus make possible the generation of even-
order harmonics. These harmonics were studied theoretically
in Ref. [30], using perturbative treatment of the nondipole
effects.

In the present paper we report a systematic theoretical
study of the nondipole effects, in particular generation of the
even-order harmonics, from various atomic targets. We use the
TDDE as our main calculational tool, based on the previously
developed procedure for the numerical solution of the time-
dependent Dirac equation [21,22]. The approach based on the
TDDE provides a complete nonperturbative description of the
nondipole, as well as other relativistic effects.

Atomic units with h̄ = 1, e = 1, m = 1, and c ≈ 137.036
(here e and m are charge and mass of the electron, c the speed
of light) are used throughout the paper.

II. THEORY

A. Numerical solution to the time-dependent Dirac equation

We solve the TDDE,

i
∂�(r, t )

∂t
= Ĥ�(r, t ), (1)

following the procedure we described in Refs. [21,22], which
we briefly recapitulate below for the reader’s convenience. In
Eq. (1) �(r, t ) is a four-component bispinor and the Hamilto-
nian operator has the form

Ĥ = Ĥatom + Ĥint, (2)

with

Ĥatom = cα · p̂ + c2(β − I ) + I V (r) (3)

and

Ĥint = cα · Â. (4)

In Eq. (3), α = (0 σ

σ 0), β = (I 0
0 −I), I = (I 0

0 I), σ are
Pauli matrices, 0 and I are 2 × 2 null and identity matrices,
V (r) is the atomic potential, and c = 137.036 the speed of
light. We subtracted from the field-free atomic Hamiltonian
(3) the constant term Ic2 corresponding to the rest mass energy
of the electron.

We use a laser pulse linearly polarized in z and propagating
in the x direction. The vector potential of the pulse is defined

in terms of the pulse electric field:

A(x, t ) = −êz

∫ u

0
E (τ ) dτ, (5)

where u = t − x/c. At any given point in space the pulse
has a finite duration T1 so that E (τ ) in Eq. (5) is nonzero
only for 0 < τ < T1. As targets, we will consider below a
model atom with a short-range (SR) Yukawa-type potential
V (r) = −1.903e−r/r, hydrogen atom, and helium atom de-
scribed by means of an effective potential [32]. The target
atom is initially in the ground s state |φ0〉 with an ionization
potential (IP) of 0.5 a.u. for the hydrogen and Yukawa atoms
and IP of 0.902 a.u. for the He atom.

The solution to Eq. (1) is expanded as a series in the basis
bispinors:

�(r, t ) =
∑

j
l= j±1/2

j∑
M=− j

� jlM (r, t ), (6)

where

� jlM (r, t ) =
(

g jlM (r, t )	 jlM (n)
f jlM (r, t )	 jl ′M (n)

)
, (7)

and the two-component spherical spinors are defined as

	 jlM (n) = (
C jM

l M− 1
2

1
2

1
2

Y
l,M− 1

2
(n)

C jM

l M+ 1
2

1
2 − 1

2
Y

l,M+ 1
2

(n)
) (here C jM

lm 1
2 μ

are the Clebsch-

Gordan coefficients, Ylm(n) spherical harmonics, and n =
r/r). Parameters l and l ′ in Eq. (6) must satisfy the relation
l + l ′ = 2 j.

To take into account the nondipole effects due to the spatial
dependence of the laser fields, vector potential (5) is ex-
panded in a series of spherical harmonics at every time step
of the integration procedure. Substituting expansion (6) and
the expansion for the vector potential in the TDDE, Eq. (1),
and using well-known properties of spherical spinors [33,34],
one obtains a system of coupled differential equations for
the radial functions g jlM (r, t ) and f jlM (r, t ) in Eq. (7). This
system has been solved using a relativistic generalization of
the well-known matrix iteration method (MIM) [35], which
we described in detail in Ref. [21].

Appropriate choice of the propagation technique is essen-
tial, as the Dirac equation, as it is well known, possesses some
properties which are absent in the case of the nonrelativistic
wave equation. These properties are due to the presence of the
continuum of the negative-energy states in the Dirac Hamil-
tonian which makes the Dirac Hamiltonian unbounded from
below. One problem which this fact entails is the well-known
problem of the collapse to the negative-energy continuum
[36], which may manifest itself when basis set methods are
used to construct approximations to the bound states of the
Dirac Hamiltonian [36]. We avoid this problem, since we do
not rely on the basis set methods. The initial state of the
system is prepared in our calculation by solving numerically
the eigenvalue equation for the field-free Dirac Hamiltonian
employing the shooting method. A related problem is the
so-called Zitterbewegung problem [37]. The presence of a
superposition of the states with positive and negative energies
implies that a solution to the TDDE should exhibit very fast
oscillations with characteristic frequencies of the order of c2.
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Such oscillations are indeed present and we can reproduce
them in the framework of our numerical procedure by using
a sufficiently small integration time step 
 [21]. We had to
use the time step 
 of the order of 10−6 a.u. in Ref. [21]
to reproduce these oscillations. Use of such small values for

, if it were imperative, would make any practical calcula-
tions impossible, of course. Fortunately, one can bypass this
problem by using an appropriate time-propagation technique.
We discussed this issue in greater detail in Refs. [21,38]. For
the reader’s convenience we present a core of the argument
below. From the purely numerical point of view, the presence
of the fast oscillating terms in a system of ordinary differen-
tial equations (ODEs) gives us an example of a numerically
stiff system of ODEs, i.e., a system in which vastly different
timescales are present. To solve such a system of ODEs we
must use a stable integration method [39], which ensures that
while the numerical solution does not reproduce very fast
oscillations, it describes accurately the overall behavior of the
true solution. The integration procedure that we use provides
such a stability. We can illustrate this point using a simple
example of a stiff system of two ODEs:

iẏ = A · y, (8)

with Hermitian matrix A = diag(λ1(t ), λ2(t )). To mimic the
problem at hand let us assume that λ1 is of order 1, while
λ2 has a large negative value on the interval of time that we
consider. The short-time propagator in the MIM is a unitary
Crank-Nicolson (CN) propagator [40], which relates solution
vectors yn+1 = y(tn+1) and yn = y(tn) at times tn and tn+1 =
tn + 
 as follows:

yn+1 = 1 − i

2 A(tn+1/2)

1 + i

2 A(tn+1/2)

yn, (9)

where tn+1/2 = tn + 
/2. One can see from Eq. (9) that if
at the nth step of the propagation the second component of
the vector y acquires a numerical error δy(2)

n , the unitarity of
the CN propagation matrix in Eq. (9) makes this error remain
bounded for m > n.

Spatial variables in the coupled differential equations for
the radial functions gjlM (r, t ) and f jlM (r, t ) were discretized
on a grid with the step size δr = 0.05 a.u., the radial variable
was restricted to an interval (0, Rmax), with Rmax = 400 a.u.,
and angular momenta j up to 70 were included in expansion
(6) in the calculations below. The propagation time step 


was 0.05 a.u. Before proceeding to the description of the
results of this calculation, it is instructive, however, to discuss
an alternative treatment of the nondipole effects based on
the leading-order perturbation theory (LOPT) expansion, as it
provides a more transparent physical picture of the nondipole
effects than the complete Dirac equation. The LOPT calcula-
tion described below was also used as an accuracy test for our
solution to the TDDE.

B. LOPT treatment of the nondipole effects

We are interested in a LOPT solution to the TDDE consid-
ering the nondipole effects as relativistic corrections.

The leading-order relativistic corrections describing the
nondipole effects in atom-field interaction can be obtained
by expanding the minimal coupling atom-field interaction

Hamiltonian [5,41,42] in the velocity gauge,

Ĥmin
int (t ) = p̂ · A(r, t ) + Â

2
(r, t )

2
, (10)

in powers of c−1 [6]:

Ĥmin(t ) = p̂zA(t ) + v̂zxE (t )

c
+ A2(t )

2
+ O(c−2) , (11)

where E (t ) = − ∂A(t )
∂t is the electric field of the pulse, and the

velocity operator v̂ = p̂ + A(t ) has been introduced. The last
term on the right-hand side (rhs) of Eq. (11) is a function of
time only and can be removed by a unitary transformation of
the wave function.

Including spin effects in the interaction Hamiltonian is not
necessary, if we are interested in the effects of the leading
order in powers of c−1 [5,23]. The fact that the spin degrees of
freedom can be neglected in the leading order of the c−1 ex-
pansion can be understood using the semiclassical picture of
the spin effects, in which additional force due to the presence
of the spin degrees of freedom, acting on the electron, is F =
−∇Um, where Um = −μ · H , the energy of the spin–magnetic
field interaction. Here H is the magnetic field and μ is the
electron’s magnetic moment related to the expectation value
of the electron’s spin, μ = −2S/c. The spatial gradient of H
introduces an additional factor of c−1, making contribution
of the force F an effect of higher order in c−1. As for the
relativistic corrections to the field-free atomic Hamiltonian,
the so-called Breit-Pauli Hamiltonian [42], it adds terms of
the order of c−2 to the nonrelativistic atomic Hamiltonian.
We do not have, therefore, to include these corrections in the
LOPT treatment. To the leading order in powers of the c−1

expansion, the dynamics of the system can thus be described
by the TDSE:

i
∂�(r, t )

∂t
= (Ĥatom + Ĥd(t ) + Ĥnd(t ))�(r, t ), (12)

where

Ĥatom = p̂2

2
+ V (r) (13)

is the atomic field-free Hamiltonian,

Ĥd(t ) = p̂zA(t ) (14)

is the dipole part of the atom-field interaction, and

Ĥnd(t ) = v̂zxE (t )

c
(15)

is the nondipole part of the atom-field interaction containing
the effects of the order of c−1.

It is easy to check that the LOPT solution to Eq. (12), with
the nondipole term (15) considered as a perturbation, can be
written as

�LOPT(r, t ) = �d(r, t ) + �
(1)
nd (r, t ), (16)

where the LOPT nondipole correction is given by the expres-
sion

�
(1)
nd (r, t ) = −i

∫ t

0
Ûd(t, τ )Ĥnd(τ )�d(r, τ ) dτ. (17)
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As can be seen from Eq. (15) for the operator Ĥnd this cor-
rection is of the order of c−1. In Eqs. (16) and (17) �d(r, t )
is the zero-order solution to the nonrelativistic TDSE taking
into account only the dipole part of the atom-field interaction,
and Ûd(t, τ ) is the evolution operator describing evolution of
the system driven by the nonrelativistic dipole Hamiltonian.
Ûd(t, τ ) satisfies the operator equation,

i
∂Ûd(t, τ )

∂t
= (Ĥatom + Ĥd(t ))Ûd(t, τ ), (18)

and the initial condition Ûd(τ, τ ) = Î . In practice, we need not
solve the operator equation (18). All we have to do to com-
pute the expression under the integral on the rhs of Eq. (16)
for given τ and t is to propagate first the initial-state wave
function on the interval (0, τ ) using the nonrelativistic TDSE
with Hamiltonian (14), obtaining thus a state vector �d(τ ).
We act then on this vector with the operator Ĥnd(τ ) and prop-
agate it further in time until the moment t . The nonrelativistic
TDSE was solved using the well-tested numerical procedure
described in Ref. [43].

C. Calculation of electron velocity and HHG spectra

Once the solution to the TDDE (1) is obtained, expectation
values of the electron velocity can be obtained as [44]

v(t ) = c〈�(t )|α|�(t )〉. (19)

Harmonic spectra can then be calculated using the usual
semiclassical approach, in which the spectral intensity of the
harmonic emission can be expressed in terms of the Fourier
transform of the electron’s velocity:

Sa(	) ∝
∣∣∣∣
∫ T1

0
va(t )W (t )ei	t dt

∣∣∣∣
2

, (20)

where va(t ) is either the x or z component of the electron
velocity for the nondipole and dipole harmonic intensities
Sx(	) and Sz(	), respectively. In the velocity form for the
harmonic intensity which we use here, we do not need to
introduce additional powers of harmonic frequency, which
would be present had we used length or acceleration forms
[45]. The factor W (t ) in Eq. (20) is the window function [46],
for which we employ the Hann form: W (t ) = sin2 ( πt

T1
).

The most noticeable effects that the relativistic nondipole
corrections produce are the appearance of harmonic pho-
tons polarized in the laser propagation direction [24–26] and
the appearance of even-order harmonics in the HHG spectra
[31,47]. The LOPT picture allows to explain these features
transparently. Substituting the expression of Eq. (16) for the
LOPT wave function into the matrix element,

〈�LOPT(t )|v̂|�LOPT(t )〉 ≈ x̂vx(t ) + ŷvy(t ) + ẑvz(t ), (21)

defining the leading-order contributions to the expectation
value of electron velocity, one obtains

vz(t ) = 〈�d(t )|v̂z|�d(t )〉. (22)

For the geometry we use, the evolution operator Ûd(t, τ )
commutes with l̂z the z components of the angular momentum;
i.e., it is a conserved quantity for the quantum evolution driven
by the dipole Hamiltonians (13) and (14). l̂z, therefore, has a

definite value lz = 0 in the state described by the wave func-
tion �d(t ), and the matrix element 〈�d(t )|v̂x|�d(t )〉 vanishes
because of the well-known dipole selection rules [42]. The
leading-order contribution to vx(t ) is, therefore, of the order
of c−1, and is given by the expression

vx(t ) = 〈�d(t )|v̂x|� (1)
nd (t )〉 + 〈� (1)

nd (t )|v̂x|�d(t )〉
= 2Re〈�d(t )|v̂x|� (1)

nd (t )〉

= 2Im

(∫ t

0
〈�d(t )| p̂xÛd(t, τ )Ĥnd(τ )|�d(τ )〉 dτ

)
.

(23)

In the last line of Eq. (23) we used expression (17) for
�

(1)
nd (t ). The same dipole selection rules [42] and the structure

of Eq. (17) ensure that the contribution of the order of c−1 to
vy(t ) is zero. The leading-order contribution of the nondipole
effects is, therefore, nonzero only for the x component of the
electron velocity. The orientation of the dipole velocity due to
this relativistic contribution results, thus, in the appearance of
the harmonic photons polarized in the propagation direction
in accordance with the observations made in Refs. [24–26].

As we mentioned above, the appearance of the even-
order harmonics can be understood as a result of violation
of the symmetry of the electron trajectories responsible for
the emission of harmonic photons in the dipole approxi-
mation [27]. From the LOPT perspective this effect can be
explained as follows. As one can see from Eqs. (14) and
(15), the dipole interaction operator (14) has odd parity, i.e.,
it couples states of different parities, while the nondipole
operator (15) has even parity. Employing a somewhat lousy
language, we might say that the presence of these two
atom-field interaction Hamiltonians can be described as the
presence of two kinds of photons: the “dipole” photons and
the “nondipole” photons, whose emission and absorption
are governed by the operators (14) and (15), respectively.
Using these notions and the LOPT expression for vx(t ) in
Eq. (23), the contribution of the nondipole interaction to the
formation of the N th-order harmonic can be described as
absorption of N − 1 “dipole” photons and one “nondipole”
photon, with subsequent recombination to the atomic ground
state accompanied by emission of a harmonic photon with
frequency Nω. Using the informal terminology which we
adopted, one might say that the emitted harmonic photon is
of the “dipole” nature since spontaneous emission satisfies
the dipole selection rules. Conservation of the total parity
for the combined system of atom and the “dipole” and the
“nondipole” photons implies then that N must necessarily
be even.

Besides providing a simple physical picture of the appear-
ance of even-order harmonics, the LOPT approach which we
described above can be used as a test of the accuracy of our
solution to the TDDE. To do such a test we performed cal-
culations of the expectation values of electron velocity using
TDDE and LOPT approaches for the cosine-pulse form shown
in Fig. 1, with the vector potential in Eq. (5) given by the
equation A(x, t ) = −ez

E0
ω

sin2 ( πu
T1

) sin ωu, where ω = 0.057
a.u., E0 = 0.0534 a.u., and u = t − x/c. A comparison of the
TDDE results obtained using Eq. (19) and the LOPT results
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FIG. 1. Pulse shapes E (t ) employed in the calculations.

obtained using Eq. (23) for the x component of electron veloc-
ity is shown in Fig. 2. The results of the LOPT treatment prove
to be virtually identical to the results of the TDDE calculation,
which is not surprising given that the relativistic corrections
could be expected to be small for the field parameters we
consider.

III. RESULTS

We report below results which we obtained from our
TDDE calculations for dipole Sz(	) and nondipole Sx(	)
harmonic intensities for different targets. HHG spectra were
obtained by computing electron velocity as prescribed by
Eq. (19) and using Eq. (20) to compute harmonic intensities.
Calculations were performed using the sine waveform shown
in Fig. 1 with the electric field given by the equation E (u) =
E0 sin2 (πu

T1 ) sin ωu. We report below results for the base fre-
quencies ω = 0.114 a.u. (wavelength of 400 nm) and ω =
0.057 a.u. (wavelength of 800 nm). In Fig. 3 we show HHG
spectra that we obtained for the driving pulse wavelength
λ = 400 nm and different field strengths for various targets.
Figure 3 shows both dipole Sz(	) and nondipole Sx(	)
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FIG. 2. Expectation value of the x component of the electron
velocity as a function of time obtained in TDDE and LOPT calcula-
tions. Cosine pulse with E0 = 0.0534 a.u., ω = 0.057 a.u., has been
used in the calculation.

harmonic intensities. The vertical lines in the figures show
positions of the classical cutoffs given by the well-known
3.17Up + Ip (here Up = E2

0 /4ω2 and Ip are ponderomotive
and ionization energies, respectively) rule of the three-step
model [27,28]. In Fig. 4 we zoom in on the parts of the
harmonic spectra more closely to demonstrate the presence
of odd- and even-order harmonics in the dipole and nondipole
spectra, respectively. Quite expectedly, the behavior of the
dipole intensity Sz(	) shown in Fig. 3 agrees very well with
the three-step model predictions, exhibiting a sharp drop in
magnitude after reaching the classical cutoff. The nondipole
Sx(	) spectra mimic this behavior very closely. This may be
not surprising if we make use again of the LOPT picture of
formation of the nondipole harmonics we presented above,
which relied on the notions of “dipole” and “nondipole” pho-
tons with operators describing their interactions with an atom
given by Eqs. (14) and (15), respectively. We remind that in
the framework of this picture the N th nondipole harmonic
is produced as a result of the absorption of N − 1 “dipole”
photons and one “nondipole” photon. As far as the harmonic
spectra are concerned, the mechanism responsible for the
formation of the nondipole harmonic emission differs thus
from the mechanism of the emission of the dipole harmon-
ics only in the replacement of one “dipole” photon with a
“nondipole” one. This replacement leads to the replacement of
the odd-order harmonics in the spectra by the even-order ones
and results in an overall drop in magnitude in the harmonic
spectra due to the presence of the additional factor of c−1 in
the nondipole interaction operator (15).

The energy and parity conservation considerations which
lead us to the general conclusions about the character of the
nondipole spectra do not tell us anything about temporal dy-
namics of the formation of the nondipole harmonics. We can
have a glimpse of this temporal dynamics by analyzing Gabor
transforms [48] of dipole and nondipole velocities:

Ta(	, t ) =
∫ T1

0
va(τ )�∗(t, τ,	)dτ, (24)

where �(t, τ,	) = exp {i	τ − (t − τ )2/2(x0T )2}, the pa-
rameter x0 determines resolution in the temporal domain, and
T is an optical cycle of the laser field. The Gabor transform, as
well as the closely related wavelet transform, allows us to take
a look simultaneously at both time and frequency domains,
and allows to determine, in particular, when different harmon-
ics are emitted [49–51]. We used x0 = 0.1 in the calculations
below. This value of x0 gives us rather poor resolution in the
frequency domain, but high resolution in the time domain,
which is of interest to us presently.

The absolute values |Ta(	, t )| for both dipole and
nondipole velocities are shown in Figs. 5 and 6 for the SR
Yukawa and hydrogen atoms. One can see that, dynamically,
the formation of dipole and nondipole harmonics proceeds
quite differently. For both Yukawa and hydrogen atoms,
systems emission of the nondipole harmonics is strongly sup-
pressed at the early stages of pulse development, and emission
times for the nondipole harmonics are shifted with respect to
the dipole radiation bursts. Such behavior could be anticipated
by looking at Fig. 2 which shows that the x component of the
velocity starts actually to respond to the field only for times
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FIG. 3. Dipole (dashed green) and nondipole (red solid) harmonic intensities for the pulse wavelength λ = 400 nm for the SR Yukawa,
hydrogen, and He atoms. Vertical dashed lines show cutoff positions.

approaching the midpoint of the pulse. The reason for this
could be traced back to the character of the fully quantum
expression for the velocity component vx in the second LOPT
equation (23), with time integration on the right-hand side of
this equation smoothing out high-frequency oscillations. To
elucidate this issue further we performed a simple classical
calculation of the emitted photon energy as a function of the
recombination time using the physical picture provided by the

three-step model. We assume that the electron is ionized at
the moment of time tion and returns to the parent ion at the
moment of time tret, emitting a harmonic photon with energy
Eret + Ip. As is usually assumed in the three-step model cal-
culations, we consider only the effect of the external field (5)
on the electron motion, neglecting completely the ionic po-
tential. The only difference between our calculation and the
traditional three-step model analysis of the harmonic emission
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FIG. 4. Dipole (dashed green) and nondipole (red solid) harmonic intensities for the pulse wavelength λ = 400 nm for harmonics with
orders n � 20 for the SR Yukawa and hydrogen atoms. Vertical solid and dashed lines show positions of odd- and even-order harmonics,
respectively.

is that we take into account effect of the Lorentz force due to
the magnetic field of the pulse. We simulate electron motion in
a plane [which is the (x, z) plane for the geometry we employ],
solving the set of the classical Newton equations, which for
the fields configuration, geometry, and atomic units system

we employ, can be written as

ẍ = −vz

c
E (t ),

z̈ = −E (t ) + vx

c
E (t ). (25)

FIG. 5. Gabor transform |T (	, t )| for the pulse wavelength λ = 400 nm and different field strengths for the SR Yukawa atom.
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FIG. 6. Gabor transform |T (	, t )| for the pulse wavelength λ = 400 nm and different field strengths for the hydrogen atom.

Following the prescription of the traditional three-step
model we solve Eqs. (25) with zero initial conditions imposed
at the ionization time: vx(tion ) = vz(tion ) = 0 and x(tion ) =
z(tion ) = 0. We assume that the electron trajectory returns to
the origin if, at the moment of time tret, the z coordinate of the
electron trajectory changes sign.

Figure 7(a) shows results of such a simulation, which qual-
itatively agree with the dynamics of the dipole harmonics
emission shown in Figs. 5 and 6, with bursts of harmonics
emission occurring every half cycle of the laser pulse. To
be able to apply this classical analysis to the emission of
the nondipole harmonics we must, however, introduce one
essentially quantum ingredient in the model described by the
classical equations (25). Emission of the nondipole radiation
differs from the emission of the dipole harmonics in one
important aspect. For the geometry we employ, the dipole
harmonics photon emission process satisfies the selection rule

M = 0, where M is the z projection of the electron angular
momentum. On the other hand, emission of the nondipole
harmonic photon, as can be seen from the LOPT analysis we
presented above, must satisfy the selection rule 
M = ±1.
This means that for the ground s state that we consider,
nondipole radiation can be emitted only by electrons with
nonzero angular momentum. We can incorporate this fact in
our classical model by introducing a filter parameter f in the
simulations, and considering only those returning trajectories

for which at the moment of time tret the squared classical
angular momentum value exceeds the threshold value set
by the filter parameter f . Results of such calculations are
shown in Figs. 7(b)–7(d) for different values of the filter
parameter f . One can see that by increasing the value of
the filter parameter, we make the classical picture in Fig. 7
look more like the Gabor transform results shown in Figs. 5
and 6. In particular, Figs. 7(c) and 7(d) show the absence of
the nondipole harmonics emission during the first two cycles
of the laser pulse, the feature which is also demonstrated
by the quantum analysis based on the Gabor transform in
Figs. 5 and 6. Applying a nonzero filter parameter does not
change, however, the maximum energy Eret of the returning
electron, which explains why nondipole harmonic emission
spectra exhibit essentially the same cutoffs as the dipole
harmonic emission spectra. This simple classical picture of
the formation of the nondipole harmonics, which takes as a
quantum ingredient only the requirement that the electron an-
gular momentum on the returning trajectories should exceed
a certain threshold value, agrees, thus, qualitatively with the
fully quantum picture. We also performed TDDE calculations
for the pulse base frequency ω = 0.057 a.u. (corresponding
to the wavelength of 800 nm). In Figs. 8 and 9 we show
harmonic spectra we obtain from TDDE for the SR Yukawa
and hydrogen atoms. Figure 10 shows results of the analysis
of the temporal dynamics of the harmonic formation based on
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FIG. 7. Classical calculations of emitted photon energy as a function of return time for the (a) dipole harmonic radiation and [(b)–(d)]
nondipole harmonic radiation with different filter parameters.

the Gabor transform (24). These figures show essentially the
same picture as the results we presented above for the driving
pulse wavelength of 400 nm. The spectra of the nondipole
harmonics follow closely the classical dipole cutoff rule, and
differ in this respect from the dipole emission spectra only in
their intensity. Temporal pictures of the harmonics formation
in the dipole and the nondipole cases are, however, totally
different. The main difference is, just as in the case of the
driving pulse wavelength of 400 nm, the absence of the har-
monic emission at the early stages of the pulse development,
the feature which we explained above using the results of the
classical calculations shown in Figs. 7(c) and 7(d). The factor

which is responsible for the difference in intensity between
the dipole and nondipole harmonics is the additional factor of
c−1 which, as one can see from Eqs. (23) and (15), is present
in the LOPT formula for the x component of the velocity. The
presence of this factor in vx leads to a dampening factor of
c−2 in the expression for the nondipole harmonics intensity.
It is rather difficult to obtain a more detailed insight about
the relative magnitude of the dipole and nondipole harmonic
intensities from the cumbersome LOPT expressions, Eqs. (22)
and (23). One can, however, obtain a simple estimate using the
reasoning based not on the Schrödinger picture that we have
used so far, but on the equivalent Heisenberg picture of the

FIG. 8. Dipole (dashed green) and nondipole (red solid) harmonic intensities for the pulse wavelength λ = 800 nm for the SR Yukawa and
hydrogen atoms. Vertical dashed lines show cutoff positions.
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FIG. 9. Dipole (dashed green) and nondipole (red solid) harmonic intensities for the pulse wavelength λ = 800 nm for harmonics with
orders 40 � n � 60 for the SR Yukawa and hydrogen atoms. Vertical solid and dashed lines show positions of odd- and even-order harmonics,
respectively.

quantum mechanics (QM). In the latter, we remind that the
operators evolve in time, while the state vectors do not. We
obtain, of course, the same expectation values for all physical
observables in both pictures.

In the Heisenberg picture, the time evolution of the op-
erators r̂(t ) and p̂(t ) is described by the equations [52] i ˙̂r =
[r̂, Ĥ ], i ˙̂p = [ p̂, Ĥ ], where the Hamiltonian operator in our
problem is Ĥ = Ĥatom + Ĥd(t ) + Ĥnd(t ), with Ĥatom, Ĥd(t ),
and Ĥnd(t ) given by Eqs. (13), (14), and (15), respectively.

Calculating the commutators, one obtains the following equa-
tions of motion:

˙̂x = p̂x,

˙̂px = −i[ p̂x, V̂ ] − v̂z

c
E (t ),

˙̂z = p̂z + A(t ) + x̂

c
E (t ),

˙̂pz = −i[ p̂z, V̂ ], (26)

FIG. 10. Gabor transform |T (	, t )| for the pulse wavelength λ = 800 nm for the SR Yukawa and hydrogen atoms.
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FIG. 11. (a) Estimate (31) for the ratio R(	). (b) Normalized difference (Sz(	) − Snr
z (	))/Snr

z (	) of the TDDE and TDSE calculations for
the dipole harmonic intensities.

where V̂ is the atomic potential operator, v̂z = p̂z + A(t ), and
A(t ) and E (t ) are the vector potential and the electric field
of the pulse. Equation (26) is the quantum-mechanical analog
of the classical equations describing electron motion in the
potential V in the presence of the Lorentz force. It contains
the same physical information and is, therefore, equivalent to
the LOPT equations (22) and (23), but it provides a more clear
physical picture and can be used as a starting point for making
simplifying assumptions.

From the first two of Eqs. (26) one obtains

¨̂x = −i[ p̂x, V̂ ] − v̂z

c
E (t ). (27)

We will make an assumption that one can omit the commu-
tator [ p̂x, V̂ ] in Eq. (27). Some justification for this operation
can be provided in the case of the SR Yukawa atom, when the
potential function V (r) is effectively zero everywhere except
for a small neighborhood of the atom. We obtain then from
Eq. (27) a relation for the expectation values of the electron
acceleration ax = 〈φ0| ¨̂x|φ0〉 and velocity vz = 〈φ0|v̂z|φ0〉:

ax = −vz

c
E (t ), (28)

where |φ0〉 is the initial atomic state, which does not evolve
in time in the Heisenberg picture. Assuming further that E (t )
is a monochromatic wave, E (t ) = E0 cos ωt and calculating
Fourier transforms of both sides of Eq. (28), we obtain a re-
lation between the Fourier transforms ṽx(	) = ∫

vx(t )ei	t dt
and ṽz(	) = ∫

vz(t )ei	t dt :

−i	ṽx(	) = E0

2c
(ṽz(	 + ω) + ṽz(	 − ω)), (29)

from which, using the fact that for any complex numbers z1,
z2, |z1 + z2|2 � (|z1| + |z2|)2, we obtain an inequality

	2Sx(	) � E2
0

4c2
[
√

Sz(	 + ω) +
√

Sz(	 − ω)]2. (30)

We see from Eq. (30) that for 	 > ω we have

R(	) = 4c2ω2

E2
0

Sx(	)

[
√

Sz(	 + ω) + √
Sz(	 − ω)]2

� 1. (31)

Introducing the magnitude A0 = E0/ω of the pulse vector
potential, we can rewrite inequality (31) as

Sx(	)

[
√

Sz(	 + ω) + √
Sz(	 − ω)]2

� A2
0

4c2
. (32)

The ratio R(	) defined in Eq. (31) is shown in Fig. 11(a)
for the SR Yukawa potential and various pulse parameters. Of
course, we cannot expect Eq. (31) to provide a rigorous upper
bound since deriving it we neglected the atomic potential in
Eq. (27), which constitutes a rather drastic approximation.
As one can see from Fig. 11(a), inequality (31) can indeed
be violated. One can see, nevertheless, that Eq. (31), and
consequently Eq. (32), provides reasonably accurate estimates
of the relative magnitude of the intensities of the dipole and
nondipole harmonics.

While the nonzero expectation value vx and the appear-
ance of the nondipole harmonics is an entirely relativistic
phenomenon, the nondipole effects also modify slightly the
velocity component vz. The magnitude of this effect is of the
order of c−2. This can be most easily seen from the Heisenberg
equations of motion (26). The equation for vz(t ) [the third of
Eqs. (26)] contains the term x̂E (t )/c on the right-hand side.
Since the expectation value of x is itself of the order of c−1,
the resulting effect on vz(t ) is of the order of c−2, which will
produce a relativistic correction of the order of c−2 for the
dipole harmonic intensity. We may expect, therefore, that the
normalized difference,


Sz(	)

Sz(	)
= Sz(	) − Snr

z (	)

Snr
z (	)

, (33)

where Sz(	) is the dipole harmonics intensity obtained in
the present TDDE calculation and Snr

z (	) is the result of the
nonrelativistic TDSE calculation, should be of the order of
c−2, i.e., we may expect 
Sz(	)/Sz(	) ∼ 10−4. That this is
indeed the case can be seen from Fig. 11(b), where we show
results of the TDDE and TDSE calculations performed for
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FIG. 12. (a) LOPT expectation value vz(t ). (b) vx (t ) obtained in the LOPT calculation and using Eq. (34). Cosine pulse with E0 = 0.0534
a.u., ω = 0.057 a.u. has been used in the calculations.

the same pulse parameters for the Yukawa atom. The analysis
based on the Heisenberg equations of motion [Eqs. (26)] also
allows to give a simple explanation for the behavior of vx(t )
shown in Fig. 2, where the x component of the electron veloc-
ity starts responding to the field only for the times approaching
the midpoint of the pulse. Integrating Eq. (28) we obtain for
the expectation value vx = 〈φ0|v̂x|φ0〉 (assuming that it has
zero value at t = 0)

vx(t ) = −1

c

∫ t

0
vz(τ )E (τ ) dτ. (34)

We could have obtained the same equation by integrating
the first of the set of the classical equations (25), which is
not surprising given the great formal similarity between the
classical mechanics and the QM in the Heisenberg picture.
We show in Fig. 12(a) the expectation value vz(t ) obtained in
the LOPT calculation for the cosine pulse with E0 = 0.0534
a.u. and ω = 0.057 a.u. We show only the LOPT result. Just
as in the case of vx(t ), shown in Fig. 2, the TDDE and LOPT
results for vz(t ) differ very slightly. In Fig. 12(b) we show
the LOPT expectation value vx(t ), as well as the estimate
for vx(t ) that we obtain if we substitute the LOPT value for
vz(τ ) under the integral sign in Eq. (34). One can see that
the estimate thus obtained reproduces fairly well the general
behavior of vx(t ). In particular, it reproduces the feature that
we mentioned above: the x component of the velocity begins
deviating from zero appreciably only for the times approach-
ing the midpoint of the pulse. We remind that the effect of the
atomic potential on the motion in the x direction was neglected
in the Heisenberg equation of motion [Eq. (28)], which we
used to obtain the estimate (34). The fact that the estimate (34)
reproduces qualitative behavior of the x component of electron
velocity shown in Fig. 2 tells us, therefore, that this behavior
might be a result of the interplay of the motion in x and z
directions, which are mutually interconnected due to the pres-
ence of the Lorentz force. There is yet another factor which
may result in the behavior of vx shown in Fig. 12(b). For the
field intensities that we consider, ionization occurs predom-
inantly at the times near the main maximum tm of the pulse
field strength. Consequently, the ionized electron can gain
appreciable velocity only after the peak of the field strength.
Speaking more formally, this statement can be expressed by
going back to the Schrödinger picture and observing that in
Eq. (23) for vx(t ), the norm ||� (1)

nd || of the LOPT nondipole

correction (17) differs appreciably from zero only for t > tm.
As a result, the integral on the right-hand side of Eq. (23) is
essentially zero for t < tm.

IV. CONCLUSION

We have presented results of the relativistic calculations
of even-order harmonic generation from various atomic tar-
gets. Our approach was based on the numerical solution of
the TDDE. The HHG spectra of the nondipole even-order
harmonics were found to look qualitatively similar to the
spectra of the dipole harmonics, obeying the same classi-
cal cutoff rules. The temporal formation of the nondipole
harmonics, however, was found to be quite different. The
results of the Gabor transform analysis show that formation of
the nondipole harmonics is strongly suppressed at the begin-
ning of the laser pulse, and bursts of the nondipole radiation
are shifted in time with respect to the bursts of the dipole
emission. These features are partly explained by a simple gen-
eralization of the classical three-step model, which takes into
account the selection rules governing emission of harmonic
photons. We modeled the effect of these selection rules by
using a filter parameter, which selects the trajectories with
angular momentum exceeding a certain threshold value at the
recollision time.

For the field parameters we considered, the relativistic
effects are still relatively weak and could be described per-
turbatively. LOPT provides, as we have seen, an adequate
description of the nondipole effects responsible for the even-
order harmonics emission. Use of the TDDE, however, is
technically simpler than the calculations based on the LOPT,
and opens the perspective of making an excursion into the
truly relativistic domain in the future. We relied, therefore, on
the TDDE-based approach in the present work. The present
approach can also be generalized relatively easily to include
some quantum electrodynamical (QED) effects, such as the
vacuum polarization effects, or the QED strong Coulomb
field radiative corrections, which can be taken into account
by using effective potentials such as the Uehling potential
[53] or the radiative potential proposed in Ref. [54]. The
procedure we apply to solve the Dirac equation can also be
used to study the process of electron-positron pair production
(PP) in strong electromagnetic fields, which occurs when field
strength reaches the characteristic Schwinger field strength of
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1.3 × 1016 V/cm. The process of PP in both homogeneous
and inhomogeneous electric fields has received considerable
interest in the literature [55]. Theoretical treatment of PP in
the semiclassical approximation relies on a solution of the
TDDE for a given field configuration [56]. Our procedure
might prove useful for this purpose, especially in the case of
the spatially inhomogeneous field, which has been found to
play an important role in the PP [55,57].

The numerical procedure we employ can be relatively eas-
ily generalized for the case of the many-electron relativistic
Hamiltonians used in quantum chemistry calculations [58,59].
Use of the representation of the wave function analogous to
expansion (6) would be, of course, impractical for systems
with more than one electron if we want to use such ex-
pansions to represent the wave function in the whole space.
One may use, however, the idea of the R-matrix approach,
which separates the coordinate space in the inner region,
where a suitable basis set representation can be used to rep-
resent many-electron wave functions and the outer region,
where one has to concentrate on the description of a single

electron motion, for which the finite difference method might
be better suited. Such a strategy has been implemented with
success in the framework of the so-called R-matrix incorpo-
rating time (RMT) method [60] which allows to solve the
nonrelativistic TDSE for many-electron systems. One can use
a similar approach in the relativistic case, relying on the re-
sults of the stationary quantum chemistry calculations [58,59]
for the description of the inner region, where many-electron
effects are important, and using the present procedure to
solve the TDDE describing electron propagation in the outer
region.
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