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We develop a general multiple scattering expansion (MSE) for computing Casimir forces between magneto-
dielectric bodies and Casimir-Polder forces between polarizable particles and magneto-dielectric bodies. The
approach is based on fluctuating electric and magnetic surface currents and charges. The surface integral
equations for these surface fields can be formulated in terms of surface scattering operators (SSOs). We show
that there exists an entire family of such operators. One particular member of this family is only weakly divergent
and allows for a MSE that appears to be convergent for general magneto-dielectric bodies. We prove a number of
properties of this operator, and demonstrate explicitly convergence for sufficiently low and high frequencies, and
for perfect conductors. General expressions are derived for the Casimir interaction between macroscopic bodies
and for the Casimir-Polder interaction between particles and macroscopic bodies in terms of the SSO, both at
zero and finite temperatures. An advantage of our approach over previous scattering methods is that it does not
require the knowledge of the scattering amplitude (T operator) of the bodies. A number of simple examples are
provided to demonstrate the use of the method. Some applications of our approach have appeared previously
[T. Emig and G. Bimonte, Phys. Rev. Lett. 130, 200401 (2023)]. Here we provide additional technical aspects
and details of our approach.
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I. INTRODUCTION

It is a quite common situation in physics, biology, and
chemistry to find surfaces of macroscopic objects and par-
ticles in close proximity to each other. Although these
structures carry often no charge, they still experience a
long-ranged interaction which results from modifications of
the quantum and thermal fluctuations of the electromagnetic
(EM) field by the objects. A well-known manifestation of this
interaction is the Casimir force between two parallel perfectly
conducting plates [1]. Microscopically, this interaction can
be understood as a collective, nonadditive force between in-
duced dipoles in the bodies. Indeed, the connection between
an atomistic description and nonideal macroscopic dielectric
materials was established by Lifshitz, who considered random
currents within the interacting bodies to obtain the Casimir
force between planar bodies [2]. This approach has been the
core theory for interpreting most of the precision measure-
ments of Casimir interactions between various materials and
surface shapes which were enabled by an enormous progress
in force sensing techniques and the fabrication of nanos-
tructures [3–11]. Naturally, in practice macroscopic bodies
have curved or structured surfaces. Hence, an approximation
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by planar surfaces is often not justified. Indeed, recent ex-
periments [12–14] have demonstrated large deviations from
common proximity approximations [15], making theoretical
formulations for a precise force computation highly desirable.

An exact computation of Casimir forces in nonplanar
geometries is extremely hard. To date, the only nonplanar
configurations for which the force can be computed exactly
are the sphere-plate and the sphere-sphere systems, for Drude
conductors in the high-temperature limit [16,17]. In principle,
there exist methods to compute Casimir forces in arbitrary
geometries. However, they are often limited in their prac-
tical applicability. Indeed, enormous efforts have been put
forward by many groups to develop theoretical and numeri-
cal methods that can cope with more general surface shapes
[18–20]. Specifically, the scattering method [21–23], origi-
nally devised for mirrors [24,25], expresses the interaction
between dielectric bodies in terms of their scattering ampli-
tude, known as T operator. While this approach has enabled
most of the recent theoretical progress, the T operator is
known only for highly symmetric bodies, such as spheres
and cylinders, or for a few perfectly conducting shapes [26],
practically exhausting this method. The Casimir interaction of
dielectric gratings has been computed using a generalization
of the Rayleigh expansion in [27–29]. The scattering ap-
proach can be augmented by advanced numerical methods, for
example for gratings [30], but they can be limited by compu-
tational power required for convergence. A more fundamental
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limitation is that interlocked geometries evade this method
due to lack of convergence of the partial wave expansions
[14]. If the surface is only gently curved, a gradient expansion
can be used to obtain first-order corrections to the proximity
approximation [31,32]. The theoretical treatment of nonideal
materials with sharp surface features, such as used in atomic
force microscopy or fabricated by lithographical techniques,
is beyond the scope of existing methods.

Substantial progress has been made over the last decade
with fully numerical methods to compute Casimir forces for
general shapes and materials. An important example is an
approach based on a boundary element method (SCUFF-EM)
for computing the interaction of fluctuating surface currents
[33,34]. It is believed that this approach can provide in prin-
ciple the exact force for arbitrary shapes, with computational
power the only but practically important limiting factor [14].
This method depends on a suitable refinement of the surface
mesh for a broad band of relevant wavelengths. Therefore, the
numerical effort for keeping discretization errors sufficiently
small can be challenging. To the best of our knowledge, com-
plementary, not fully numerical methods with comparably
broad application range do not exist to date.

Here we develop an approach for computing Casimir
forces for magneto-dielectric bodies of arbitrary shape. Con-
ceptional, the Casimir force is related to fluctuating electric
and magnetic surface currents and charges by the fluctuation-
dissipation theorem [35]. This allows for a formulation of a
general theory for Casimir forces that is based on scattering
operators which are localized only on the surfaces of the
interacting bodies. The important features of our method are
the following.

(i) No knowledge of the scattering amplitude (the T ma-
trix) of the bodies is required. Hence, an important practical
problem of the existing scattering approaches is overcome.

(ii) No expansion of the EM field in partial waves, or ex-
pansion of currents in multipoles, is required. This eliminates
the problems of convergence in geometries where surfaces
interlock.

(iii) Explicit expressions for the surface scattering opera-
tors (SSOs) are given in terms of free Green functions.

(iv) Any basis for the tangential surface currents can be
used, simplifying the computation of surface integrals appear-
ing in the operator products.

(v) The Casimir interaction can be expanded in the number
of surface scatterings, leading to a rapidly converging estimate
for the interaction energy.

We underline that not all of the above five features are
unique to our approach. For example, the surface approach
developed in [33,34], which is implemented in the boundary
element method (SCUFF-EM), possesses the features (i)–(iv)
listed above. However, differently from our SSO, the surface
operator M used in [33,34] [corresponding to case (C3) in
Sec. IV below] is not of Fredholm form, and therefore it
does not allow for a multiple scattering expansion (MSE). The
approach based on the volume T operator (for a review see
[36]) shares with our approach properties (i) and (ii) above.
However, this approach is based on a three-dimensional inte-
gral kernel supported on the volumes occupied by the bodies,
which involves the free Green tensor of the background and
the polarizabilities of the bodies. When the resulting formula

for the Casimir energy is expanded in powers of the polariz-
abilities, one obtains a Born expansion of the Casimir energy,
expressed in terms of iterated volume integrals extended over
the volumes occupied by the bodies [37,38]. This is of course
different from our MSE, which instead is an expansion in
terms of iterated surface integrals extended over the surfaces
of the bodies.

In our approach, the general multiple scattering expansion
is enabled by treating the back and forth scatterings of waves
between different objects on an equal footing as the scatter-
ings within an isolated object, eliminating the necessity to
resort to the concept of a T operator. In this formulation, a
wave propagates freely in a magneto-dielectric medium be-
tween successive scattering points on the surfaces, no matter
if the points belong to different objects or the same object. For
perfectly conducting objects, in a seminal work Balian and
Duplantier had demonstrated the very existence and conver-
gence of a multiple scattering expansion for Casimir forces
[39,40]. Our approach shows that a conceptionally similar
theory can be developed for arbitrary dissipative magneto-
dielectric materials. We provide a number of simple examples
which show rapid convergence in the number of scatterings
even at short surface separations. Our paper represents a pow-
erful approach to substantially extend accurate predictions of
Casimir forces to materials and shapes for which only compu-
tationally intensive fully numerical methods were available.

A brief report of our findings has appeared previously [41].
Here we provide details of the derivation of the multiple
scattering expansion and derive some important properties
of the SSO. The paper is organized as follows. In Sec. II
we derive the general expression of the SSO for a collec-
tion of N magneto-dielectric bodies of any shape, placed at
arbitrary relative positions in space. In Sec. III we express
the Casimir interaction of two bodies, and the Casimir-Polder
(CP) interaction between a polarizable particle and general
magneto-dielectric body in terms of the SSO. Several equiv-
alent formulations of the SSO are discussed in Sec. IV. The
limits of perfect conductors, and high and low frequencies,
are analyzed in Sec. V. In Sec. VI we address the convergence
properties of the MSE in general. A number of simple ex-
amples demonstrate the application of the MSE in Sec. VII.
In Sec. VIII we present our conclusions and a discussion of
future applications of the MSE. Finally, several appendices
provide further technical details.

II. ELECTRIC AND MAGNETIC SURFACE CURRENTS
FROM A MULTIPLE SCATTERING EXPANSION

Before considering Casimir interactions, we first develop
in this section the concept of surface currents and show how
they naturally lead to an expansion of the EM field in the num-
ber of surface scatterings. This shall enable us to formulate a
scattering expansion for the scattering Green tensor Γ(r, r′) =
G(r, r′) − G0(r, r′), where G is the N-body EM Green tensor
and G0 is the empty space Green tensor for a homogenous
medium with contrast ε0, μ0 (see Appendix E). Physically,
Γ(r, r′) describes the modification of the EM field at position
r, due to the presence of the bodies, when it is generated by
a source at position r′. This naturally implies to construct
Γ from the surface fields which are induced by an external

052807-2



CASIMIR AND CASIMIR-POLDER INTERACTIONS FOR … PHYSICAL REVIEW A 108, 052807 (2023)

source at the bodies. However, the primary current induced
directly by the source induces in turn a secondary current,
which induces again higher-order currents, leading to an infi-
nite sequence of induction processes. As we shall demonstrate
subsequently, an exact mathematical description of these pro-
cesses is provided by our MSE for Γ. While Green functions
have been constructed in terms of surface currents, the exis-
tence and convergence of a MSE between magneto-dielectric
bodies is not obvious, particularly for Casimir interactions,
and to the best of our knowledge had been demonstrated only
for perfect electric conductors [39,40,42]. The MSE is based
on surface integral equations that determine the tangential
electric and magnetic fields at the surfaces Sσ which can be
considered as magnetic surface currents mσ and electric sur-
face currents jσ , acting as equivalent sources for the scattered
field [43]. This can be viewed as a mathematical reformulation
of the Huygens principle. We note that in the static limit,
it shall turn out that it is sufficient to consider the normal
components of the EM field at the surfaces, corresponding
to electric and magnetic surface charge densities. For finite
frequencies, these charge densities are related to the surface
currents by surface continuity equations.

In the following, we consider a configuration of N material
bodies with dielectric and magnetic permittivities εσ and μσ

(σ = 1, . . . , N). The bodies are bounded by closed surfaces
Sσ which can be of arbitrary shape and separate their bulk
from the surrounding homogeneous medium with dielectric
and magnetic permittivities ε0 and μ0 [44]. From the unique-
ness of an EM field in a region specified by sources within
the region and the tangential components of the field over
the boundary of the region, one can construct the total EM
field (E, H) separately in the region external to the bodies, and
inside the N interior regions of the bodies. When doing so, one
can vary the field outside a given region at will as long as the
surface currents are adjusted according to the jump conditions
j = n × (H+ − H−), m = −n × (E+ − E−) where n is the
surface normal pointing to the outside and the label +(−)
indicates the value when the surface is approached from the
outside (inside). To proceed, we make the choice that the field
outside a given region vanishes as this allows us to replace the
magneto-dielectric media outside the region by the medium
inside the region, so that the surface currents on the boundary
of the region radiate in homogenous unbounded space. Hence
the field can be expressed in the interior of the bodies as the
surface integral

(E(σ ), H(σ ) )(r) =
∫

Sσ

dsu Gσ (r, u)(jσ−, mσ−)(u), (1)

where Gσ is the free Green tensor in a medium with permittiv-
ities εσ and μσ , and jσ− = −nσ × H− and mσ− = nσ × E−
are the tangential fields when Sσ is approached from the inside
of the bodies. Exterior to the bodies the field

(E(0), H(0) )(r) =
∫

dr′ G0(r, r′)(J, M)(r′)

+
N∑

σ=1

∫
Sσ

dsu G0(r, u)(jσ+, mσ+)(u), (2)

where now jσ+ = nσ × H+ and mσ+ = −nσ × E+ are the
tangential fields when Sσ is approached from the outside of

the bodies and we assumed an external source of electric and
magnetic currents (J, M) outside the bodies to generate the
incident field (Einc, Hinc). Surface integral equations for the
surface fields follow by taking advantage of the property of the
surface integrals that they are also defined when r is located
on the surfaces and their corresponding value is the average of
the limits taken from the inside and the outside [45], and that
one of the two limits vanishes by construction, leading to

(mσ−,−jσ−)(u) = 2nσ (u) × (E(σ ), H(σ ) )(u),

(mσ+,−jσ+)(u) = −2nσ (u) × (E(0), H(0) )(u)
(3)

for u located on surface Sσ . Associated with the surface
currents must be surface charges which are given by the
(rescaled) surface charge densities, defined on both sides of
the surfaces as

(� j,σ−, �m,σ−)(u) = −2nσ (u) · (E(σ ), H(σ ) )(u),

(� j,σ+, �m,σ+)(u) = 2nσ (u) · (E(0), H(0) )(u). (4)

Finally, to couple the interior and exterior solutions, we
impose the usual continuity conditions on the tangential com-
ponents of (E, H) at the interfaces between different media,
leading to one unique set of surface currents (jσ , mσ ) ≡
(jσ+, mσ+) = −(jσ−, mσ−). Similarly, imposing continuity
on the normal components of D = εE and B = μH leads to
the relation

� j,σ− = − ε0

εσ

� j,σ+, �m,σ− = − μ0

μσ

�m,σ+ (5)

between the interior and exterior charge densities. Hence, it is
sufficient to consider the unique set of surface charge densi-
ties (� j,σ , �m,σ ) ≡ (� j,σ+, �m,σ+). Since the field (E(σ ), H(σ ) )
obeys the source free Maxwell equations in the interior region
of the surface Sσ , the interior surface currents and charges are
related by the continuity equations

∇jσ− = −κεσ� j,σ−,

∇mσ− = −κμσ�m,σ−,
(6)

or, due to Eq. (5), equivalently by the continuity equations for
the unique surface currents and charges:

∇jσ = −κε0� j,σ ,

∇mσ = −κμ0�m,σ . (7)

Now we have expressed the surface currents (jσ , mσ ) and
charges (� j,σ , �m,σ ) in terms of both the interior field
(E(σ ), H(σ ) ) and the exterior field (E(0), H(0) ). This yields the
surface integral equations

(mσ ,−jσ )(u) = −2nσ (u) × (E(σ ), H(σ ) )(u), (8)

(mσ ,−jσ )(u) = −2nσ (u) × (E(0), H(0) )(u), (9)

(� j,σ , �m,σ )(u) = 2nσ (u) ·
(

εσ

ε0
E(σ ),

μσ

μ0
H(σ )

)
(u), (10)

(� j,σ , �m,σ )(u) = 2nσ (u) · (E(0), H(0) )(u) (11)
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where the fields are given by the integrals in Eqs. (1) and (2)
with (jσ+, mσ+) = (jσ , mσ ) and (jσ−, mσ−) = −(jσ , mσ ).
These 8N surface integral equations constitute an overde-
termined system for the 2N surface currents or tangential
surface fields, and the 2N surface charge densities, which
must be related to the surface currents by the continuity equa-
tions (7). Existence of a unique solution requires that only
4N equations are independent, agreeing with the number of
constraints imposed by the continuity of the tangential and
normal field components. The additional 4N constraints, im-
plicitly fulfilled by construction of the fields, must account for
the unique relation between the components of the electric and
magnetic fields on both sides of the surfaces as specification
of either tangential E or tangential H determines a unique
solution to the exterior and interior problems. For this reason,
a consistent set of 4N integral equations with a unique solution
can be obtained by taking linear combinations of the set of
4N equations involving (E(σ ), H(σ ) ) and the corresponding set
involving (E(0), H(0) ) but not by considering only one of the
two sets as this would ignore the coupling of the interior and
exterior fields.

We first consider the integral equations for the surface
currents, Eqs. (8) and (9). In general, when taking linear
combinations of the integral equations, one can choose 4N
suitable coefficients which form 2N diagonal 2 × 2 ma-
trices Ci

σ and Ce
σ acting on the two field components of

the interior and exterior integral equations. To interpret
the integral equations as successive scatterings, we intro-
duce the SSOs Kσσ ′ (u, u′) which describe free propagation
from u′ on surface Sσ ′ to u on surface Sσ and scattering
at point u

Kσσ ′ (u, u′) = 2P
(
Ci

σ + Ce
σ

)−1
nσ (u)

× [
δσσ ′Ci

σGσ (u, u′) − Ce
σG0(u, u′)

]
,

P =
(

0 −1
1 0

)
(12)

acting on electric and magnetic tangential surface fields at
u′ (δσσ ′ is the Kronecker delta). The action of nσ (u)× on
the 3 × 3 matrices G(pq)

σ and G(pq)
0 (p, q ∈ {E , H}) are respec-

tively defined by (nσ (u) × G(pq)
σ )v ≡ nσ (u) × (G(pq)

σ v) and
(nσ (u) × G(pq)

0 )v ≡ nσ (u) × (G(pq)
0 v), for any vector v.

With these SSOs the surface currents are determined in
terms of the external source (J, M) by the Fredholm integral

equations of the second kind

N∑
σ ′=1

∫
Sσ ′

dsu′ [1 − Kσσ ′ (u, u′)]
(

jσ ′

mσ ′

)
(u′)

=
∫

dr Mσ (u, r)

(
J
M

)
(r) (13)

with

Mσ (u, r) = −2P
(
Ci

σ + Ce
σ

)−1
Ce

σ nσ (u) × G0(u, r). (14)

(For an alternative derivation of the SSO we refer to Ap-
pendix A.) More explicit expressions for the SSO for different
choices of the coefficient matrices will be given below in
Sec. IV. As we shall see, the choice of coefficients Ci

σ and
Ce

σ provides a powerful tool to engineer convergence of the
MSE. Uniqueness of the solution of the integral equation (13)
is ensured if one can show that the operator K does not have
an eigenvalue equal to 1. Such a proof for any (complex)
frequency can be found in the book [45] for a particular choice
of coefficients, denoted by choice 1 in Sec. IV below, and for
a single body. A simple generalization of the proof allows us
to show that the result remains true for any number of bodies.
After an appropriate rescaling of the EM field, one can show
that the result holds also for all values of the coefficients as
long as Ce

σ + Ci
σ is different from zero. Explicit computation

of the SSO requires integration of the free space Green ten-
sor in homogenous media over the bodies’ surfaces which
can be performed analytically in some cases. Contributions
to the Casimir energy from scatterings between remote sur-
face positions are exponentially damped with distance as we
need to consider the Green tensor only for purely imaginary
frequencies.

Next, we consider the integral equations which determine
the surface charge densities. While the electromagnetic scat-
tering problem is basically solved in terms of surface currents
determined by Eq. (13), it turns out that the zero frequency
limit κ = 0 requires a separate treatment due to a divergent
term in the SSO for κ → 0. The corresponding static problem
is described in terms of surface charges only, as we shall see
now. We take linear combinations of the integral equations for
the surface currents, Eqs. (10) and (11), with scalar interior
coefficients ci

j,σ and ci
m,σ and exterior coefficients ce

j,σ and
ce

m,σ . Using the surface divergence theorem and the continuity
Eqs. (7), one gets two Fredholm integral equations of the
second kind,

� j,σ (u) + 2

ce
j,σ + ci

j,σ

N∑
σ ′=1

∫
Sσ ′

dsu′

[
κnσ (u) · jσ ′ (u′)

(
ce

j,σ μ0g0(u − u′) − εσ

ε0
ci

j,σ μσ gσ (u − u′)δσσ ′

)

+ � j,σ ′ (u)
(
ce

j,σ ∂nσ (u)g0(u − u′) − ci
j,σ ∂nσ (u)gσ (u − u′)δσσ ′

)

+ nσ (u) ·
((

ce
j,σ ∇ug0(u − u′) − εσ

ε0
ci

j,σ ∇ugσ (u − u′)δσσ ′

)
× mσ ′ (u′)

)]

= 2ce
j,σ

ce
j,σ + ci

j,σ

nσ (u) · Einc(u), (15)
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�m,σ (u) + 2

ce
m,σ + ci

m,σ

N∑
σ ′=1

∫
Sσ ′

dsu′

[
κnσ (u) · mσ ′ (u′)

(
ce

m,σ ε0g0(u − u′) − μσ

μ0
ci

m,σ εσ gσ (u − u′)δσσ ′

)

+ �m,σ ′ (u)
(
ce

m,σ ∂nσ (u)g0(u − u′) − ci
m,σ ∂nσ (u)gσ (u − u′)δσσ ′

)
− nσ (u) ·

((
ce

m,σ ∇ug0(u − u′) − μσ

μ0
ci

m,σ ∇ugσ (u − u′)δσσ ′

)
× jσ ′ (u′)

)]

= 2ce
m,σ

ce
m,σ + ci

m,σ

nσ (u) · Hinc(u), (16)

where gσ is the scalar free Green function (see Appendix E).
Different choices for the coefficients ci/e

j/m,σ will be discussed
in Sec. IV. Remarkably, there exists a choice of the coef-
ficients [see Eq. (31)] such that in the static limit, κ → 0,
the above integral equations can be expressed in terms of the
surface charges only, as we shall show in Sec. V A below.

III. INTERACTIONS DUE TO FLUCTUATIONS OF THE
ELECTROMAGNETIC FIELD AND SURFACE CURRENTS

A. Scattering Green tensor

The scattering Green tensor Γ(r, r′) = G(r, r′) − G0(r, r′)
is essential to compute the expectation value of the stress
tensor, and hence Casimir forces. It is determined by the field
generated by the surface currents, and hence

Γ(r, r′) =
∫

S
dsu

∫
S

dsu′ G0(r, u)(1 − K)−1(u, u′)M(u′, r′)

(17)
where the integration extends over all surfaces Sσ and a sum-
mation over all surface labels σ is understood. The operator
M(u′, r′) is proportional to the free Green tensor,

M(u′, r′) = V(u′)G0(u′, r′),

V(u′) = −2P
(
Ci

σ + Ce
σ

)−1
Ce

σ nσ (u′) × ·, (18)

where · is a placeholder for the argument on which the oper-
ator acts. The existence of a MSE follows from the Fredholm
type of the operator (1 − K)−1 that permits an expansion in
powers of K [46] and hence in the number of scatterings, as
illustrated for one body in Fig. 1(a).

B. Casimir force between magneto-dielectric bodies

We now derive the Casimir interaction among the bodies.
Following the method in [36], we first express the Casimir
force Fσ on one of the bodies, labeled by σ , as the integral
of the expectation value of the EM stress tensor at dis-
crete Matsubara imaginary frequencies ξ = iω with ξ = ξn =
2πnkBT/h̄ with n = 0, 1, . . ., over the surface Sσ using the
fluctuation-dissipation theorem. A divergence in the surface
integral, originating from the empty space stress tensor and
hence unrelated to the Casimir force, is readily removed by
replacing the N-body EM Green tensor G by the scattering
Green tensor Γ(r, r′).

The regularized stress tensor involves only Γ, and it can be
shown [36] that the Casimir force on body σ is determined
by the operator (1 − K)−1(u, u′)V(u′) which is sandwiched
between the free Green tensors in the scattering Green tensor

[see Eq. (17)]. Hence, the Casimir force is given by

Fσ = kBT
∞∑

n=0

′ Tr
[
(1 − K)−1V∇rσ

G0
]
. (19)

Due to the important general relation

∇rσ
K = V∇rσ

G0 (20)

the force can be written solely in terms of the SSO, expressed
as a sum over Matsubara frequencies ξn by

Fσ = kBT
∞∑

n=0

′ Tr
[
(1 − K)−1∇rσ

K
]

(21)

where ∇rσ
is the gradient with respect to the position of

the body, and the bare Casimir energy assumes the simple

FIG. 1. .Multiple scattering expansion. Diagrammatic represen-
tation of contributions to the MSE, shown in panel (a) for the
scattering Green function Γ(r, r′) of a single body with source point
r′ and observation point r, and in panel (b) for the Casimir energy
between two bodies. In the displayed examples, lines with arrows
represent free propagation between surface points of the same body
(blue lines or lines with equal indices on K) and to external points
or between surface points of different bodies (magenta lines or lines
with unequal indices on K, connecting points on different bodies or
external points). Each free propagation between two surface points,
followed by a scattering, is described by a surface operator Kσσ ′ .
The bodies have dielectric and magnetic permittivities ε1 and μ1 and
ε2 and μ2, respectively, and they are surrounded by a medium with
permittivities ε0 and μ0. G0 is the free Green tensor of the surround-
ing medium, and M describes the tangential surface components of
the incident field generated by a source at position r′.
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expression

E = kBT
∞∑

n=0

′ Tr ln(1 − K) (22)

(where the primed sum gives a weight of 1/2 to the n = 0
term). Here the trace Tr involves a sum over vector indices of
the electric and magnetic components and an integration over
all surfaces. To gain insight into the structure of the MSE for
the Casimir energy, we consider two bodies. After subtracting
the self-energies, arising from isolated scatterings on a single
body, the energy is expressed in terms of four SSOs as

E = kBT
∞∑

n=0

′ Tr ln[1 − (1 − K11)−1K12(1 − K22)−1K21].

(23)

We note that this formula provides the exact representation of
the Casimir energy for all allowed choices of the coefficients
Ci

σ and Ce
σ (see also next section). After expanding both the

logarithm and the inverse operators in powers of the SSOs we
obtain the MSE which involves at least one scattering on each
body with closed paths going from body 1 to body 2 and back
(K12 and K21), possibly multiple times, and with an arbitrary
number (including zero) of scatterings on each body (K11 and
K22), as illustrated in Fig. 1(b). Comparison with scattering
approaches relying on the knowledge of the bodies’ T matrix
shows that our MSE constructs the T matrix in the number of
scatterings on individual bodies by expanding (1 − Kσσ )−1,
treating scatterings inside individual bodies and between them
on an equal footing. It is important to compare the MSE
with the so-called Born series expansion of the Green tensor
[37,38], which is an expansion in terms of iterated integrals
over the volumes occupied by the bodies. Since our MSE
is instead an expansion in terms of iterated integrals over
the bodies’ surfaces, it is clear that compared with the Born
expansion, the MSE saves an enormous amount of computing
time, especially when high orders are considered. We note
also that while the Born series is an expansion in the dielectric
contrast, our MSE is instead an expansion in the number of
scatterings.

Previously, scatterings of EM waves at dielectric media
have been described in terms of electric and magnetic sur-
face currents for real frequencies, revealing sometimes poor
convergence of expansions in the number of scatterings. How-
ever, since Casimir interactions can be formulated in terms of

correlations of the EM field for purely imaginary frequencies,
the exponential decay of Green tensors in separation can be
expected to lead to rather fast convergence of the MSE for
the scattering Green function and the Casimir energy. This
had been demonstrated only for perfect electric conductors,
based on a MSE that ignores the coupling between electric
and magnetic surface currents [39]. One remarkable prop-
erty of this previous approach, the cancellation of an odd
overall number of scatterings, is explained in retrospect by
our general MSE by the observation that ignorance of the
coupling leads to SSOs with opposite signs for the electric
and magnetic components.

C. Casimir-Polder force between a polarizable particle
and a magneto-dielectric body

The Casimir-Polder interaction between a polarizable par-
ticle and a magneto-dielectric body can be obtained as a
simple byproduct of our general approach. We assume that
the particle is characterized by a frequency dependent electric
polarizability tensor α(ω) and a magnetic polarizability tensor
β(ω). The classical energy of an induced dipole is then given
by

Ecl = −1

2

3∑
i, j=1

[αi jEiE j + βi jHiHj]. (24)

Using the fluctuation-dissipation theorem, this expression is
averaged over EM field fluctuations. After removing a di-
vergent contribution from empty space, the Casimir-Polder
energy is expressed in terms of the scattering Green tensor
as

ECP = −4πkBT
∞∑

n=0

′ κn

3∑
i, j=1

[
αi j (i ξn)Γ(EE )

i j (r0, r0; κn)

+ βi j (i ξn)Γ(HH )
i j (r0, r0; κn)

]
, (25)

where we assumed that the particle is located at position r0.
Substitution of Γ from Eq. (17) yields the interaction energy
of the particle with a body in terms of the SSO. This energy
can be computed by a MSE with respect to the number of
scatterings at the surface of the body. It is instructive to write
down explicitly the first terms of the scattering expansion of
the Casimir-Polder energy, assuming for simplicity that the
electric polarizability of the particle is isotropic, αi j = α δi j ,
and that its magnetic polarizability β is negligible:

ECP = −4πkBT
∞∑

n=0

′ κn α(i ξn)

⎧⎨
⎩

∑
p=E ,H

∫
S

dsutr
[
G(E p)

0 (r0, u; κn)M(pE )(u, r0; κn)
]

+
∑

p,q=E ,H

∫
S

dsu

∫
S

dsu′ tr
[
G(E p)

0 (r0, u; κn)K(pq)(u, u′; κn)M(qE )(u′, r0; κn)
]⎫⎬⎭ + · · · (26)

where tr denotes a trace over tensor spatial indices. Recalling
that the kernels K(u, u′) and M(u, r) are combinations of
free-space Green tensors G0 and Gσ , and that the latter are

elementary functions, we see from the above equation that
the CP energy is expressed in terms of iterated integrals of
elementary functions extended on the surface S of the body.
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Since for imaginary frequencies the Green tensors decay ex-
ponentially with distance, Eq. (26) makes evident the intuitive
fact that the points of the surface that are closest to the particle
dominate the interaction.

IV. EQUIVALENT FORMULATIONS OF THE SSO

With different interior coefficient matrices Ci
σ and exterior

coefficient matrices Ce
σ the SSOs form an equivalence class of

operators in the sense that Eq. (13) yields the same surface
currents for a given external source for all coefficients, as
long as neither the interior nor the exterior matrices vanish
for any σ , and the sum Ci

σ + Ce
σ is invertible. Consequently,

the scattering Green tensor and the Casimir energy must be
also independent of the choice made for the coefficients.
The surface currents and the Casimir energy at any finite
order of the MSE, however, in general do depend on the
chosen coefficients, and hence the rate of convergence of
the MSE does as well. This remarkable property provides
an effective method to optimize convergence for different
permittivities and even frequencies by suitable adjustment of
coefficients.

Physically, the required relation between the tangential
surface fields nσ × E and nσ × H is in general obeyed only
approximately at any finite order of the MSE, with the ap-
proximation converging to the exact relation with increasing
MSE order. Indeed, at first order, E and H of the incident field
are rescaled differently at each body by the chosen coefficients
Ci

σ and Ce
σ [see Eq. (14)]. The coefficients hence set the initial

field for the MSE iteration and they control how the exact
tangential surface fields are build up successively by the MSE.

Among the infinitely many choices there are a few which
we consider important to discuss explicitly and for which we
shall provide detailed expressions of the SSOs.

(1) In general, the SSO has a leading singularity that
diverges as 1/|u − u′|γ with γ = 3 when the two surface po-
sitions u and u′ approach each other. There exists a choice of
coefficients [45], however, for which the singularity is reduced
to a weaker divergence with exponent γ = 1, presumably
accelerating convergence. The coefficient matrices are

Ci
σ = diag(εσ , μσ ), Ce

σ = diag(ε0, μ0). (27)

The corresponding explicit expressions of the SSO K and of
the operator M read

K(EE )
σσ ′ (u, u′) = 2

μ0 + μσ

nσ (u) × [
μ0G

(HE )
0 (u, u′) − δσσ ′μσG(HE )

σ (u, u′)
]
,

K(HH )
σσ ′ (u, u′) = 2

ε0 + εσ

nσ (u) × [−ε0G
(EH )
0 (u, u′) + δσσ ′εσG(EH )

σ (u, u′)
]
,

K(EH )
σσ ′ (u, u′) = 2

μ0 + μσ

nσ (u) × [
μ0G

(HH )
0 (u, u′) − δσσ ′μσG(HH )

σ (u, u′)
]
,

K(HE )
σσ ′ (u, u′) = 2

ε0 + εσ

nσ (u) × [−ε0G
(EE )
0 (u, u′) + δσσ ′εσG(EE )

σ (u, u′)
]

(28)

and

M(EE )
σ (u, r) = 2μ0

μ0 + μσ

nσ (u) × G(HE )
0 (u, r),

M(EH )
σ (u, r) = 2μ0

μ0 + μσ

nσ (u) × G(HH )
0 (u, r),

M(HE )
σ (u, r) = − 2ε0

ε0 + εσ

nσ (u) × G(EE )
0 (u, r),

M(HH )
σ (u, r) = − 2ε0

ε0 + εσ

nσ (u) × G(EH )
0 (u, r),

(29)

with the free Green tensor Gσ which can be found in Appendix E. Substitution of this tensor yields the more explicit form in
terms of the scalar Green functions gσ (u − u′):

K(EE )
σσ ′ (u, u′) = 2

μ0 + μσ

[n(u) × (· × ∇(−μ0g0(u − u′) + δσσ ′μσ gσ (u − u′)))],

K(HH )
σσ ′ (u, u′) = 2

ε0 + εσ

[n(u) × (· × ∇(−ε0g0(u − u′) + δσσ ′εσ gσ (u − u′)))],

K(EH )
σσ ′ (u, u′) = 2

μ0 + μσ

[κ (−ε0μ0g0(u − u′) + δσσ ′εσμσ gσ (u − u′))n(u) × · + 1

κ
n(u)(· ∇ )∇(g0(u − u′)) − gσ (u − u′)))],

K(HE )
σσ ′ (u, u′) = −μ0 + μσ

ε0 + εσ

K(EH )
σσ ′ (u, u′). (30)
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This surface operator K has unique mathematical properties
which we shall discuss in detail in Sec. VI.

The corresponding choices for the coefficients of the inte-
gral equations for the surface charges [Eqs. (15) and (16)] are

ci
j,σ = ε0, ci

m,σ = μ0, ce
j,σ = εσ , ce

m,σ = μσ . (31)

(2) An asymmetric, material independent choice of coeffi-
cient matrices is

Ci
σ = diag(1, 0), Ce

σ = diag(0, 1). (32)

For good conductors, we have observed fast convergence of
the MSE with this choice, while for materials with a mod-
erately high permittivity, like Si, convergence is slow, which
made us prefer the choice 1 in the numerical computations in
[41]. The corresponding expressions of the SSO K and of the
operator M are

K(EE )
σσ ′ (u, u′) = 2 nσ (u) × G(HE )

0 (u, u′),

K(HH )
σσ ′ (u, u′) = 2 δσσ ′ nσ (u) × G(EH )

σ (u, u′),

K(EH )
σσ ′ (u, u′) = 2 nσ (u) × G(HH )

0 (u, u′),

K(HE )
σσ ′ (u, u′) = 2 δσσ ′ nσ (u) × G(EE )

σ (u, u′)

(33)

and

M(EE )
σ (u, r) = 2 nσ (u) × G(HE )

0 (u, r),

M(EH )
σ (u, r) = 2 nσ (u) × G(HH )

0 (u, r),

M(HE )
σ (u, r) = 0,

M(HH )
σ (u, r) = 0. (34)

(3) Finally, we note that the singular choice with Ci
σ +

Ce
σ = 0, which we excluded, does not yield a Fredholm

integral equation and hence does not permit a MSE. A cor-
responding popular choice [47] is

Ci
σ = diag(−1,−1), Ce

σ = diag(1, 1). (35)

The resulting integral equations for the surface currents are

N∑
σ ′=1

∫
Sσ ′

dsu′ Bσσ ′ (u, u′)
(

jσ ′

mσ ′

)
(u′) =

∫
dr Mσ (u, r)

(
J
M

)
(r),

(36)
with

Bσσ ′ (u, u′) = [G0(u, u′) + δσσ ′Gσ (u, u′)]t , (37)

Mσ (u, r) = −[G0(u, r)]t , (38)

where the subscript t means that when the argument of the
tensor belongs to the surface Sσ , the tangential projection of
the corresponding index of the tensor onto Sσ at that posi-
tion is taken. In [47] it is shown that Eq. (36) determines
uniquely the surface current at all frequencies. These integral
equations (36) have been employed in a computationally in-
tensive boundary element method [33], implemented in the
open-source software SCUFF-EM [48].

V. LIMITING CASES

A. Zero frequency

The surface integral equations for the currents become
singular in the limit of zero frequency. This singularity does
not constitute a problem for evaluation of forces and ener-
gies at zero temperature since both involve integration over
all imaginary frequencies. However, it impedes evaluation of
the n = 0 term of the Matsubara sum at finite temperatures.
Independent of this, one feels that solving the EM scattering
problem at zero frequency in terms of surface currents is
somewhat unnatural, and that a simpler approach based solely
on surface charges should be possible in the static limit. We
show below that this expectation is indeed correct.

Let us consider the electrostatic problem first. At points r
away from the bodies’ surfaces, the electrostatic potential φ

satisfies the equation

∇ · [ε0∇φ(r)] = −ρ j (r), r ∈ V0, (39)

∇ · [εσ∇φ(r)] = 0, r ∈ Vσ , (40)

where ρ j are the external sources of the incident electrostatic
field. The potential is continuous across the surfaces of the
bodies, while its normal derivative satisfies the boundary con-
dition

εσ n̂σ · ∇−φ = ε0 n̂σ · ∇+φ, (41)

i.e., the normal component of the induction vector D(r) =
ε(r) E(r) is continuous across the surfaces. It is known from
potential theory that the scalar potential φ is determined,
within each of the regions V0,V1, . . . ,VN by knowledge of
the external source ρ j and of the normal derivative of φ, or
what is the same by knowledge of the normal component
Dn of the induction vector, on the surfaces S1, . . . , SN . This
means that the scattering problem is solved, if we can set up an
equation to compute Dn. To achieve this, we can use a variant
of the equivalence principle. One notes that it is immaterial
to replace εσ by ε0 in Eq. (40). This means that away from
the surfaces Sσ the potential φ also satisfies the Poisson equa-
tion for a homogeneous medium with permittivity ε0:

�φ(r) = −ρ j (r)

ε0
. (42)

When considered in such a homogeneous medium, the normal
component of the corresponding induction vector D0 = ε0 E
has a jump across the surfaces of the bodies. This disconti-
nuity of D0 can be interpreted as arising from an unphysical
surface distribution of charge �̄σ such that

�̄ j,σ = −ε0[n̂σ · ∇+φ − n̂σ · ∇−φ]. (43)

In view of Eqs. (42) and (43), the potential can be then ex-
pressed everywhere as

φ(r) = φinc(r) + φ̄(r), (44)

where

φinc(r) = 1

ε0

∫
V0

d3r′g0(|r − r′|) ρ j (r′) (45)
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and

φ̄(r) = 1

ε0

N∑
σ=1

∫
Sσ

dsu g0(|r − u|) �̄ j,σ (u), (46)

with

g0(r) = 1

4π |r| . (47)

We note that according to Eq. (44), the field φ̄(r) can be iden-
tified with the scattered field, at points r outside the bodies:

φscat (r) = φ̄(r), r ∈ V0. (48)

An integral equation for �̄σ can be derived as follows. By
taking the gradient of Eq. (44), one derives the identity

n̂σ · ∇φ(u) = n̂σ · ∇φinc(u) + n̂σ · ∇φ̄(u). (49)

Now, the normal derivative of φ satisfies the identity

n̂σ · ∇φ(u) = 1
2 [n̂σ · ∇+φ(u) + n̂σ · ∇−φ(u)]. (50)

On the other hand, using Eqs. (41) and (43) one finds

n̂σ · ∇+φ(u) = εσ

ε0

1

ε0 − εσ

�̄ j,σ (u),

n̂σ · ∇−φ(u) = 1

ε0 − εσ

�̄ j,σ (u). (51)

Plugging the right-hand side (rhs) of the above identities into
the rhs of Eq. (50), we then find

n̂σ · ∇φ(u) = ε0 + εσ

2ε0 (ε0 − εσ )
�̄ j,σ (u). (52)

Upon substituting the rhs of Eq. (52) into the left-hand side
(lhs) of Eq. (49), and expressing the incident field in terms
of the external charge ρ j , after a little algebra one obtains
a Fredholm integral equation for �̄σ . The magnetostatic
problem can be treated in exactly the same way by doing
the substitutions �̄ j,σ → �̄m,σ , ε0 → μ0, and εσ → μσ . The
resulting integral equations for the surface charges are

�̄ j,σ (u) −
N∑

σ ′=1

∫
Sσ ′

dsu′ k( j)
σσ ′ (u, u′)�̄ j,σ ′ (u′)

=
∫

dr m( j)
σ (u, r)

(
ρ j

ρm

)
(r), (53)

�̄m,σ (u) −
N∑

σ ′=1

∫
Sσ ′

dsu′ k(m)
σσ ′ (u, u′)�̄m,σ ′ (u′)

=
∫

dr m(m)
σ (u, r)

(
ρ j

ρm

)
(r). (54)

Here the kernels are given by

k( j)
σσ ′ (u, u′) = 2

ε0 − εσ

ε0 + εσ

∂nσ (u) g0(u − u′),

k(m)
σσ ′ (u, u′) = 2

μ0 − μσ

μ0 + μσ

∂nσ (u) g0(u − u′),
(55)

which turn out to be independent of σ ′, and

m( j)
σ (u, r) = 2

ε0 − εσ

ε0 + εσ

∂nσ (u) g0(u − r),

m(m)
σ (u, r) = 2

μ0 − μσ

μ0 + μσ

∂nσ (u) g0(u − r). (56)

We note that the above integral equations are of the same
form as the ones for the surface currents, Eq. (13).

It is nice to verify that the integral equations (53) and
(54) can be also derived by taking the static limit of
Eqs. (15) and (16), respectively. Consider indeed the integral
equations (15) and (16) for κ = 0. The first term of the in-
tegrand ∼κ obviously vanishes. In addition, limκ→0 gσ (u −
u′) = limκ→0 g0(u − u′) = 1/(4π |u − u′|). We make now
the choice 1 for the coefficients [see Eq. (31)]. Then, in the
static limit, the integral equations read

� j,σ (u) − 2εσ

ε0 + εσ

N∑
σ ′=1

∫
Sσ ′

dsu′

[
((1 − δσσ ′ )∇ug0(u − u′)

× nσ (u)) · mσ ′ (u′) −
(

1 − ε0

εσ

δσσ ′

)
∂nσ (u)� j,σ ′ (u′)

]

= 2εσ

ε0 + εσ

nσ (u) · Einc(u), (57)

�m,σ (u) − 2μσ

μ0 + μσ

N∑
σ ′=1

∫
Sσ ′

dsu′

[
((δσσ ′ − 1)∇ug0(u − u′)

× nσ (u)) · jσ ′ (u′) −
(

1 − μ0

μσ

δσσ ′

)
∂nσ (u)�m,σ ′ (u′)

]

= 2μσ

μ0 + μσ

nσ (u) · Hinc(u). (58)

The term of the sum with σ ′ = σ is independent of the
surface currents jσ and mσ due to the delta function. To
simplify the terms with σ ′ 
= σ we note that the EM field for
r located in the interior region of the surface Sσ ′ in the static
limit can be written as

E(σ ′ )(r) =
∫

Sσ ′
dsu

[
ε0

εσ ′
� j,σ ′ (u)∇g0(r − u)

+ ∇g0(r − u) × mσ ′ (u)

]
, (59)

H(σ ′ )(r) =
∫

Sσ ′
dsu

[
μ0

μσ ′
�m,σ ′ (u)∇g0(r − u)

− ∇g0(r − u) × jσ ′ (u)

]
. (60)

If r is located in the region exterior to the surface Sσ ′ , the
above integrals vanish. Since u in Eqs. (57) and (58) is located
outside of the surface Sσ ′ for σ ′ 
= σ we can use this rela-
tion to eliminate the surface currents. Upon expressing now
(� j,σ , �m,σ ) in terms of (�̄ j,σ , �̄m,σ ) via the relations

� j,σ (u) = −εσ

ε0

1

ε0 − εσ

�̄ j,σ (u), (61)

�m,σ (u) = −μσ

μ0

1

μ0 − μσ

�̄ j,σ (u), (62)

which follow from a comparison of the second of Eqs. (4)
with Eq. (52) (and the analogous relation for the magnetic
field), and taking as incident fields the electrostatic and mag-
netostatic fields generated by external charges ρ j and ρm,
respectively, one finds that Eqs. (57) and (58) actually coin-
cide with Eqs. (53) and (54), respectively.
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For the benefit of the reader, we write below the expres-
sions of the classical n = 0 contributions to the Casimir and
CP energies, in terms of the static SSO introduced above.
They are

E |n=0 = kBT

2

∑
p= j,m

Tr log
[
1 − (

1 − k(p)
11

)−1
k(p)

12

× (
1 − k(p)

22

)−1
k(p)

21

]
, (63)

ECP|n=0 = −2πkBT
3∑

i, j=1

[
αi j (0)Γ̃(EE )

i j (r0, r0)

+ βi j (0)Γ̃(HH )
i j (r0, r0)

]
, (64)

where

Γ̃(EE )(r, r′) = →
∇r

∫
S

dsu

∫
S

dsu′ g0(r, u)(1 − k( j) )−1(u, u′)

× m( j)(u′, r′)
←
∇r′ , (65)

Γ̃(HH )(r, r′) = →
∇r

∫
S

dsu

∫
S

dsu′ g0(r, u)(1 − k(m) )−1(u, u′)

× m(m)(u′, r′)
←
∇r′ . (66)

B. High frequencies

It is instructive to study the limit of asymptotically high
frequencies. We do this here by assuming fixed, i.e., frequency
independent, permittivities. In the high-frequency limit, the
SSO becomes ultralocal, and hence the surface can be approx-
imated by its tangent plane at each position. Then a simple
computation yields the following limits:

lim
κ→∞ K(EE )

σσ ′ = lim
κ→∞ K(HH )

σσ ′ = 0,

lim
κ→∞ K(EH )

σσ ′ =
(

0
√

ε0μ0−√
εσ μσ

μ0+μσ−√
ε0μ0+√

εσ μσ

μ0+μσ
0

)
δσσ ′,

lim
κ→∞ K(HE )

σσ ′ =
(

0 −√
ε0μ0+√

εσ μσ

ε0+εσ√
ε0μ0−√

εσ μσ

ε0+εσ
0

)
δσσ ′ . (67)

Here the matrix elements are expressed in an orthogonal basis
of tangential unit vectors. This shows that for κ → ∞, the
N-body K operator splits into N independent off-diagonal
single-body multiplicative operators Kσσ |κ=∞. Using the
above limits, it is straightforward to verify that the eigenvalues
of Kσσ |κ=∞ are

λσ ;κ=∞ = ±
√

εσμσ − √
ε0μ0√

(μσ + μ0)(εσ + ε0)
. (68)

It can be easily verified that for all constant values of the
permittivities |λσ ;κ=∞| < 1, which shows that the MSE con-
verges in the κ → ∞ limit.

C. Perfect conductors

In the limit of perfect conductors, the boundary conditions
reduce to the requirement that the tangential component of
the electric field vanishes. Hence, it is sufficient to consider
only electric surface currents. Those currents are determined

by a Fredholm integral equation of the second kind with the
operators

K(PC)
σσ ′ (u, u′) = 2 nσ (u) × G(HE )

0 (u, u′) (69)

and

M(PC)
σσ ′ (u, r) = 2 nσ (u) × G(HE )

0 (u, r) (70)

acting only on the electric surface currents jσ (u) = n̂σ (u) ×
H+(u). This result was derived in the study of the Casimir
effect for perfectly conducting bodies in [39]. Details of the
derivation of this result are provided in Appendix C.

VI. CONVERGENCE PROPERTIES OF THE MSE

Now we turn to the important problem of the convergence
of the Neumann series with the choice 1 for the coefficients
for the SSO K. It has been shown that the equation Kv = v
does not have any solutions, apart from the trivial one v = 0
[45]. Since K is compact, general theorems on compact op-
erators then ensure that the operator (I − K)−1 exists and is
a bounded operator [49]. Inversion of the Fredholm integral
equation then gives( j

m

)
= (I − K)−1 M

( J
M

)
. (71)

If the Neumann series converges, (
j

m) can be computed by
means of the MSE:( j

m

)
=

( ∞∑
k=0

Kk

)
M

( J
M

)
. (72)

An important question is whether this series converges. Con-
vergence is ensured if all eigenvalues of K are smaller than
1 in modulus. Unfortunately, a general proof of convergence
does not seem possible. However, we can provide several
arguments supporting the conjecture that the Neumann se-
ries indeed converges at all frequencies, and for all passive
materials. The first argument comes from [39] where it was
shown that for an isolated compact perfect conductor with
a smooth surface the eigenvalues of K are smaller than 1 in
modulus. Below we show that this conclusion remains true
also for any number of perfect conductors. In addition, our
results below will show explicitly that the Neumann series
converges in three distinct limits, namely at all frequencies
for perfect conductors, and for magneto-dielectric bodies in
the limits of asymptotically large frequencies and vanishing
frequencies.

A. Zero frequency

We begin by considering the static limit κ → 0. Since in
the computation of the Casimir energy of two bodies one only
needs consider the separate Neumann series of the single-
body operators k11 and k22, we here only consider the static
limit for a single isolated body. In the static limit, the SSO
operator of an isolated body is given by the electric and
magnetic kernels k( j)

σσ and k(m)
σσ in Eq. (55). We now provide

a proof of convergence of the Neumann series (1 − k( j)
σσ )−1

and (1 − k(m)
σσ )−1. Convergence is demonstrated by proving

that the moduli of the eigenvalues λ of kσσ are smaller than
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1. Here and in the following we drop the indices ( j) and (m).
Let us consider the eigenvalue equation for kσσ :

kσσ �̄σ = λ �̄σ . (73)

Note that the eigenvalues λ may be complex, a priori, since
kσσ is not Hermitian. Let φ̄σ denote the field generated by the
surface charge distribution �̄σ :

φ̄σ (r) =
∫

Sσ

dsu g0(r − u) �̄σ (u). (74)

The eigenvalue equation is then equivalent to the integral
equation

2
ε0 − εσ

ε0 + εσ

n̂σ · ∇φ̄σ (u) = λ �̄σ (u). (75)

By construction, φ̄σ satisfies the Laplace equation at all points
away from the surface Sσ :

�φ̄σ = 0. (76)

Moreover, at points on the surface Sσ the normal derivative of
φ̄σ satisfies the identities

�̄σ = n̂σ · ∇−φ̄σ − n̂σ · ∇+φ̄σ , (77)

n̂σ · ∇φ̄σ = 1
2 [n̂σ · ∇−φ̄σ + n̂σ · ∇+φ̄σ ]. (78)

From the above identities, we obtain

n̂σ · ∇φ̄σ = n̂σ · ∇±φ̄σ ± 1
2 �̄σ . (79)

Substitution of the rhs of this identity into the lhs of Eq. (75)
gives

n̂σ · ∇±φ̄σ = 1

2

(
ε0 + εσ

ε0 − εσ

λ ∓ 1

)
�σ . (80)

Now, consider the positive-definite integrals I0 and Iσ defined
by

I0 =
∫

R3−Vσ

d3r ∇φ̄∗
σ (r) · ∇φ̄σ (r),

Iσ =
∫

Vσ

d3r ∇φ̄∗
σ (r) · ∇φ̄σ (r). (81)

By using Green’s theorem, and then considering the identities
in Eq. (80), one finds that the above integrals become

I0 = −
∫

Sσ

dsu φ̄∗
σ (u) n̂σ · ∇+φ̄σ (u) = 1

2

(
1 − λ

ε0 + εσ

ε0 − εσ

)
Jσ ,

Iσ =
∫

Sσ

dsu φ̄∗
σ (u) n̂σ · ∇−φ̄σ (u) = 1

2

(
1 + λ

ε0 + εσ

ε0 − εσ

)
Jσ ,

(82)

where

Jσ =
∫

Sσ

dsu φ̄∗
σ (u)�σ (u). (83)

Since Iσ are obviously positive, the integrals Jσ cannot be
zero. Upon multiplying the first of Eqs. (82) by the conjugate

of the second, we obtain

I0Iσ = 1

4

[
1 − |λ|2

(
ε0 + εσ

ε0 − εσ

)2

− 2 i
ε0 + εσ

ε0 − εσ

Im λ

]
|Jσ |2.

(84)

This identity implies that Im λ = 0, and one obtains the
inequality

1 − |λ|2
(

ε0 + εσ

ε0 − εσ

)2

> 0, (85)

which directly implies

|λ|2 <

(
ε0 − εσ

ε0 + εσ

)2

< 1, (86)

since ε0 and εσ are both positive numbers. An analogous proof
shows that |λ| < 1 for the magnetostatic problem.

B. Perfect conductors

In this subsection we prove that the Neumann series for
a collection of perfectly conducting bodies converges for all
imaginary frequencies. The proof applies to compact bodies,
with smooth surfaces. Convergence is demonstrated by prov-
ing that the absolute values of the eigenvalues λ of the operator
K(PC) in Eq. (69) are less than 1. We note that convergence
of the Neumann series was proved in [39] for a single body,
in a larger domain of complex frequencies ω, that includes
the imaginary axis. Since for purely imaginary frequencies
the proof becomes considerably simpler, we find it useful to
present it here for a general system of N conductors. Let us
consider the eigenvalue equation for K(PC):

K(PC) j = λ j. (87)

Note that the eigenvalues λ may be complex, a priori, since K
is not Hermitian. Let (E, H) denote the EM field generated by
the surface current j:

E(r) =
N∑

σ=1

∫
Sσ

dsu G(EE )
0 (r − u)jσ (u),

H(r) =
N∑

σ=1

∫
Sσ

dsu G(HE )
0 (r − u)jσ (u). (88)

In view of Eq. (69), we see that the eigenvalue equation is
equivalent to the relation

2 n̂σ (u) × H(u) = λ jσ (u). (89)

By construction, the EM field (E, H) satisfies Maxwell equa-
tions at points r not lying on any of the surfaces Sσ :

−∇ × E(r) = κ μ0 H(r), (90)

∇ × H(r) = κ ε0 E(r). (91)

At points u on Sσ the field (E, H) satisfies the jump conditions

n̂σ (u) × [E+(u) − E−(u)] = 0,

n̂σ (u) × [H+(u) − H−(u)] = jσ . (92)
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Moreover, it holds that

n̂σ (u) × E(u) = 1
2 n̂σ (u) × [E+(u) + E−(u)],

n̂σ (u) × H(u) = 1
2 n̂σ (u) × [H+(u) + H−(u)]. (93)

Combining Eqs. (92) and (93) we obtain

n̂σ (u) × E(u) = n̂σ (u) × E±(u),

n̂σ (u) × H(u) = n̂σ (u) × H±(u) ∓ 1
2 jσ . (94)

Upon substituting the rhs of the second of the above equa-
tions into the lhs of the eigenvalue Eq. (89), we obtain the
relation

2 n̂σ (u) × H±(u) = (λ ± 1) jσ . (95)

Now, consider the energy fluxes across the inner and the
outer sides of the surface Sσ , given by surface integrals of the
Poynting vector:

Jσ± = 2
∫

Sσ

dsu n̂σ (u) · (E∗
± × H±)(u). (96)

By using the divergence theorem, one obtains the identities

Jσ− = Iσ−,

N∑
σ=1

Jσ+ = −I+,
(97)

where Iσ− and I+ denote the following positive-definite inte-
grals:

I+ = 2κ

∫
V0

d3r (ε0 E∗ · E + μ0 H∗ · H),

Iσ− = 2κ

∫
Vσ

d3r (ε0 E∗ · E + μ0 H∗ · H). (98)

Upon substituting Eqs. (95) into the rhs of Eq. (96), and
recalling the first of Eqs. (94), we find that the identities in
Eq. (97) can be recast as

I+ = (1 + λ)
N∑

σ=1

∫
Sσ

dsu E∗ · jσ ,

Iσ− = (1 − λ)
∫

Sσ

dsu E∗ · jσ . (99)

Since I+ and Iσ− are positive, neither of the surface integrals
on the rhs of the above equations can be zero. Upon adding
the identities in the second line of the above equation, and
then dividing the sum by the identity in the first line, we find

1 − λ

1 + λ
= I−

I+
, (100)

where we set I− = ∑N
σ=1 Iσ−. By solving for λ, we get

λ = I+ − I−
I+ + I−

. (101)

This relation shows that the eigenvalues are real, and that
|λ| < 1 since I+, I− > 0. This establishes convergence of the
Neumann series.

C. Some general properties of the SSO
in the formulation of choice 1

In this section, we derive the main properties of the SSO K
with the coefficient choice 1 for magneto-dielectric bodies.
We assume throughout that the frequency ω is imaginary,
ω = iξ , with ξ > 0. We underline though that most of the
properties discussed below are in fact valid for arbitrary
frequencies ω belonging to the upper complex plane C+ =
{ω : Im(ω) � 0}, as the reader may easily verify in each
case. We recall that along the positive imaginary frequency
axis the permittivities of dissipative and dispersive media are
positive numbers, and therefore we assume below εσ > 0
and μσ > 0.

The unique feature of the formulation of choice 1, which
distinguishes it from all other formulations, is its weak short-
distance singularity, since K behaves as |u − u′|−1 when u →
u′. We note that an analogous weak singularity is also dis-
played by the SSO K(PC) for perfect conductors in Eq. (69).
This has to be contrasted with the |u − u′|−3 singularity dis-
played by K, for all other choices of the coefficients. As a
result of its weak singularity, the SSO K is a compact operator
[45]. As it is well known [49], the spectrum σ (A) of a compact
operator A consists only of discrete eigenvalues, and the set of
its nonvanishing eigenvalues (each counted as many times as
its multiplicity) is either empty or finite or it is a sequence con-
verging to zero. The latter property implies that the number of
eigenvalues whose modulus exceeds any positive constant is
necessarily finite. An important consequence of this general
property of compact operators is that the number of eigenval-
ues of K that exceed 1 in modulus is finite, which implies that
the MSE of (I − K)−1 converges in general, except possibly in
a finite-dimensional subspace.

Before we study some mathematical properties of the op-
erator K, it is instructive to consider its general structure and
behavior of low and high imaginary frequencies κ . Consider
the expression for K given in Eq. (30). For small κ the EH
and HE components vanish, as can be seen by expanding
gσ (u − u′) for small κ . In the opposite limit of large κ , the EE
and HH components of K vanish, as we had seen explicitly
already in Eq. (67). We have already shown before that in
both limits the eigenvalues of K are smaller than 1. This
implies that the MSE must converge for sufficiently small
and for sufficiently large κ . However, this does not guarantee
convergence for all values of κ since the eigenvalues are not
monotonous functions of κ , as we shall see in the examples
given in the next section.

We proceed with some mathematical properties of K. On
the space of surface currents ( j

m) we define the scalar product

〈 (
j′

m′

)∣∣∣∣
(

j
m

) 〉
=

N∑
σ=1

∫
Sσ

dsu[ j′∗σ (u) · jσ (u)

+ m′∗
σ (u) · mσ (u)]. (102)

It is a simple matter to verify that the K operator in Eq. (28)
can be factorized as

K = RU, (103)
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where R is the local multiplicative operator

R

(
jσ

mσ

)
(u) =

(
n̂σ (u) × jσ (u)

−n̂σ (u) × mσ (u)

)
, (104)

and U is the surface operator

U(EE )
σσ ′ (u, u′) = 2

μ0 + μσ

[
μ0G

(HE )
0 (u, u′) − δσσ ′μσG(HE )

σ (u, u′)
]

t ,

U(HH )
σσ ′ (u, u′) = 2

ε0 + εσ

[
ε0G

(EH )
0 (u, u′) − δσσ ′εσG(EH )

σ (u, u′)
]

t ,

U(EH )
σσ ′ (u, u′) = 2

μ0 + μσ

[
μ0G

(HH )
0 (u, u′) − δσσ ′μσG(HH )

σ (u, u′)
]

t ,

U(HE )
σσ ′ (u, u′) = 2

ε0 + εσ

[
ε0G

(EE )
0 (u, u′) − δσσ ′εσG(EE )

σ (u, u′)
]

t ,

(105)

where the subscript t denotes projection of tensors onto the
tangent plane at Sσ . We note that both R and U are real
operators. Let us define the transpose AT of an operator A:

(AT)(αβ )
i j;σσ ′ (u, u′) = A(βα)

ji;σ ′σ (u′, u). (106)

The operator R is orthogonal:

R RT = −R2 = 1. (107)

It can be verified that U satisfies the relation

gU = UT g, (108)

where g is the local positive and symmetric operator

g

(
jσ

mσ

)
(u) =

(
(μσ + μ0) jσ
(εσ + ε0) mσ

)
(u). (109)

We note also that R and g commute:

[ R, g ] = 0. (110)

The symmetry property Eq. (108) implies that the
operator U is self-adjoint with respect to the following
material-dependent inner product 〈 | 〉g:〈 (

j′
m′

) ∣∣∣∣
(

j
m

) 〉
g

≡
〈 (

j′
m′

) ∣∣∣∣ g
(

j
m

) 〉

=
N∑

σ=1

∫
Sσ

dsu[(μσ + μ0) j′∗σ (u) · jσ (u)

+ (εσ + ε0) m′∗
σ (u) · mσ (u)]. (111)

Thus, Eq. (103) shows that for imaginary frequencies the
operator K is the product of an orthogonal operator R times a
self-adjoint real operator U. This implies that if λ is an eigen-
value, then also −λ, λ∗, and −λ∗ are eigenvalues. We note first
that reality of K implies that the set of its eigenvalues is formed
by pairs (λ, λ∗) of complex conjugate eigenvalues. Consider
now an eigenvalue λ of K. Since the eigenvalues of an operator

coincide with the eigenvalues of its transpose, there must exist
a nonvanishing left eigenvector v of K such that

KTv = −UTR v = λ v. (112)

Now we define w = g−1R v. The vector w is clearly different
from zero, because R is orthogonal and g is a positive
operator. Then, using the relation Eq. (108), we get

K w = RUg−1R v = Rg−1 UTR v = −λRg−1v

= −λ g−1 R v = −λw, (113)

which shows that w is an eigenvector of K with eigenvalue
−λ. It is clear that all the above conclusions are true also for
the SSO Kσσ of the σ th body in isolation.

FIG. 2. Multiple scattering expansion of the Casimir energy be-
tween a silicon plate and a gold plate. Different orders of the MSE
for the Casimir energy between a plate made of doped silicon and a
plate made of gold, normalized to the known exact energy. Indices of
MSEkl label the number of scatterings between the plates [2(k + 1)]
and within the silicon plate (l) (see text for details).
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VII. EXAMPLES

In order to strengthen the case for convergence of the Neu-
mann series for the formulation of choice 1, we consider in
this section explicitly the operator K for a magneto-dielectric
plate, sphere, and cylinder. The eigenvalues can be computed
exactly in these cases, using plane waves or the partial-wave
representations of the free Green tensors. We considered sev-
eral distinct values of the electric and magnetic permittivities,

and always found that the moduli of the eigenvalues are less
than 1, at all frequencies.

A. Example 1: Magneto-dielectric parallel plates

The Casimir interaction between two planar and par-
allel surfaces is determined by their Fresnel coefficients
according to the Lifshitz formula [2]. In our formulation,
the Casimir interaction is determined by the SSO K. For

an infinite, planar surface of a material with permittivities εσ and μσ in an external medium with permittivities ε0 and μ0, the
SSO Kσσ can be expressed easily in a plane-wave basis:

K(EE )
σσ = 0,

K(HH )
σσ = 0,

K(EH )
σσ = (−1)σ (2π )2δ(k‖ − k′

‖)
1

κ

1

μ0 + μσ

[
1√

ε0μ0κ2 + k2
‖

(
−k1k2 −ε0μ0κ

2 − k2
1

ε0μ0κ
2 + k2

2 k1k2

)

− 1√
εσμσκ2 + k2

‖

(
−k1k2 −εσμσκ2 − k2

1

εσμσκ2 + k2
2 k1k2

)]
,

K(HE )
σσ = −μ0 + μσ

ε0 + εσ

K(EH )
σσ ,

(114)

where k‖ = (k1, k2) is the k vector parallel to the surface. The factor (−1)σ accounts for the different orientation of the surface
normal vector on the two plates. The eigenvalues of Kσσ are

λ±(k‖) = ±
[

(s1 − s0)(ε1μ1s0 − ε0μ0s1)

s0s1(ε0 + ε1)(μ0 + μ1)

]1/2

(115)

with sσ =
√

εσμσκ2 + k2
‖. Each eigenvalue has an algebraic multiplicity of 2. The eigenvalues are real valued, and |λ±(k‖)| < 1

as can be easily checked.
The components of the operators Kσσ ′ with σ 
= σ ′ which couple surface currents on different surfaces are also easily

expressed in plane waves, leading to

K(EE )
12 = (2π )2δ(k‖ − k′

‖)
μ0

μ0 + μ1

(−1 0

0 −1

)
e−s0d ,

K(HH )
12 = (2π )2δ(k‖ − k′

‖)
ε0

ε0 + ε1

(−1 0

0 −1

)
e−s0d ,

K(EH )
12 = (2π )2δ(k‖ − k′

‖)
1

(μ0 + μ1)κs0

(
−k1k2 −k2

1 − ε0μ0κ
2

k2
2 + ε0μ0κ

2 k1k2

)
e−s0d ,

K(HE )
12 = (2π )2δ(k‖ − k′

‖)
1

(ε0 + ε1)κs0

(
k1k2 k2

1 + ε0μ0κ
2

−k2
2 − ε0μ0κ

2 −k1k2

)
e−s0d . (116)

The elements of K21 are obtained from those of K12 by replac-
ing ε1 and μ1 by ε2 and μ2 and changing the sign of the EH
and HE components. When these operator components are
substituted into Eq. (23), the Lifshitz formula [2] is recovered.
We note that the inverse of 1 − Kσσ can be computed easily as
the operator is diagonal. However, to examine the convergence
rate of the MSE, we expand (1 − Kσσ )−1 into a Neumann
series in Kσσ and compute the Casimir energy at different
orders of the MSE. Since |λ±(k‖)| < 1, the MSE must con-
verge. Indeed, when the SSO K11 describes the scatterings on
one plate, expansion of the energy in Eq. (14) in this SSO

yields MSE approximants to the Casimir interaction. MSE
orders are labeled by MSEkl where 2(k + 1) is the number
of scatterings between the surfaces (total number of K12 and
K21 operators) and l is the number of single-body scatterings
on the Si surface (number of K11 operators).

The majority of experiments measure forces between gold
(Au) and/or doped silicon (Si) surfaces [3,4,6,14], and hence
we consider these materials in this example. Figure 2 shows
the energy for eight different orders of MSE relative to the
known exact energy at T = 300 K for surface separations
between 100 nm and 1 µm. While the lowest-order MSE00
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FIG. 3. Eigenvalues of K11 for a magneto-dielectric sphere of radius R. Shown are the absolute values of the eigenvalues for electric and
magnetic polarization, as a function of the dimensionless quantity Rκ for different partial wave indices l = 1, 2, and 3. For each value of l
only two of the four eigenvalues are shown, as eigenvalues of K11 always appear in pairs (λ,−λ). The permittivities are indicated in the plots.

with no single-body scattering on the Si surface yields al-
ready between 70 and 87% of the exact interaction, only four
scatterings between the surfaces (k = 1) and two single-body
scatterings on the Si surface (l = 2) are required for an ac-
curacy of about 1%. This validation example demonstrates
fast convergence of our MSE, with good homogeneity in
separation.

B. Example 2: Magneto-dielectric sphere

For a magneto-dielectric sphere of radius R the SSO oper-
ator K11 can be computed easily in terms of vector spherical
harmonics. A similar computation has been carried out in
[40] for a perfectly conducting sphere. The elements of the
infinite matrix representing K11 can be expressed in terms
of Bessel functions Il+1/2(z) and Kl+1/2(z) with half-integer

index. The full expressions are not particularly illuminating
and hence are not shown here. Figure 3 shows the eigenvalues
of K11 for the first three partial waves as a function of the
rescaled frequency κR. For all considered permittivities and
frequencies, the moduli of the eigenvalues were found to be
less than 1. For large Rκ the eigenvalues become independent
of the partial wave index l as they approach the high-energy
limit given by Eq. (68).

C. Example 3: Magneto-dielectric cylinder

A third validation example involves the eigenvalues of K11

and the scattering Green function Γ for a dielectric cylinder.
The latter is fully specified by the scattering T operator T
of the cylinder. It is known exactly and constitutes the only
exact result for a curved dielectric body which couples electric
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and magnetic polarizations upon scattering [50]. When T is
known, one can use the relation [36]

Γ(r, r′) =
∫

d r̃
∫

d r̃′ G0(r, r̃)T(r̃, r̃′)G0(r̃′, r′) (117)

to compute the components of Γ in a partial wave expansion
of G0 where the integrations now extend over the volume
of the cylinder. Specifically, vector cylindrical waves are a
convenient choice to obtain the SSO K11 of the cylinder
and to extract from the MSE for Γ the T -operator elements
Tαα′

(m, κ, kz ) for α, α′ ∈ {E , H}, the imaginary wave number
κ = ξ/c, the wave vector kz along the cylinder axis, and the
angular quantum number m (see Appendix D for details).
The elements of K11 can be expressed in terms of Bessel
functions Km(z) and Im(z) but the expressions are too lengthy
to be shown here. For each value κR and kzR and integer
partial wave index m � 0 there are four eigenvalues of K11.
They can be also expressed in terms of Bessel functions. For
all considered permittivities, frequencies, and wave vectors,
the moduli of the eigenvalues were found to be less than 1.
Figures 4–6 show the absolute values of the eigenvalues for
different permittivities. For large Rκ the eigenvalues become
independent of Rkz and m as they approach the high-energy
limit given by Eq. (68).

Next, we study the scattering Green function. The panels
in Fig. 7 display interesting aspects of the convergence of the
approximant for Tαα′

with the MSE (1 − K11)−1 = ∑p
n=0 Kp

11
for order p = 3. The contour plots show the ratio of the ap-
proximant and the exact T -operator elements for m = 0 and 1
as a function of the dimensionless wave numbers κR and kzR
for a cylinder of radius R and permittivities ε1 = 30 and μ1 =
1. While at this low order overall convergence has reached
already agreement of better than 85% with the exact result,
the plots reveal a complex dependence of the convergence
rate on wave numbers. Typically convergence accelerates with
decreasing frequency scale κ and increasing wave number
kz, with the exception of lowest m = 0 elements which show
slow convergence around the static, long-wavelength limits
κ = kz = 0. This slowdown can be understood from the pres-
ence of a logarithmic divergence in T for m = 0 which is a
consequence of the infinite length of the cylinder [50]. The
observation of fast convergence of the MSE for Γ is impor-
tant as it determines directly the Casimir-Polder interaction
between a surface and a polarizable particle [51].

VIII. CONCLUSION AND DISCUSSION

After decades of efforts by many researchers, the power
of integral equations methods [52,53] in computational elec-
tromagnetism is by now an established fact. Only recently,
however, these methods have been applied to Casimir physics
[33,34]. The findings of [33,34] undoubtedly represent a
significant progress in the field, because they make it pos-
sible to compute, at least in principle, Casimir interactions
for arbitrary arrangements of any number of (homogeneous)
magneto-dielectric bodies of any shape. This is very important
in view of applications to micro- and nanomechanical devices
of complex shapes, where the Casimir force may play an
important role. While it is a huge step forward, the approach of

FIG. 4. Eigenvalues of K11 for a magneto-dielectric cylinder of
radius R with ε = 10 and μ = 1. Shown are the absolute values of
the eigenvalues for electric and magnetic polarization, as a function
of the rescaled frequency Rκ and the rescaled dimensionless wave
vector Rkz, for different partial wave indices m = 0, 1, and 2. Only
two of the four eigenvalues are shown, as eigenvalues of K11 always
appear in pairs (λ, −λ).

[33,34] suffers from the drawback that its implementation is
extremely costly in terms of the required computer resources,
which may not be generally available to the interested re-
searchers.

In [41] we introduced a class of exact integral-equation rep-
resentations of the Casimir and Casimir-Polder interaction
between bodies of arbitrary shape and material composition.
The present paper offers a detailed and pedagogical presenta-
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FIG. 5. Eigenvalues of K11 for a magneto-dielectric cylinder of
radius R with ε = 100 and μ = 1.

tion of our methods, which may not be familiar to the majority
of researchers in Casimir physics. A major difference with
respect to [33,34] is that in our approach the Casimir and
Casimir-Polder interactions are expressed in terms of sur-
face integral equations of the second Fredholm type, which
are amenable to a MSE in terms of elementary free-space
propagators. We underline that our representation does not
depend on the scattering amplitude of the bodies. Moreover,
our semianalytical MSE does not involve a discrete mesh
representation of the geometry and requires no numerical
computation and inversion of large matrices over boundary
elements, a computationally expensive task. In our approach,
the interaction is in fact expressed in terms of iterated in-

FIG. 6. Eigenvalues of K11 for a magneto-dielectric cylinder of
radius R with ε = 20 and μ = 10.

tegrals of elementary functions extended on the surfaces of
the bodies. For soft material bodies like those usually consid-
ered in biological systems, the MSE converges quickly, and
then already the first terms of the expansion may provide a
fairly accurate estimate of the interaction energy. The Si-Au
wedge-plate system studied in [41] shows that even in the
case of condensed bodies convergence of the MSE is rather
fast. We believe that the possibility of getting, via the MSE,
an estimate of the Casimir energy in a complex geometry, by
just performing simple surface integrals, adds a useful tool to
the toolbox of researchers in the field.

We envisage several possible future directions for our pa-
per. One important advantage of our approach is that our
representations of the Casimir and Casimir-Polder interac-
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FIG. 7. Multiple scattering expansion of the scattering Green function of a dielectric cylinder. Contour plots of the ratio of the T -matrix
elements of a dielectric cylinder of radius R computed with the MSE to order p = 3 and the exact results, as a function of rescaled imaginary
frequency κR and the rescaled wave vector kzR along the cylinder axis. The dielectric permittivities of the cylinder are ε = 30 and μ = 1.
Shown are the lowest-order T -matrix elements with angular quantum numbers m = 0 and 1 for all four combinations of polarizations E and
H . (For m = 0 the polarization couplings T EH and T HE vanish.)

tions involve several free parameters, that may be in principle
adjusted to the dielectric properties of the bodies, in or-
der to speed convergence of the expansion. The problem of
determining the optimal choice of these coefficients is a very
interesting topic, that we plan to investigate in future publica-
tions. Another clear direction is to apply the MSE in the real

frequency domain, to the technologically important problem
of radiative transfer at the micro- and nanoscales, a subject
of intense study in recent years [54,55]. Our approach can be
easily adapted to this problem, by following steps similar to
those of [56]. The nontrivial issue that requires a systematic
investigation is the domain of convergence of the MSE for
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real frequencies, for the materials and the frequency ranges
that are relevant to the problem.

In conclusion, our rapidly convergent MSE can provide
a powerful tool to delve deeper into Casimir and thermal
phenomena in submicrometer structures composed of vari-
ous materials which cannot be understood by simple additive
power laws and planar or spherical surface interactions.
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APPENDIX A: SURFACE-INTEGRAL FORMULATION
OF ELECTROMAGNETIC SCATTERING

In this Appendix, we briefly review surface-integral formu-
lation of EM scattering by dielectric objects. This provides a
convenient basis for the derivation of the SSO, which is the
subject of the next Appendix.

We start from the formulation of our scattering problem.
Let us consider a collection of N dielectric bodies, charac-
terized by the respective (frequency dependent) permittivities
εσ and μσ , embedded in a dielectric medium with permittiv-
ities ε0 and μ0. We let Vσ denote the volume occupied by
the σ th body, and Sσ denote its surface, with n̂σ (u) the unit
outward normal to Sσ . We finally denote by V0 the region
of space, outside the collection of N bodies. We imagine a
distribution of electric and magnetic sources (J, M) in V0, and
we let (Einc, Hinc) denote the incident EM field radiated (in
the absence of the N bodies) by (J, M):

(Einc, Hinc)(r) =
∫

V0

dr′ G0(r − r′) · (J, M)(r′), (A1)

where G0 denote the Green tensors for a homogeneous
and isotropic medium with permittivities ε0 and μ0, re-
spectively (the explicit expressions of the Green tensors are
provided in Appendix E). Solution of the N-body scattering
problem requires solving Maxwell equations in the regions
V0,V1, . . . ,VN , with sources (J, M) in V0, subjected to the
boundary conditions that the tangential components of the EM
field E and H are continuous across the N surfaces Sσ :

n̂σ (u) × E+(u) = n̂σ (u) × E−(u),

n̂σ (u) × H+(u) = n̂σ (u) × H−(u),
(A2)

where E+ and E− (H+ and H−) denote, respectively, the
values of the electric (magnetic) field at points just outside and
inside the surface Sσ . It is convenient to define the electric and
magnetic “surface currents” jσ (u) and mσ (u), with u ∈ Sσ , by
the relations

jσ (u) ≡ n̂σ (u) × H(u),

mσ (u) ≡ −n̂σ (u) × E(u). (A3)

By using Green’s theorem [43,57,58], one can prove the fol-
lowing four sets of integral identities, which relate the EM
field E and H to the incident field (Einc, Hinc) and to the
boundary fields j1, . . . , mN :

(E, H)(r) = (Einc, Hinc)(r) + (Ẽ(0), H̃(0) )(r; j1, . . . , mN ),

r ∈ V0, (A4)

0 = (Einc, Hinc)(r) + (Ẽ(0), H̃(0) )(r; j1, . . . , mN ), r /∈ V0,

(A5)

(E, H)(r) = −(Ẽ(σ ), H̃(σ ) )(r; jσ , mσ ), r ∈ Vσ , (A6)

0 = (Ẽ(σ ), H̃(σ ) )(r; jσ , mσ ), r /∈ Vσ . (A7)

In the above relations, Ẽ(ρ) and H̃(ρ) (ρ = 0, 1, . . . , N) denote
the following surface integrals:

(Ẽ(0), H̃(0) )(r; j1, . . . , mN )

≡
N∑

σ=1

∫
Sσ

dsu G0(r − u) · (jσ , mσ )(u),

(Ẽ(σ ), H̃(σ ) )(r; jσ , mσ )

≡
∫

Sσ

dsu Gσ (r − u) · (jσ , mσ )(u), (A8)

where dsu is the area element on Sσ , while G(αβ )
σ , σ =

0, 1, . . . , N denote the Green tensors for a homogeneous and
isotropic medium with frequency dependent electric and mag-
netic permittivities εσ (ω) and μσ (ω), respectively.

Independent of the Green’s theorem, validity of the identi-
ties Eqs. (A4)–(A7) can be easily understood by using a nice
mathematical trick, that goes by the name of the “equivalence
principle” [43]. The trick consists in introducing the following
N + 1 EM fields (E(0), H(0) ), . . . , (E(N ), H(N ) ):

(E(0), H(0) )(r) =
{

(E, H)(r), r ∈ V0

(0, 0) r /∈ V0
, (A9)

(E(σ ), H(σ ) )(r) =
{

(E, H)(r), r ∈ Vσ

(0, 0) r /∈ Vσ

. (A10)

As we see, the field (E(0), H(0) ) coincides with the actual
EM field (E, H) at points in the medium surrounding the
bodies, and it vanishes at all points inside bodies. Vice
versa, each of the fields (E(σ ), H(σ ) ) coincides with the to-
tal field (E, H) at points inside the respective body, and
vanishes at all other points of space. All these fields are
clearly unphysical, since they do not fulfill the boundary
conditions Eq. (A2) on at least one among the surfaces Sσ .
While unphysical, these fields have by construction the nice
property of being solutions of Maxwell equations in infinite
homogeneous space, with constant dielectric properties. More
precisely, the field (E(0), H(0) ) satisfies [except on the surfaces
(S1, . . . , SN ), where it is discontinuous] Maxwell equations in
a medium having everywhere the permittivities (ε0, μ0) of
the medium surrounding the bodies, while each of the fields
(E(σ ), H(σ ) ) satisfies (except on the surface of the σ th body,
where it is discontinuous) Maxwell equations in a medium
having everywhere the permittivities (εσ , μσ ) of the mate-
rial filling the σ th body. Now comes the main observation.
Since the media in which all these fields live are spatially
homogeneous, one concludes that these fields are in fact free
fields, and therefore they can be expressed as convolutions
of free-space Green tensors with the appropriate sources. By
construction, the sources of (E(0), H(0) ) are the original exter-
nal sources (J, M) of our scattering problem, together with the
2N surface currents (j1, . . . , mN ) arising from the discontinu-
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ity of (E(0), H(0) ) across the bodies surfaces. The identities
in Eqs. (A4) and (A5) become obvious, if one realizes that
they represent the expression of (E(0), H(0) ) as a convolution
of G0 with its sources (J, M) and (j1, . . . , mN ). An analogous
argument applies to the fields (E(σ ), H(σ ) ). From the discon-
tinuity of (E(σ ), H(σ ) ) across Sσ , one sees that (E(σ ), H(σ ) ) is
sourced by the surface currents (−jσ ,−mσ ). Upon expressing
(E(σ ), H(σ ) ) as a convolution of Gσ with (−jσ ,−mσ ), one
recovers at once the identities in Eqs. (A6) and (A7).

Let us go back now to Eq. (A4): this integral relation
shows that at points r outside the bodies, the scattered field
(Escat, Hscat ) coincides with the surface integral (Ẽ(0), H̃(0) ):

(Escat, Hscat )(r) = (Ẽ(0), H̃(0) )(r; j1, . . . , mN ), r ∈ V0.

(A11)

This relation shows that the scattering problem is solved,
provided that the 2N surface currents (j1, . . . , mN ) can be
actually computed. In the next Appendix, we show how this
goal can be achieved, using the SSO.

APPENDIX B: ALTERNATIVE DERIVATION OF THE SSO

In this Appendix, we construct the SSO that allows us to
compute the surface currents providing the solution of the
EM scattering problem. The starting point is provided by the
identities in Eqs. (A5) and (A7). Upon taking the limits of
Eqs. (A5) and (A7) as the point r approaches the point u on
the surface Sσ , and then taking a vector product with the unit
normal to Sσ , one obtains the following identities:

n̂σ (u) × Ẽ(0)
− (u; j1, . . . , mN ) + n̂σ × Einc(u) = 0,

n̂σ (r) × H̃(0)
− (u; j1, . . . , mN ) + n̂σ × Hinc(u) = 0,

n̂σ (u) × Ẽ(σ )
+ (u; jσ , mσ ) = 0,

n̂σ (u) × H̃(σ )
+ (u; jσ , mσ ) = 0. (B1)

The above relations constitute an overdetermined set of
4N integral equations in the 2N unknown boundary fields
(j1, . . . , mN ). A consistent set of equations can be obtained by
taking 2N distinct linear combinations of the 4N Eqs. (B1):

C(e|E )
σ n̂σ × Ẽ(0)

− (j1, . . . , mN ) − C(i|E )
σ n̂σ × Ẽ(σ )

+ (jσ , mσ )

= −C(e|E )
σ n̂σ × Einc,

C(e|H )
σ n̂σ × H̃(0)

− (j1, . . . , mN ) − C(i|H )
σ n̂σ × H̃(σ )

+ (jσ , mσ )

= −C(e|H )
σ n̂σ × Hinc, (B2)

where for brevity we do not display the explicit dependence
of the boundary fields on the point u. We remark that the co-
efficients in Eq. (B2) are defined up to rescalings by arbitrary
nonvanishing factors λ(α)

σ :(
C(i|α)

σ ,C(e|α)
σ

) → λ(α)
σ

(
C(i|α)

σ ,C(e|α)
σ

)
. (B3)

It is convenient to reexpress Eqs. (B2) in terms of the val-
ues of the surface integrals (Ẽ(ρ), H̃(ρ) ) computed directly on
the surfaces Sσ . This can be done by observing that, for an
arbitrary choice of the surface currents, the surface integrals

(Ẽ(0), H̃(0) ) and (Ẽ(σ ), H̃(σ ) ) satisfy the jump conditions

n̂σ (u) × [Ẽ(0)
+ (u) − Ẽ(0)

− (u)] = −mσ (u),

n̂σ (u) × [Ẽ(σ )
+ (u) − Ẽ(σ )

− (u)] = −mσ (u),

n̂σ (u) × [H̃(0)
+ (u) − H̃(0)

− (u)] = jσ (u),

n̂σ (u) × [H̃(σ )
+ (u) − H̃(σ )

− (u)] = jσ (u),

(B4)

On the other hand, we know [45,58] that the fields
(Ẽ(ρ), H̃(ρ) )(u) are the averages of the corresponding values
just inside and outside Sσ :

n̂σ (u) × [Ẽ(0)
+ (u) + Ẽ(0)

− (u)] = 2 n̂σ (u) × Ẽ(0)(u),

n̂σ (u) × [Ẽ(σ )
+ (u) + Ẽ(σ )

− (u)] = 2 n̂σ (u) × Ẽ(σ )(u),

n̂σ (u) × [H̃(0)
+ (u) + H̃(0)

− (u)] = 2 n̂σ (u) × H̃(0)(u),

n̂σ (u) × [H̃(σ )
+ (u) + H̃(σ )

− (u)] = 2 n̂σ (u) × H̃(σ )(u). (B5)

The above equations can be used to eliminate
Ẽ(0)

− , H̃(0)
− , Ẽ(σ )

+ , and H̃(σ )
+ from Eqs. (B2). By doing so,

one arrives at the following set of integral equations for the
surface currents:(

C(e|H )
σ + C(i|H )

σ

)
jσ − 2C(e|H )

σ n̂σ × H̃(0)(j1, . . . , mN )

+ 2C(i|H )
σ n̂σ × H̃(σ )(jσ , mσ ) = 2C(e|H )

σ n̂σ × Hinc,(
C(e|E )

σ + C(i|E )
σ

)
mσ + 2C(e|E )

σ n̂σ × Ẽ(0)(j1, . . . , mN )

− 2C(i|E )
σ n̂σ × Ẽ(σ )(jσ , mσ ) = −2C(e|E )

σ n̂σ × Einc. (B6)

For generic values of the coefficients, both C(e|H )
σ + C(i|H )

σ and
C(e|E )

σ + C(i|E )
σ are different from zero, and then the integral

equations (B6) can be recast in the form of Eq. (13). The proof
that Eqs. (B6) actually determine uniquely the surface currents
(j1, . . . , mN ) at all complex frequencies, and for any choice
of the 4N coefficients (C(e|E )

σ ,C(e|H )
σ ,C(i|E )

σ ,C(i|H )
σ ), such that

both C(e|H )
σ + C(i|H )

σ and C(e|E )
σ + C(i|E )

σ are different from zero,
can indeed be obtained by a simple adaptation of the proof
given in [45] for a single body and for the particular choice of
coefficients, denoted by choice 1 in Sec. IV.

APPENDIX C: PERFECT CONDUCTORS

In this Appendix we work out the SSO for a collection
of perfect conductors. The scattering problem now involves
a system of N perfectly conducting bodies placed in a
medium characterized by electric and magnetic permittivities
ε0 and μ0, respectively. Like before, we imagine a distribu-
tion of electric and magnetic sources (J, M) in the region
V0 outside the conductors. Solution of the N-body scattering
problem now requires solving Maxwell equations in the re-
gion V0, with sources (J, M) in V0, subjected to the boundary
conditions that the tangential component of the electric field
E vanishes on the boundaries of the conductors:

n̂σ (u) × E+(u) = 0. (C1)

In view of this simple condition, we now have only one set of
surface currents, namely the electric currents

jσ (u) = n̂σ (u) × H+(u). (C2)
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By Green’s theorem [43,57,58], one finds the following two
sets of integral identities, which relate the EM field E and
H to the external field (Einc, Hinc) and to the boundary fields
j1, . . . , jN :

(E, H)(r) = (Einc, Hinc)(r) + (Ẽ(0), H̃(0) )(r; j1, . . . , jN ),

r ∈ V0, (C3)

0 = (Einc, Hinc)(r) + (Ẽ(0), H̃(0) )(r; j1, . . . , jN ), r /∈ V0.

(C4)

The above equations show that the PM scattering problem is
solved if one can determine the N surface currents j1, . . . , jN .
Proceeding as in the case of dielectric bodies, we consider the
limits of Eq. (C4) as r tends to a point u on the surfaces of the
conductors. This gives us

n̂σ (u) × Ẽ(0)
− (u; j1, . . . , jN ) + n̂σ × Einc(u) = 0,

n̂σ (r) × H̃(0)
− (u; j1, . . . , jN ) + n̂σ × Hinc(u) = 0. (C5)

The above relations constitute an overdetermined set of
2N integral equations in the N unknown boundary fields
(j1, . . . , jN ). A consistent set of equations can be obtained by
taking N distinct linear combinations of the 2N Eqs. (C5):

C(e|E )
σ n̂σ × Ẽ(0)

− (j1, . . . , jN ) + C(e|H )
σ n̂σ × H̃(0)

− (j1, . . . , jN )

= −C(e|E )
σ n̂σ × Einc − C(e|H )

σ n̂σ × Hinc. (C6)

Similar to what we did earlier, we can take advantage of
the identities in the last two lines of Eqs. (B4) and (B5) to
reexpress the above integral equation in terms of the values of
Ẽ(0) and H̃(0) on the surfaces Sσ :

C(e|H )
σ jσ − 2C(e|H )

σ n̂σ × H̃(0)(j1, . . . , jN )

+ 2C(e|E )
σ n̂σ × Ẽ(0)(j1, . . . , jN )

= 2C(e|H )
σ n̂σ × Hinc − 2C(e|E )

σ n̂σ × Einc. (C7)

As in the general case for magneto-dielectric bodies, several
different formulations exist for the perfectly conducting limit,
depending on the choice of the coefficients in Eq. (C7). A
possible choice is

C(e|H )
σ = 0, C(e|E )

σ = 1. (C8)

The resulting integral equation reads

n̂σ × Ẽ(0)(j1, . . . , jN ) = −n̂σ × Einc. (C9)

Upon taking the vector product with n̂σ of both members of
the above equation, we obtain the following integral equa-
tion for perfect conductors:

N∑
σ ′=1

∫
Sσ ′

dsu′ B(PC)
σσ ′ (u, u′) jσ ′ (u′) =

∫
dr M̃(PC)

σ (u, r)J(r),

(C10)

where

B(PC)
σσ ′ (u, u′) = [

G(EE )
0 (u, u′)

]
t
, (C11)

M̃(PC)
σ (u, r) = −[

G(EE )
0 (u, r)

]
t
. (C12)

The integral equation is not of Fredholm form, and therefore
it does not allow for a MSE. We note that this formulation was
used in a numerical investigation of the Casimir effect in [33].
We now consider the alternative choice

C(e|H )
σ = 1, C(e|E )

σ = 0, (C13)

which leads to the following integral equation of second Fred-
holm type:

N∑
σ ′=1

∫
Sσ ′

dsu′
[
1 − K(PC)

σσ ′ (u, u′)
]
jσ ′ (u′) =

∫
dr M(PC)

σ (u, r)J(r)

(C14)
with

K(PC)
σσ ′ (u, u′) = 2 nσ (u) × G(HE )

0 (u, u′) (C15)

and

M(PC)
σ (u, r) = 2 nσ (u) × G(HE )

0 (u, r). (C16)

This is the integral equation for CP used in [39,40].

APPENDIX D: T MATRIX OF
A MAGNETO-DIELECTRIC CYLINDER

The T operator of a dielectric cylinder of radius R as-
sumes a 2 × 2 block-diagonal form in vector cylindrical
waves labeled by the angular quantum number m and the
wave vector kz along the cylinder axis [23]. It is assumed
that the cylinder has electric and magnetic permittivities ε

and μ, and the surrounding medium is vacuum (ε0 = μ0 = 1).
On the imaginary frequency axis, and with p0 = √

κ2 + k2
z

and p1 = √
εμκ2 + k2

z , the diagonal elements are given
by [50]

THH (m, κ, kz ) = − Im(p0R)

Km(p0R)

�1�4 + K2

�1�2 + K2
,

TEE (m, κ, kz ) = − Im(p0R)

Km(p0R)

�2�3 + K2

�1�2 + K2
,

THE (m, κ, kz ) = −TEH (m, κ, kz )

= K√
εμ(p0R)2Km(p0R)2

1

�1�2 + K2
,

(D1)

with

K = mkz√
εμκR2

(
1

p2
1

− 1

p2
0

)
(D2)
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and

�1 = I ′
m(p1R)

p1RIm(p1R)
− 1

ε

K ′
m(p0R)

p0RKm(p0R)
,

�2 = I ′
m(p1R)

p1RIm(p1R)
− 1

μ

K ′
m(p0R)

p0RKm(p0R)
,

�3 = I ′
m(p1R)

p1RIm(p1R)
− 1

ε

I ′
m(p0R)

p0RIm(p0R)
,

�4 = I ′
m(p1R)

p1RIm(p1R)
− 1

μ

I ′
m(p0R)

p0RIm(p0R)
,

(D3)

where Im and Km are Bessel functions, and I ′
m and K ′

m are their
derivatives. We note that the polarization is not conserved un-
der scattering, i.e., TEH , THE 
= 0. The scattering Green tensor
Γ of the cylinder can be expressed in terms of these matrix
elements, following the conventional scattering method [23].
The comparison to the MSE can be performed by suitable
projection. For instance, from the projection r̂ΓEE r̂′ on the
radial directions r̂ and r̂′ of ΓEE (r, r′), all four elements TEE ,
THH , THE , and TEH can be extracted as they are multiplied
by different combinations of Km(p0r), K ′

m(p0r), Km(p0r′), and
K ′

m(p0r′). Therefore, all components of the analytically com-
puted MSE for ΓEE can be compared to the above T -matrix
elements.

APPENDIX E: FREE GREEN TENSORS

For completeness, we provide the explicit expressions
of the Green tensors, for a homogeneous and isotropic

magneto-dielectric medium with frequency dependent electric
and magnetic permittivities εσ (ω) and μσ (ω), respectively.
The external sources (J, M) are normalized such that Maxwell
equations for imaginary frequencies ω = iξ take the form

−∇ × E = κ μ H + M, (E1)

∇ × H = κ ε E + J, (E2)

where κ is wave number κ = ξ/c. The components of the
6 × 6 dimensional Green tensor then are

G(EE )
σ,i j (r, r′) = − 1

κ

(
1

ε

∂2

∂xi∂x′
j

+ μκ2 δi j

)
gσ (r − r′),

G(HH )
σ,i j (r, r′) = − 1

κ

(
1

μ

∂2

∂xi∂x′
j

+ ε κ2 δi j

)
gσ (r − r′),

G(HE )
σ,i j (r, r′) = − εi jk

∂

∂xk
gσ (r − r′),

G(EH )
σ,i j (r, r′) = − εi jk

∂

∂x′
k

gσ (r − r′),

(E3)

where i, j ∈ {x, y, z} denote the spatial components, εi jk is the
Levi-Civita symbol, and the scalar Green function is

gσ (r − r′) = e−κ
√

εσ μσ |r−r′ |

4π |r − r′| . (E4)
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