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Exchange energies and density functionals for systems of fermions of arbitrary spin
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The Hartree-Fock exchange energy expression, the Dirac exchange functional, and other exchange functionals
of the electron density are extended to fermions of arbitrary spin quantum number s. The explicit s dependence
of the exchange energy provides illuminating insights into the meaning of exchange interactions, spin-scaling
relations, and the self-interaction error. In particular, the spin-scaling relation for exchange functionals proves
to be a special case of conversion between spin-unpolarized forms of the same functional appropriate for s = 0
and for s > 0. A rigorous definition of the many-particle self-interaction error suitable for one-orbital systems is
formulated and interpreted as a set of exact constraints for exchange density-functional approximations.
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I. INTRODUCTION

The concept of exchange energy is a distinctive feature
of the Hartree-Fock self-consistent field method [1] and the
Kohn-Sham density-functional scheme [2]. In the Hartree-
Fock method, the expectation value of the electron-electron
repulsion operator Ŵ with a single Slater determinant of spin
orbitals is a sum of two terms: the Coulomb energy and the
exchange energy. The former is interpreted as the classical
part of the electron-electron interaction energy, the latter as
a nonclassical part. Each of these two terms is invariant under
unitary transformations of the orbitals. In the Kohn-Sham for-
malism, the expectation value of Ŵ with a Slater determinant
of Kohn-Sham spin orbitals is a sum of the Coulomb energy
and the so-called exact exchange [3].

The Hartree-Fock and Kohn-Sham methods were origi-
nally devised for systems of electrons but have since been
extended to multicomponent systems in which electrons,
atomic nuclei, and other Coulombically interacting parti-
cles (such as positrons) are described in terms of orbitals
[4–16]. Since particles other than electrons can have any
spin quantum number s, the question of s dependence of
the Hartree-Fock and density-functional energy expressions
becomes relevant. This article shows that by investigating the
Coulomb and exchange energy formulas for fermions of arbi-
trary spin quantum number s, one obtains stimulating insights
into the meaning of exchange energy, the self-interaction er-
ror, spin-scaling relations, and other fundamental concepts of
molecular quantum mechanics.

II. DERIVATION

A. Preliminaries

We begin with a straightforward derivation of the particle-
particle interaction energy formula for a system of N
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unit-charge spin-s fermions described with a Slater determi-
nant of spin orbitals. A spin orbital is a one-particle wave
function of the form ψ (x) = φ(r)σ (ω), where x = (r, ω)
denotes collectively the spatial and spin coordinates of the
particle, φ(r) is a spatial orbital, and σ is a spin-state function.
A Slater determinant is an antisymmetrized product of the spin
orbitals,

� = 1

(N!)1/2

N!∑
k=1

(−1)pk P̂k{ψ1(x1)ψ2(x2) · · · ψN (xN )}, (1)

where P̂k is the operator generating the kth permutation of the
N particles and pk is the number of associated transpositions.
We assume here that all spatial orbitals and hence all spin
orbitals are orthonormal.

The total number of spin states of a spin-s fermion is

M = 2s + 1. (2)

These M states will be denoted by Greek letters α, β, γ , . . .

and indexed by σ = 1, 2, . . . , M, respectively. For example,
when s = 1/2 (electrons), there are only two spin states: α

(σ = 1, spin up) and β (σ = 2, spin down).
For fermionic particles that repel one another Coulombi-

cally, the average particle-particle interaction energy is the
expectation value of the operator

Ŵ =
N∑

i< j

1

ri j
, (3)

where ri j = |ri − r j |. The expectation value of Ŵ with the
wave function � is given in terms of spin orbitals by the same
formula for any s, namely [17],

W = 〈�|Ŵ |�〉 = 1

2

N∑
i=1

N∑
j=1

([ii| j j] − [i j| ji]), (4)

where we use the standard notation for two-particle integrals
in terms of spin orbitals,

[i j|kl] =
∫∫

ψ∗
i (x1)ψ j (x1)r−1

12 ψ∗
k (x2)ψl (x2) dx1dx2. (5)
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The dependence of W on s is not evident from Eq. (4) but
emerges in transition to spatial orbitals.

B. Spin-unrestricted Slater determinants

Within the spin-unrestricted formalism, particles in differ-
ent spin states σ occupy distinct spatial orbitals φiσ (r). We
label the spin states by σ = 1, 2, . . . , M as explained below
Eq. (2) and denote the total number of σ -state particles by Nσ .
Substitution of a spin-unrestricted Slater determinant � into
Eq. (4) gives

W = 1

2

M∑
σ=1

M∑
σ ′=1

Nσ∑
i=1

Nσ ′∑
j=1

Jσσ ′
i j − 1

2

M∑
σ=1

Nσ∑
i=1

Nσ∑
j=1

Kσσ
i j , (6)

where

Jσσ ′
i j =

∫∫
φ∗

iσ (r1)φiσ (r1)r−1
12 φ∗

jσ ′ (r2)φ jσ ′ (r2) dr1dr2 (7)

are Coulomb integrals and

Kσσ
i j =

∫∫
φ∗

iσ (r1)φ jσ (r1)r−1
12 φ∗

jσ (r2)φiσ (r2) dr1dr2 (8)

are exchange integrals. There are no exchange integrals with
σ �= σ ′. Equation (6) generalizes the well-known two-electron
energy formula of the spin-unrestricted Hartree-Fock (UHF)
theory [17] to unit-charge fermions of arbitrary spin.

The first and the second terms in Eq. (6) are the electro-
static (Coulomb) and exchange energies, respectively. To see
this, write the average particle-particle interaction energy as

W =
∫∫


(r1, r2; r1, r2)

r12
dr1dr2, (9)

where 
(r1, r2; r1, r2) is the diagonal part of the spin-free
second-order reduced density matrix (2-RDM) derived from
�. The 2-RDM itself has the same form for any s, namely,


(x1, x2; x′
1, x′

2) = 1

2

∣∣∣∣∣
γ (x1; x′

1) γ (x1; x′
2)

γ (x2; x′
1) γ (x2; x′

2)

∣∣∣∣∣, (10)

where

γ (x; x′) =
N∑

i=1

ψi(x)ψ∗
i (x′) (11)

is the corresponding one-particle RDM (1-RDM). Integration
of Eq. (10) over spin variables leads to


(r1, r2; r1, r2) = 1

2
ρ(r1)ρ(r2) − 1

2

M∑
σ=1

|ρσσ (r1; r2)|2,

(12)

where

ρσσ (r; r′) =
Nσ∑
i=1

φ∗
iσ (r)φiσ (r′) (13)

is the spatial part of the σ -spin 1-RDM. The diagonal part of
this 1-RDM is the σ -spin particle density,

ρσ (r) ≡ ρσσ (r; r), (14)

and the total density is then given by

ρ(r) =
M∑

σ=1

ρσ (r). (15)

Substitution of Eq. (12) into Eq. (9) yields

W = EJ + EX , (16)

where

EJ = 1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 (17)

is the Coulomb energy and

EX = −1

2

M∑
σ=1

∫∫ |ρσσ (r1; r2)|2
r12

dr1dr2 (18)

is the exchange energy. Finally, using Eqs. (13)–(15) in
Eqs. (17) and (18), we obtain

EJ = 1

2

M∑
σ=1

M∑
σ ′=1

Nσ∑
i=1

Nσ ′∑
j=1

Jσσ ′
i j (19)

and

EX = −1

2

M∑
σ=1

Nσ∑
i=1

Nσ∑
j=1

Kσσ
i j , (20)

in agreement with Eq. (6). Equations (19) and (20) generalize
the standard UHF formulas for the electronic Coulomb and
exchange energies to systems of Coulombically interacting
unit-charge fermions of arbitrary spin.

C. Spin-restricted closed-shell Slater determinants

Within the spin-restricted formalism, orbitals φiσ (r) for
different σ states are no longer treated as distinct but are
conflated into one spatial orbital φi(r). We assume here that
each φi(r) is filled to its maximum capacity M, so the total
number of occupied spatial orbitals is N/M. For such closed-
shell wave functions, Eq. (6) reduces to

W = M

2

N/M∑
i=1

N/M∑
j=1

(MJi j − Ki j ), (21)

where

Ji j =
∫∫

φ∗
i (r1)φi(r1)r−1

12 φ∗
j (r2)φ j (r2) dr1dr2 (22)

and

Ki j =
∫∫

φ∗
i (r1)φ j (r1)r−1

12 φ∗
j (r2)φi(r2) dr1dr2. (23)

Accordingly, Eqs. (19) and (20) reduce to

EJ = M2

2

N/M∑
i=1

N/M∑
j=1

Ji j (24)

and

EX = −M

2

N/M∑
i=1

N/M∑
j=1

Ki j, (25)
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respectively. For spin-restricted closed-shell Slater determi-
nants, all σ -state 1-RDMs are equal, so

ρσσ (r; r′) = ρ(r; r′)
M

. (26)

Inserting Eq. (26) into Eq. (18) and using the fact that the
summation over σ gives a factor of M in the numerator, we
obtain the expression for the exchange energy

EX = − 1

2M

∫∫ |ρ(r1; r2)|2
r12

dr1dr2. (27)

Equations (21), (24), (25), and (27) generalize the electron-
electron interaction energy formulas of the spin-restricted
closed-shell Hartree-Fock (RHF) and Kohn-Sham methods to
fermions of arbitrary spin. Equivalent results stated in the
language of Green’s function theory may be found in Ref.
[18]. These formulas are amenable to illuminating physical
interpretations, which we now proceed to discuss.

III. DISCUSSION

A. Classical limit

The Bohr-Planck correspondence principle [19] postulates
that the quantum description of a system in terms of a quantum
number n should reproduce the classical description in the
double limit in which n → ∞ and h → 0, where h is the
Planck constant, subject to the constraint that the product nh
remain fixed. Since W does not depend on h, only the spin
quantum number s is relevant for the purpose of analyzing the
classical limit of W .

Observe that, in the s → ∞ limit, Eqs. (21), (24), and (25)
imply

lim
s→∞

EJ

W
= 1, lim

s→∞
EX

W
= 0. (28)

This means that, for a closed-shell spin-restricted Slater de-
terminant, EX vanishes asymptotically in the classical limit,
whereas the particle-particle interaction energy W approaches
EJ . The result W = EJ is classical. Thus, exchange interac-
tions in closed-shell fermionic systems fall within the scope of
the correspondence principle with respect to the spin quantum
number.

B. Relationship to the Fermi-Amaldi correction

If there is only one spatial orbital occupied by N � M
fermions in permissible spin states, Eq. (6) reduces to

W = N (N − 1)

2
J11 = EJ − 1

N
EJ . (29)

The quantity −EJ [ρ]/N is known as the Fermi-Amaldi cor-
rection [20–22]. Equation (29) means that the Fermi-Amaldi
correction is the exact exchange functional for any system of
N � M fermions, provided that the particles occupy the same
spatial orbitals. One can show [23] that Eq. (29) is also exact
for any number of identical Coulombically repelling bosons
occupying the same spatial orbital, regardless of their spin
quantum number.

C. Zero-spin fermions

Although the physical values of s for fermions are
1/2, 3/2, . . ., fermions with integer s values may also be con-
sidered. Imagine, for instance, fermions with s = 0. The
maximum occupancy of each spatial orbital in this case is
M = 1, so the difference between the spin-restricted and spin-
unrestricted formalisms disappears. Any Slater determinant
for zero-spin particles can be formally treated as spin re-
stricted. Then Eq. (21) applies and gives

W = 1

2

N∑
i=1

N∑
j=1

(Ji j − Ki j ). (30)

Alternatively, Eq. (30) can be obtained by setting M = 1 in
the spin-unrestricted Eq. (6) and dropping the now redundant
σ superscripts.

Apart from spin labels, Eq. (30) is the correct formula
for a fully spin-polarized Slater determinant [17], that is, a
Slater determinant in which all orbitals are singly occupied
by particles in identical spin states. A fully spin-polarized
Slater determinant for fermions with s > 0 is therefore in-
terchangeable with a Slater determinant involving the same
spatial orbitals for zero-spin fermions.

D. Dirac exchange functional for arbitrary s values

Consideration of fermions of arbitrary spin remains fruitful
in the context of the Kohn-Sham density-functional theory. To
demonstrate this, we will derive the s-dependent form of the
Dirac exchange functional, also known as the local density
approximation (LDA).

The LDA exchange functional of the spin-unpolarized
electron density is given by

EX [ρ] = −CX

∫
ρ4/3(r) dr, (31)

where

CX = 3

4

(
3

π

)1/3

. (32)

To generalize Eq. (31) to unit-charge fermions of arbitrary
spin s, we retrace the standard derivation of the LDA [18] and
observe how the factor M propagates.

The 1-RDM for a homogeneous gas of s-spin fermions
confined in a cubic box of volume V = L3 is

ρ(r1; r2) = M

V

occ.∑
n

eik·(r1−r2 ), (33)

where n = (nx, ny, nz ) are state labels and

k =
(

2π

L

)3

n = 8π3

V
n (34)

is the wave vector. A change of coordinates from r1 and r2 to
r = 1

2 (r1 + r2) and u = r1 − r2 transforms Eq. (33) into

ρ(r; u) = M

V

occ.∑
n

eik·u (35)
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and the exact exchange formula of Eq. (18) into

EX [ρ] = − 1

2M

∫
dr

∫
du

|ρ(r; u)|2
u

. (36)

Replacing the summation over n in Eq. (35) with integration
over k in terms of spherical polar coordinates, we obtain

ρ(r; u) = M

8π3

∫ kF

0
dk

∫ 2π

0
dφ

∫ π

0
dθ k2 sin θeiku cos θ

= M

2π2

sin(kF u) − kF u cos(kF u)

u3
, (37)

where kF = |kF | specifies the highest occupied level. In the
u → 0 limit, Eq. (37) reduces to ρ(r) = (M/6π2)k3

F , from
which

kF (r) =
[

6π2ρ(r)

M

]1/3

. (38)

Finally, substitution of Eq. (37) into Eq. (36) and integration
over u give

EX [ρ] = − M

8π3

∫
k4

F (r) dr = −CM

∫
ρ4/3(r) dr, (39)

where

CM = 3

4

(
6

Mπ

)1/3

. (40)

For M = 2 (the fermions are electrons), Eq. (39) reduces to
the conventional LDA of Eq. (31).

E. Generalized spin-scaling relation

Spin-scaling relations connect two forms of the same func-
tional appropriate for one total and for multiple spin densities
[3]. In particular, the spin-scaling relation applicable to ex-
change energy functionals of electron densities (M = 2) is
[24]

EX [ρα, ρβ ] = 1
2 (EX [2ρα] + EX [2ρβ]). (41)

Let us extend this relation to fermions of arbitrary spin by
applying the argument of Ref. [24].

According to Eq. (18), the total exchange energy is a sum
of separate σ -spin contributions,

EX [ρα, ρβ, . . .] =
M∑

σ=1

EX [0, . . . , ρσ , . . . , 0]. (42)

In a spin-unpolarized system of fermions, ρσ = ρ/M, so one
should have

EX [0, . . . , ρσ , . . . , 0] = 1

M
EX [Mρσ ]. (43)

Combination of Eqs. (42) and (43) gives

EX [ρα, ρβ, . . .] = 1

M

M∑
σ=1

EX [Mρσ ], (44)

which generalizes Eq. (41) to arbitrary spin.
A fully spin-polarized density of electrons (M = 2) can be

viewed as an equal unpolarized density of zero-spin fermions
(M = 1). From this it follows that the LDA exchange func-
tional appropriate for a fully spin-polarized electron density

is given by Eq. (39) with M = 1. The last result is tradi-
tionally obtained in a different way, by applying Eq. (41) to
Eq. (31). Thus, the spin-scaling relations are manifestations
of the s dependence of exchange functionals. Specifically,
a spin-density exchange functional for spin-s particles is a
sum of 2s + 1 total-density forms of the same functional for
spin-zero particles.

F. Exchange functionals for fermions of arbitrary spin

Density-functional approximations such as LDA, gener-
alized gradient approximations (GGA) [25], and others [26]
were originally developed for electrons (s = 1/2). The results
of the preceding sections suggest that the exchange parts of
those functionals also apply to Coulombically repelling unit-
charge fermions of arbitrary spin s, after a simple modification
of constant prefactors.

In particular, the LDA exchange functional for an arbi-
trary s is given by Eq. (39). Every GGA exchange for spin-s
fermions must have the form

EX [ρ] = −CM

∫
ρ4/3(r)FX (γ ) dr, (45)

where FX (γ ) is an appropriate enhancement factor of the
dimensionless reduced gradient

γ = |∇ρ|
2kF ρ

= |∇ρ|
2(6π2/M )1/3ρ4/3

, (46)

where we used Eq. (38). The analytic form of FX (γ ) is as-
sumed to be the same for all s values. To adapt a hybrid
exchange functional [27] to a given s, one would need to
combine the M-dependent exact exchange functional given
by Eq. (27) with an M-dependent GGA of Eq. (45). Mod-
ifications to account for non-unit charges of the interacting
particles are also straightforward [14].

G. Many-particle self-interaction error

The dependence of W on particle spins also has implica-
tions for the notion of self-interaction error (SIE). It is a trivial
fact that the exact particle-particle interaction energy for a
single particle should be zero,

W = EX [ρ] + EJ [ρ] = 0 (N = 1). (47)

As implied by Eq. (29), the exact exchange functional satisfies
this condition. An approximate exchange functional ẼX [ρ]
that violates Eq. (47) is said to have a one-particle SIE equal
to

�1 = ẼX [ρ] + EJ [ρ]. (48)

The condition �1 = 0 has been generalized [28] to a frac-
tional electron number as

ẼX [qρ] + EJ [qρ] = 0 (0 < q < 1), (49)

where ρ is a one-particle density.
The SIE concept for N � 1 is therefore well under-

stood [28–30]. By contrast, the many-electron SIE lacks a
satisfactory definition [30–34]. One approach [29] to the
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TABLE I. Coulomb energies and one- and two-electron SIEs
of various exchange-only functionals. All quantities were evaluated
using HF/UGBS2P densities and are in units of Eh.

�N

System EJ [ρ] LDA PBE TPSS LC-ωPBE

N = 1
H 0.3125 0.0445 0.0066 0.0000 −0.0002
He+ 0.6250 0.0889 0.0131 0.0000 0.0075
Li2+ 0.9375 0.1334 0.0197 0.0000 0.0152
Be3+ 1.2500 0.1778 0.0262 0.0000 0.0223
H+

2
a 0.3308 0.0426 0.0017 −0.0070 −0.0034

N = 2
H− 0.8012 0.0517 −0.0024 −0.0058 −0.0086
He 2.0515 0.1417 0.0122 −0.0045 0.0002
Li+ 3.3034 0.2311 0.0258 −0.0041 0.0160
Be2+ 4.5541 0.3202 0.0392 −0.0039 0.0307
H2

a 1.1280 0.0737 0.0021 −0.0101 −0.0074

aRHH = 2.0a0.

many-particle SIE is to define this quantity as

SIE =
∑

σ

Nσ∑
i=1

(ẼX [ρiσ ] + EJ [ρiσ ]), (50)

where ρiσ = |φiσ |2 and φiσ are the orthonormal occupied or-
bitals. Since the right-hand side of Eq. (50) is not invariant
under unitary transformations of the orbitals, it has been ar-
gued [35] that the proper choice of orbitals is the one which
minimizes the total SIE-corrected energy. Other proposed def-
initions of the N-electron SIE involve many-electron wave
functions [31], orbital-dependent quantities [32], density ma-
trices [36], and plots of the total energy as a function of the
fractional electron number [33].

In view of Eq. (29), we point out that, for N-particle
systems in which all particles occupy one spatial orbital, the
many-particle SIE of exchange functionals can be defined as

�N = ẼX [ρ] + 1

N
EJ [ρ], (51)

where ρ is a one-orbital density. For systems to which it ap-
plies, Eq. (51) is equivalent to Eq. (50) but has the conceptual
advantage over the latter by being fashioned after the unam-
biguous Eq. (48). The exact exchange functional appropriate
for spin-s particles would give �N = 0 for every admissible
N (N � M for fermions, any N for bosons).

Table I shows that the constraints �1 = 0 and �2 = 0 are
generally violated by approximate exchange functionals of
the electron density. The calculations were carried out with
the Gaussian program [37] using the augmented universal

Gaussian basis set (UGBS2P). The LDA has the greatest �1

and �2. The Perdew-Burke-Ernzerhof (PBE) GGA [25] and
the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA [38]
have smaller �1 and �2 by an order of magnitude. The range-
separated hybrid LC-ωPBE is not radically better than PBE
according to the �N metric, even through the LC-ωPBE total
energy varies almost linearly as a function of the fractional
electron number [39].

The TPSS case is particularly instructive. The exchange
part of this functional was designed to be exact for one-orbital
two-electron exponential densities [38]. By Eq. (41), this im-
plies that the TPSS exchange is also exact for one-electron
exponential densities. As a consequence, the TPSS exchange
gives �1 = 0 for the exponential densities of one-electron
atomic ions and �2 ≈ 0 for the approximately exponential
densities of two-electron atomic cations. For densities that are
not even approximately exponential (as in H+

2 and H2), the �N

errors of TPSS are greater.

IV. CONCLUSION

The idea to analyze the explicit s dependence of exact and
approximate exchange energies is fruitful and leads to useful
insights. In particular, the spin-scaling relation for exchange
functionals emerges as a link between analytic expressions
of a given EX [ρ] for s > 0 and that for s = 0. This means
that any exchange functional developed for electrons can be
readily adapted to fermions of any spin by a simple change
of M-dependent prefactors. This conclusion is practically rel-
evant to multicomponent density-functional theory [40–42]
and to the theory of finite systems with uniform particle den-
sities [43].

The explicit s dependence of exchange functionals may
also serve as a framework for developing approximate func-
tionals of the total electron density as opposed to spin-density
functionals [44,45]. Our results imply that it might be mean-
ingful to treat the factor M in Eqs. (39) and (45) as an
r-dependent function whose value depends on how much ρ(r)
is spin polarized.

Last but not least, the s dependence of the exact exchange
functional motivates a rigorous definition of the many-particle
SIE by Eq. (51) for systems where all particles occupy
the same spatial orbital. This definition is practically use-
ful because it furnishes informative tests for approximate
exchange-energy functionals.
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