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We present a detailed derivation of the QED effects of order α7 m to the hyperfine structure (hfs) of the 3S
states of heliumlike ions and perform numerical calculations for 6Li+ and 7Li+. By comparing the theoretical
point-nucleus results with the measured hfs of Li+, we determine the nuclear-structure contribution parametrized
in terms of the effective Zemach radius. Using the experimental hfs results for Li+, we obtain accurate predictions
for the hfs of 6Li2+ and 6Li2+, for which no experimental data is available so far. By examining the normalized
differences of the hfs of Li+ and Li and of the corresponding isotope-shift differences, we test the consistency of
the hfs measurements in 6,7Li+ and 6,7Li.
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I. INTRODUCTION

The hyperfine structure (hfs) of atomic levels with van-
ishing orbital angular momentum arises from the interaction
between the nuclear spin and the intrinsic angular momentum
(spin) of the electrons within an atom. The energy level of an
atomic S state can be conveniently represented as a sum of
the centroid energy level Ecent, the magnetic dipole hyperfine
structure EM1, and the electric quadrupole hyperfine structure
EE2,

E = Ecent + EM1 + EE2

≡ Ecent + A 〈�I · �S〉 + B 〈(I iI j )(2)(SiS j )(2)〉, (1)

where A and B are the so-called hyperfine constants, �S is the
total spin of electrons, �I is the nuclear spin operator, (aia j )(2)

denotes the irreducible second-rank tensor, and the summation
over repeated indices is implicit. The matrix elements are
given by

〈�I · �S〉 = [F (F + 1) − I (I + 1) − S(S + 1)]/2 (2)

and

〈(I iI j )(2)(SiS j )(2)〉 = 〈�I · �S〉2 + 〈�I · �S〉/2

− I (I + 1)S(S + 1)/3. (3)

We note that the electric quadrupole structure is present only
for the electron states with the total momentum J = S > 1/2;
in particular, it vanishes for the ground state of atomic Li and
Li2+.

In the present work we are interested in the magnetic
dipole hfs. In order to obtain experimental results for the A
constant from the measured spectra, one needs to eliminate
the quadrupole structure by combining several hfs transitions.
Using the most accurate experimental results summarized in

Table I, we get for the Li+ ion

Aexpt (
6Li+) = 1

6 ν0−1 + 5
12 ν1−2, (4)

Aexpt (
7Li+) = 1

6 ν1/2−3/2 + 3
10 ν3/2−5/2, (5)

where νF−F ′ are the measured F − F ′ transition energies. For
atomic Li, the quadrupole structure is absent, so we have just

Aexpt (
6Li) = 2

3 ν1/2−3/2, (6)

Aexpt (
7Li) = 1

2 ν1−2. (7)

II. HFS THEORY OF LIGHT HYDROGENLIKE IONS

We start with summarizing the existing theory for the mag-
netic dipole hfs of S states of hydrogenlike atoms. To the
leading order in the fine-structure constant α, it is given by

EF = 4

3
(Zα)4 m3

r

m M
g 〈�I · �S〉, (8)

where mr = mM/(m + M ) is the reduced mass, m and M are
the mass of the electron and nucleus, respectively, Z is the
nuclear charge number, and the nuclear g factor is defined as

�μ = Z e

2 M
g �I, (9)

where �μ is the nuclear magnetic moment operator. The
leading-order hfs contribution in Eq. (8) is also known as the
Fermi energy.

The complete hyperfine structure of S states in hydrogenic
systems is represented as an expansion in terms of α,

EM1 = EF (1 + δ), (10)

where

δ = κ + δ(2) + δ(3) + δ(4) + δ
(2)
rec.rel + δstruct. (11)

Here, κ is the magnetic moment anomaly of a free electron,
κ = α/(2π ) + O(α2), δ(i) are QED corrections of order αiEF ,
δ

(2)
rec.rel is the relativistic recoil correction of order α2 EF , and

δstruct is the nuclear structure correction.
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TABLE I. Experimental hfs intervals in Li+ and Li, in MHz.

System Interval Experiment Ref.

6Li+ 2 3S0−1
1 3001.783(12) [1]

6Li+ 2 3S1−2
1 6003.619(11) [1]

7Li+ 2 3S1/2−3/2
1 11 890.088(65) [2]

7Li+ 2 3S3/2−5/2
1 19 817.696(42) [2]

6Li 2 2S1/2−3/2
1/2 228.205 259 0(30) [3]

7Li 2 2S1−2
1/2 803.504 086 6(10) [3]

The results for the QED corrections for an S state and a
point and infinitely heavy nucleus are given by [4,5]

δ(2) = 3

2
(Z α)2 + α (Z α)

(
ln 2 − 5

2

)
, (12)

δ(3) = α (Z α)2

π

[
− 8

3
ln(Z α)

(
ln(Z α) − ln 4 + 281

480

)
+ 17.122 338 751 3 − 8

15
ln 2 + 34

225

]
+ α2 (Z α)

π
0.770 99(2), (13)

δ(4) = 17

8
(Z α)4 + α (Z α)3

[(547

48
− 5 ln 2

)
ln(Z α)

+ G(4)
SE (Zα) + 13

24
ln 2 + 539

288

]
− α2 (Z α)2

π2

[
4

3
ln2(Z α)+1.278 ln(Z α)+10.0 ± 2.5

]
± α3 (Z α)

π2
. (14)

Here, G(4)
SE (Zα) is the one-loop self-energy correction which

needs to be calculated numerically. For Li, we use the result
from Ref. [6] of G(4+)

SE (3α) = −4.587 5(1), which includes
higher orders in Z α for Z = 3. Furthermore, the last term in
δ(4) represents the estimate of the unknown three-loop binding
QED correction.

The relativistic recoil correction was derived in Ref. [7]. It
has a finite point-nucleus limit and is given by

δ
(2)
rec.rel = (Z α)2 m2

r

m M

{
−

[
− 6 + 7

2
g + 14

g

]
ln(Z α)

4

−
[
−2 + 11

2
g + 46

g

]
ln 2

4

+ 1

36

[
−51 + 31

2
g + 300

g

]}
. (15)

The last term in Eq. (11) is the nuclear-structure contribu-
tion δstruct. Its dominant part is the elastic contribution of order
α EF , which is parametrized in terms of the Zemach radius rZ ,

δ
(1)
struct (elastic) = − 2 Z α mr rZ , (16)

where

rZ =
∫

d3r1

∫
d3r2 ρE (�r1) ρM (�r2) |�r1 − �r2|, (17)

and ρE and ρM are the Fourier transforms of the electric and
magnetic form factors of the nucleus, normalized to unity.

There are many further contributions to δstruct, both of the
elastic and the inelastic kind. So far there is no established
theory for calculating the inelastic nuclear effects in hfs for a
compound nucleus. For this reason, we parametrize the whole
nuclear structure contribution in terms of the effective Zemach
radius r̃Z , which is, by definition,

δstruct ≡ −2 Z α mr r̃Z . (18)

It should be noted that the definition of the nuclear structure
contribution (and, therefore, the effective Zemach radius) is
not unique. In particular, in our previous study of He+ [8] we
separated out from δstruct the nuclear recoil correction δ(1)

rec and
the elastic higher-order nuclear contribution δ(2)

nuc. Moreover,
many previous studies (among them, Refs. [1,9]) disregarded
all higher-order nuclear contributions, thus making no differ-
ence between the elastic Zemach radius rZ and the effective
Zemach radius r̃Z . In the present work, we define the nuclear
structure contribution by Eq. (11), where we separated out
only those corrections that have a well-defined point-nucleus
limit.

III. HFS THEORY OF LIGHT FEW-ELECTRON ATOMS

For the S states, the leading-order magnetic dipole hyper-
fine structure is given by

EF ≡ 〈VF 〉 = 4 π Zα

3 m M
g

〈
�I ·

∑
a

�sa δ3(ra)

〉
. (19)

The matrix element in the above expression is assumed to
be calculated for a finite nuclear mass and thus implicitly
contains the reduced mass prefactor. For a hydrogenlike atom,
Eq. (19) reduces to Eq. (8). It is often convenient to separate
out from EF the dependence on the total angular momentum
by introducing the hyperfine constant AF which does not
depend on the hyperfine state,

EF = AF 〈�I · �S〉. (20)

The complete magnetic dipole hyperfine structure is expressed
analogously to Eq. (10)

EM1 = EF (1 + δ), (21)

where

δ = κ + δ(2)+ δ(3) + δ(4) + δ(2)
rec + δstruct. (22)

Calculations of the leading-order magnetic dipole hfs in
helium and heliumlike atoms are presently well established
[10]. The leading QED correction of order α2EF , δ(2), was
derived and calculated for helium in our previous investiga-
tions [11,12]. For the Li+ and Be2+ ions, similar calculations
were carried out in Refs. [1,9,13]. The higher-order QED cor-
rection δ(3) was reported by us for helium atom in Ref. [14].
In the next section, we present the detailed derivation of
formulas and perform numerical calculations of δ(3) for Li+.
The higher-order QED correction δ(4) is approximated by the
hydrogenlike value in Eq. (14). While it is a relatively small
correction, its uncertainty will define the overall uncertainty
of our theoretical predictions for the point-nucleus hfs.
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The complete relativistic recoil correction δ(2)
rec for few-

electron systems is presently unknown. In this work we
approximate it by a sum of the relativistic recoil correction for
the corresponding hydrogenic ion and the mixing contribution
δ

(2)
rec.mix,

δ(2)
rec = δ

(2)
rec.rel(Li2+) + δ

(2)
rec.mix. (23)

The mixing correction δ
(2)
rec.mix is a second-order (in the mag-

netic moment) contribution due to mixing with closely lying
excited states. This correction is specific for the heliumlike
ions, where the reference 2 3S state and the first excited 2 1S
state are separated by a small energy interval. Namely, for
the 2 3S reference state, the following mixing contribution is
present:

〈2 3S|VF |2 1S〉 〈2 1S|VF |2 3S〉
E (2 3S) − E (2 1S)

= I i I j 〈2 3S|V i
F |2 1S〉 〈2 1S|V j

F |2 3S〉
E (2 3S) − E (2 1S)

∼ i

2
εi jk Ik 〈2 3S|V i

F |2 1S〉 〈2 1S|V j
F |2 3S〉

E (2 3S) − E (2 1S)

= AF �I · �S δ
(2)
rec.mix, (24)

where we retained only the contribution to the magnetic dipole
hfs. Despite being second order in the electron-nucleus mass
ratio, this correction is significant because of the small en-
ergy difference in the denominator. We note that a similar
correction contributes to the electric quadrupole structure and
is present even when the quadrupole moment of the nucleus is
zero.

The nuclear-structure contribution δstruct cannot be cal-
culated at present. Instead, we will extract it from the
experimental value of hfs in Li+. It is important that, with
high accuracy, the nuclear structure contribution expressed in
terms of δstruct is the same for Li2+, Li+, and Li. This fact
will allow us to predict the hyperfine structure of Li2+ and to
cross-check the experimental results for Li+ against those for
Li.

IV. QED CORRECTION OF ORDER α3 EF

We now turn to the derivation of the QED contribution of
the order of mα7 (≡ α3 EF ) to the magnetic dipole hyperfine
structure of triplet S states in few-electron atoms. The mα7

contribution to EM1 consists of the photon-exchange terms
(no radiative loops), the one-loop self-energy, the one-loop
vacuum polarization, and the two-loop QED effects. It can
be represented in terms of the first- and second-order matrix
elements as

E (7) ≡ EF δ(3) = EL + 2

〈
H (4)

hfs

1

(E0 − H0)′
H (5)

〉
+ 2

〈
H (5)

hfs

1

(E0 − H0)′
H (4)

〉
+ 〈

H (7)
hfs

〉 + E2loop, (25)

where EL is the low-energy Bethe-logarithm-type contribu-
tion; H (4)

hfs , H (5)
hfs , and H (7)

hfs are the effective hfs Hamiltonians
of order mα4, mα5, and mα7, respectively; H (4) is the Breit
Hamiltonian, H (5) is the effective QED Hamiltonian of order

mα5, and H0 and E0 are the nonrelativistic Hamiltonian and its
reference-state eigenvalue. The lowest-order hfs Hamiltonian
H (4)

hfs is given by Eqs. (5)–(11) of Ref. [12], where one should
put the electron anomalous magnetic moment (amm) to zero.
The next-order hfs Hamiltonian H (5)

hfs is the amm correction
to H (4)

hfs and is immediately obtained from Eqs. (5)– (11) of
Ref. [12]. The Breit-Pauli Hamiltonian is well known and
given, e.g., by Eq. (7) of Ref. [15]. The effective QED Hamil-
tonian of order mα5 is

H (5) =
(

5

6
− 1

5
+ ln

α−2

2λ

)
4 α2Z

3 m2
[δ3(r1) + δ3(r2)]

− 7 α2

3 π m2

1

r3
+ H (5)

fs , (26)

where r = |�r1 − �r2|, λ is the low-energy cutoff of photon mo-
menta, and H (5)

fs is the amm correction to the spin-dependent
Breit-Pauli Hamiltonian, given by Eq. (14) of Ref. [15]. E2loop

is the two-loop contribution which has the same form as in
hydrogenlike atoms, see the last term in Eq. (13), and is given
by

E2loop = EF
α2 (Z α)

π
0.770 99(2). (27)

The derivation of the low-energy contribution EL and the
first-order mα7 effective Hamiltonian H (7)

hfs is presented below.

A. Low-energy contribution EL

In this section, it will be convenient to use the atomic units
and pull out the overall prefactor α7. Also, in the rest of the
paper we will set the electron mass to unity, m = 1, unless
specified otherwise.

In the low-energy region the momentum of the virtual pho-
ton k is of the order k ≈ α2. The corresponding low-energy
hfs contribution comes from the perturbation of the Bethe
logarithm by the Fermi contact interaction operator

VF = g

M

2 π Z

3
�I · �S [δ3(r1) + δ3(r2)]. (28)

The low-energy contribution EL is

EL = 2

3 π

∫ λ

0
dk kPL(k), (29)

where

PL(k) = 2

〈
VF

1

(E0 − H0)′
�P 1

E0 − H0 − k
�P
〉

+
〈
�P 1

E0 − H0 − k
[VF − 〈VF 〉] 1

E0 − H0 − k
�P
〉

(30)

and �P = �p1 + �p2 is the total momentum operator. The large-k
expansion of PL(k) is

kPL(k) = A + B√
k

+ C ln k

k
+ D

k
+ · · · , (31)

where A, B, C, and D are the asymptotic constants sum-
marized in Appendix A. The λ-dependent part of EL is
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separated as

EL = E ′
L + 2

3 π

(
C

2
ln2 λ + D ln λ

)
, (32)

where the finite λ-independent part is expressed as

E ′
L = 2

3 π

{ ∫ K

0
k dk PL(k) +

∫ ∞

K
dk

×
[

kPL(k) − A − B√
k

− C ln k

k
− D

k

]
−

[
A K + 2 B

√
K + C

2
ln2 K + D ln K

]}
, (33)

where K � 1 is a free parameter.
In order to remove the dominant Z and state dependence

from E ′
L, it is convenient to define the δ-function-perturbed

Bethe logarithm βδ as

E ′
L = βδ

Z2

4π

〈
VF

〉 − 2

3π

(
C

2
ln2 Z2 + D ln Z2

)
. (34)

Defined in such a way, βδ depends very weakly on Z and its
numerical values for few-electron atoms are very close to the
hydrogenic values.

B. mα7 Hamiltonian H (7)
hfs

The effective mα7 Hamiltonian H (7)
hfs can be represented as

H (7)
hfs = H (7)

hfs,A + H (7)
hfs,B + · · · , (35)

where · · · denotes terms that are proportional to the electron-
nucleus Dirac δ function, δ3(ra). At the first stage of the
derivation we will routinely drop such terms; the correspond-
ing contribution will be restored later by matching the high-Z
limit of the obtained formulas to the known hydrogenic result;
see Sec. IV C. More specifically, we will omit terms propor-
tional to Z3 δ3(ra); all other terms proportional to δ3(ra) will
be preserved throughout the derivation.

The first part of H (7)
hfs comes from the spin-dependent terms

in the generalized Breit-Pauli Hamiltonian HBP that are pro-
portional to the electron amm κ . Specifically,

δHBP =
∑

a

κ

{
Zα

2
�σa · �ra

r3
a

× �πa + e

8
{ �πa · �Ba, �πa · �σa}

+ e

16

[
π i

a,
[
π i

a, �σa · �Ba
]]}

+
∑
a �=b

α κ

2 r3
ab

�σa · �rab × ( �πb − �πa), (36)

where �π = �p − e �A and

e �A(�r) = e

4π
�μ × �r

r3
= −Zα

g

2 M
�I × �r

r3
, (37)

e Bi(�r) = (∇ × �A)i = −Zα
g

2 M

8π

3
δ3(r) I i

+ Zα
g

2 M

1

r3

(
δi j − 3

rir j

r2

)
I j . (38)

Performing calculations as described in Appendix B we obtain

H (7)
hfs,A = gZα κ

4 M
�I · �S

{
2Zα

3 r4
1

− 1

6

(
8π

3
pi

1 δ3(r1) pi
1

− pi
1

1

r5
1

(
r2

1 δi j − 3 ri
1r j

1

)
pj

1

)
+ π

3
�δ3(r1)

− 4

3
α

�r · �r1

r3 r3
1

}
+ (1 ↔ 2). (39)

Some operators in the above expression are singular at the
origin and thus are not well defined, but this ambiguity will be
eliminated by matching with the known hydrogenic result.

The second part of H (7)
hfs is a middle-energy contribution

that can be expressed in terms of slopes of form factors and
the one-loop vacuum polarization. The derivation described in
Appendix B yields

H (7)
hfs,B = 2π

3

gZα

M
�I · �S

[
F ′

1 (0) + F ′
2 (0) − α

15 π

]
× �δ3(r1) + (1 ↔ 2), (40)

where the slopes of form factors are given by

F ′
1 (0) + F ′

2 (0) = α

π

[
17

72
+ 1

3
ln

α−2

2λ

]
. (41)

C. Regularization of divergencies and restoration
of the δ3(ra) part

From now on we will use atomic units and pull out the
overall α7 prefactor. The second-order matrix elements in
Eq. (25) contain divergences coming from the summation
over the intermediate states. They arise when operators on the
left and on the right of the resolvent 1/(E0 − H0)′ are suffi-
ciently singular, so that their first-order matrix elements are
finite but the second-order matrix elements diverge. Specif-
ically, there are two such “problematic” operators in our
case—the electron-nucleus Dirac δ function and the spin-
independent part of the Breit Hamiltonian H (4)

nfs , given by
Eq. (6) of Ref. [16]. The divergences become more tractable
if one moves them to first-order matrix elements. This can be
accomplished [17] by representing the problematic singular
operators as an anticommutator with the Schrödinger Hamil-
tonian H0 plus some more regular operator. Specifically, for
the Dirac δ function, we use the following identity:

4πZ [δ3(r1) + δ3(r2)] = {H0 − E0, Q} + VR, (42)

Q = 2

(
Z

r1
+ Z

r2

)
, (43)

where VR is the regularized operator defined by its action on
an eigenfunction φ of Hamiltonian H0 on the right as

VR|φ〉 = −2

(
Z�r1

r3
1

· �∇1 + Z�r2

r3
2

· �∇2

)
|φ〉. (44)
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For the spin-independent part of the Breit Hamiltonian we use
a similar identity,

H (4)
nfs = {H0 − E0, Q̃} + HR, (45)

Q̃ = − 1

4

(
Z

r1
+ Z

r2

)
, (46)

where HR is defined by its action on the eigenfunction of H0

on the right as

HR|φ〉 =
[

1

4
p2

1 p2
2 − 1

2
(E0 − V )2 − 1

2
pi

1

(
δi j

r
+ rir j

r3

)
pj

2

− Z

4
�r1 · �∇1

r3
1

− Z

4
�r2 · �∇2

r3
2

+ �r
2r3

· ( �∇1 − �∇2)

]
|φ〉,
(47)

where V = −Z/r1 − Z/r2 + 1/r. By applying these identities
as described in Appendix C, we express the second-order
contributions in Eq. (25) as

2

〈
H (4)

hfs

1

(E0 − H0)′
H (5)

〉
+ 2

〈
H (5)

hfs

1

(E0 − H0)′
H (4)

〉
= Esec(se) + Esec(vp) + Efo,A, (48)

where Esec(se) and Esec(vp) are the finite second-order con-
tributions given by Eqs. (E2) and (E7) that correspond to the
self-energy and vacuum polarization, respectively, and Efo,A

is an additional first-order contribution. As previously, in our
derivation we dropped terms proportional to the electron-
nucleus Dirac δ function in the first-order matrix elements,
which will be restored later.

A similar regularization of the Fermi contact interaction
was carried out in the calculation of the low-energy part EL,
for the integrand PL(k) in Eq. (30). The integrand PL(k) does
not contain any divergences, so the regularization is not oblig-
atory but it greatly improves the convergence of numerical
basis-set calculations. For the first term in the right-hand side
of Eq. (30) we used the representation (42), whereas for the
second term we employed a more general identity

4πZ [δ3(r1) + δ3(r2)] = {H0 − E0, Q} + ṼR, (49)

where

ṼR = 4 (E0 − V )

(
Z

r1
+ Z

r2

)
− 2 �p1

(
Z

r1
+ Z

r2

)
�p1

− 2 �p2

(
Z

r1
+ Z

r2

)
�p2 (50)

and Q is defined in Eq. (43). It might be noted that the depen-
dence on E0 in the above equations cancels out, so that they
represent a general operator identity.

Now we turn to restoring the contribution proportional to
the electron-nucleus Dirac δ function. This is accomplished
by evaluating the large-Z limit of the derived mα7 contribu-
tions. In the Z → ∞ limit, all effects of the electron-electron
interaction vanish (since they are suppressed by a factor of
1/Z as compared to the electron-nucleus interaction) and the
result should agree with the mα7 correction derived for the

hydrogenlike ions. This matching gives us the coefficient at
the electron-nucleus Dirac δ function. The evaluation of the
large-Z limit of our formulas and the matching with the hy-
drogenic results is described in Appendix D. As a result, we
obtain an additional first-order contribution proportional to the
electron-nucleus Dirac δ function,

Efo,B = η 〈�I · �S〉 Z3π〈[δ3(r1) + δ3(r2)]〉, (51)

with the coefficient η given by

η = g

4 π M

[
−5351

1350
− 44π2

27
− 10

3
ζ (3) + 896

27
ln 2

+ 16

9
ln2 2 − 4882

135
ln α − 64

9
ln2 α + 256

9
ln 2 ln α

]
,

(52)

where we dropped the λ-dependent terms.
Finally we obtain the total first-order contribution as〈

H (7)
hfs,A

〉 + 〈
H (7)

hfs,B

〉 + Efo,A + Efo,B = Efo(se) + Efo(vp), (53)

where Efo(se) and Efo(vp) are given by Eqs. (E3) and (E8),
respectively.

So far the individual mα7 contributions depend on the
logarithm of the low-energy cutoff of photon momenta, ln λ.
Naturally, the complete mα7 correction should not depend on
λ. The cancellation of the λ-dependent terms is demonstrated
in Appendix E; this constituted an important cross-check of
the derivation. After the cancellation is proven, we set λ → 1
in all formulas.

D. Final formulas

We now collect all the contributions and obtain the com-
plete result for the mα7 hfs correction for the 3S states of
heliumlike ions. It is convenient to separate out the depen-
dence on the total angular momentum and write the final result
as

E (7) = 〈�I · �S〉
A(7), (54)

where

A(7) = AL + Afo(se) + Asec(se)

+ Afo(vp) + Asec(vp) + A2loop. (55)

Here, the first three terms come from the one-loop self-
energy, the fourth and fifth terms are the one-loop vacuum-
polarization contribution, and the last term is the two-loop
correction. The low-energy self-energy contribution E ′

L = 〈�I ·
�S〉 AL is given by Eq. (33). The first-order self-energy contri-
bution Afo is conveniently expressed in terms of Qi operators
which were encountered in our previous investigation of the
mα7 effects to the Lamb shift [18] and are defined in Table II.
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The result is

Afo(se) = g

2 π M

{
1

9

(
71

3
+ 32 ln

α−2

2

)
Z2 Q1 Q53 +

(
143

108
+ 8

9
ln

α−2

2

)
Z2 Q57

− 1

3

(
85

6
+ 16 ln

α−2

2

)
Z2

2
Q3 − 56

9
Z Q9 Q53 + 56

9
Z Q59 − 13

12
Z Q18 + 4Z

3
E (4) Q53

+ 2Z

3

(
− 2E0Q13 + Q17 + E2

0 Q53 + 2ZE0Q11 + 2ZE0Q12 − 2ZQ14 − 2ZQ16 + 3Z2Q15 + Z2Q56

)
− Z

3
Q28 + 2Z

3
Q24 + Z

36

(
77

6
+ 16 ln

α−2

2

)
Q51 − Z

36

(
95

3
+ 32 ln

α−2

2

)(
E0 Q1 − Q3 − 1

2
Q4

)
+

[
− 7

6
− 44π2

27
− 10

3
ζ (3) + 896

27
ln 2 + 16

9
ln2 2 − 938

27
ln α − 64

9
ln2 α + 256

9
ln 2 ln α

]
Z3

4
Q1

}
. (56)

The second-order self-energy contribution is

Asec(se) = g

2 π M

{
2

9

[(
5

6
+ ln

α−2

2

)
S1 − 7 S2 + 3

2
S3

]
+ Z

3

(
Z

2
S4 − S5

)
− Z

8
S6

}
, (57)

where the second-order matrix elements Si are defined in
Table III. The vacuum-polarization contribution is given by

Afo(vp) = − g

45 π M

[
16Z2 Q1 Q53 + 2Z Q51 + 4Z2Q57

+ 4Z (1 − 3Z ) Q3 − 4Z

(
E0 Q1 − 1

2
Q4

)
+ Z3

(
236

15
+ 8 ln α

)
Q1

]
(58)

and

Asec(vp) = − g

45 π M
S1. (59)

The two-loop QED contribution E2loop = 〈�I · �S〉 A2loop is given
by Eq. (27).

TABLE II. Expectation values of operators Qi for the 2 3S state
of Li+, in atomic units. Singular operators Q56 and Q57 are defined
according to Ref. [18].

Q1 4πδ3(r1) 57.350 354
Q3 4πδ3(r1)/r2 27.981 057
Q4 4πδ3(r1) p2

2 22.668 097
Q9 1/r3 0.195 563
Q11 1/r2

1 9.601 760
Q12 1/(r1r2) 1.472 668
Q13 1/(r1r) 0.860 969
Q14 1/(r1r2r) 0.837 624
Q15 1/(r2

1 r2) 5.002 281
Q16 1/(r2

1 r) 4.660 766
Q17 1/(r1r2) 0.514 395
Q18 (�r1 · �r)/(r3

1 r3) 0.083 179
Q24 pi

1 (rir j + δi j r2)/(r1r3) pj
2 0.019 568

Q28 p2
1 /r1 p2

2 17.346 919
Q51 4π �p1 δ3(r1) �p1 0.051 166
Q53 1/r1 1.780 585
Q56 1/r3

1 −102.905 512
Q57 1/r4

1 271.277 651
Q59 1/(r1r3) 0.405 548

V. RESULTS

A. Li+ hfs

Our numerical calculations of the mα7 corrections were
carried out with the basis set of exponential functions
e−αi r1−βi r2−γi r introduced by Korobov [19]. The method of
calculations follows the one developed in our previous in-
vestigations and reviewed in Ref. [20]. The most difficult
numerical part is the computation of the Bethe-logarithm
contribution EL. This contribution is very similar to the low-
energy mα7 contributions for the Lamb shift; so we refer the
reader to our previous work [21] for details of the numerical
approach. Expressed in terms of βδ , our numerical results for
the low-energy mα7 contribution are

βδ (2 3S, Z = 2) = 70.531 4(28), (60)

βδ (2 3S, Z = 3) = 70.003 6(34), (61)

which can be compared with the hydrogenic limit [22]

βδ (1s2s, Z = ∞) = 68.834 482. (62)

Numerical results for the individual mα7 corrections to the hfs
of the 2 3S state of Li+ are presented in Table IV.

We now collect all available theoretical contributions to the
magnetic dipole hfs in 6Li+ and 7Li+. Accurate values of the
nuclear magnetic moments were obtained in Ref. [23],

μ

μN
=

{
0.822 044 63(37) for 6Li,
3.256 416 19(55) for 7Li,

(63)

and, therefore,

g(6Li) = 1.635 878 84(74),

g(7Li) = 5.039 258 37(85). (64)

The nuclear masses

M( 6Li) = 6.013 477 361 8(15) u,

M( 7Li) = 7.014 357 908 7(45) u (65)
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TABLE III. Second-order matrix elements for the 2 3S state of Li+, in atomic units. “Symmetry” denotes the symmetry of the intermediate
states.

Symmetry Value

S1 〈VR
1

(E0−H0 )′ VR〉 3S −30 611.303 5

S2 〈VR
1

(E0−H0 )′
1
r3 〉 3S 4.333 62

S3 〈VR
1

(E0−H0 )′ HR〉 3S 2 399.033 34

S4 〈( �r1
r3
1

× �p1 + �r2
r3
2

× �p2) 1
(E0−H0 )′ ( �r1

r3
1

× �p1 + �r2
r3
2

× �p2)〉 3Pe −0.015 80

S5 〈( �r1
r3
1

× �p1 + �r2
r3
2

× �p2) 1
(E0−H0 )′ ( �r

r3 × ( �p1 − �p2))〉 3Pe −0.038 92

S6 〈( δi j

r3
1

− 3ri
1r j

1
r5
1

+ δi j

r3
2

− 3ri
2r j

2
r5
2

) 1
(E0−H0 )′ ( δi j

r3 − 3 rir j

r5 )〉 3De −0.078 72

were obtained from the atomic masses from Ref. [24] by
subtracting the electron rest masses and the binding energies.
Values of other physical constants were taken from Ref. [5].

Table V presents results for individual theoretical contri-
butions to the magnetic dipole hfs of the 2 3S1 state in 6Li+

and 7Li+. The numerical results are expressed in terms of
δ defined by Eq. (22). The theoretical uncertainty is defined
by the QED contribution of order mα8, for which no direct
calculations exist so far; it was estimated by using the corre-
sponding hydrogenic result listed in Sec. II. The entry δtheor

is the total theoretical prediction without the nuclear-structure
contribution. The difference δexpt − δtheor then determines the
nuclear-structure contribution δstruct.

B. Effective Zemach radius

The nuclear structure contribution δstruct is parametrized in
terms of the effective Zemach radius r̃Z according to Eq. (18).
Numerical results for r̃Z of 6,7Li are listed in Table VI. This
table also compares the present values of r̃Z with previous
determinations. The result from Puchalski et al. [25] was
recalculated by including δrec.rel and by using the updated
magnetic moments of 6,7Li, given by Eq. (63). We confirm the
surprising result, pointed out in Ref. [25], that the effective
Zemach radius of 6Li is smaller than for 7Li, in spite of
the fact that the nuclear charge radius of 6Li is larger than
for 7Li. The probable explanation is a large contribution of
inelastic effects. Previously, significant inelastic contributions
were found in hfs of D [26] and μD [27].

TABLE IV. Individual mα7 corrections to the magnetic dipole hfs
of the 2 3S state in Li+. Units are α3 AF .

Term Value

AL 45.096 8 (22)
Afo(se) 50.807 0
Asec(se) −186.213 4
Afo(vp) 1.375 2
Asec(vp) 3.775 6
A2loop 0.736 2
A(7) −84.422 6 (22)

C. Li2+ hfs

Theory of the magnetic dipole hfs of hydrogenlike atoms is
summarized by Eqs. (10)–(14). This theory alone is not capa-
ble of predicting the hfs energy splittings since the nuclear
structure contribution δstruct cannot be accurately calculated
from the first principles at present. We can circumvent this
problem by using the nuclear structure contribution extracted
from the Li+ hfs measurements in order to predict the Li2+

hfs. An equivalent way is to calculate the difference of the
normalized hfs values in Li2+ and Li+ and use the experi-
mental result for the Li+ hfs to predict the hfs in Li2+. Such
a determination is presented in Table VII. The table lists
theoretical values for δ(2), δ

(2)
rec.mix, and δ(3) for the Li2+-Li+

difference. The sum of the theoretical contributions and the
experimental value δexpt (Li+) gives the prediction for δ(Li2+).
It is remarkable that the uncertainty of our prediction for
the Li2+ hfs comes exclusively from the uncertainty of the
experimental Li+ hfs value.

D. Li-Li+ hfs difference

Our present calculation of hfs in Li+ allows us to check the
consistency between the theoretical and experimental results
for hfs in Li and Li+. Only a few theoretical contributions
to δ(Li-Li+) are nonvanishing, namely, the relativistic and

TABLE V. Contributions to the magnetic dipole hfs of the 2 3S1

state in 6Li+ and 7Li+ and the determination of the nuclear structure
contribution δstruct .

Term 6Li+ 7Li+

κ 0.001 159 7 0.001 159 7
δ(2) 0.000 443 5 0.000 443 5
δ(3) −0.000 032 8 −0.000 032 8
δ(4) −0.000 002 1(5) −0.000 002 1(5)
δ

(2)
rec.mix 0.000 002 4 0.000 006 2

δ
(2)
rec.rel 0.000 000 3 0.000 000 4

δtheor 0.001 570 9(5) 0.001 574 9(5)
δtheor [9] 0.001 576(2) 0.001 580(2)
AF (GHz) 2.997 908 1(14) 7.917 508 1(13)
Aexpt (GHz) [1,2] 3.001 805 1(7) 7.926 990 1(23)
δexpt = Aexpt/AF − 1 0.001 299 9(24) 0.001 197 6(29)
δstruct = δexpt − δtheor −0.000 271 0(24) −0.000 377 3(30)
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TABLE VI. Results for the effective Zemach radius r̃Z of 6Li and
7Li, in fermi.

System Reference 6Li 7Li

Li+ This work 2.39 (2) 3.33 (3)
Li+ Sun et al. [1] 2.44 (2)
Li+ Qi et al. [9] 2.40 (16) 3.33 (7)
Li+ Qi et al. [9] 2.47 (8) 3.38 (3)
Li Puchalski et al. [25]a 2.29 (4) 3.23 (4)

aRecalculated for the nuclear momenta given by Eq. (63).

QED terms δ(2) and δ(3) and the hyperfine mixing contribution
δ

(2)
rec.mix (absent in the case of the Li atom). The results are

presented in Table VIII, where we used the Li result for δ(2)

from Ref. [25]. The dominant theoretical uncertainty comes
from the estimation of the δ(3) correction for Li, which we
assumed to be the same as in Li2+. We observe a 2 σ tension
between the theoretical and experimental hfs results, which
might result from a larger than expected δ(3) correction in
atomic Li. This supposition can be verified by a direct cal-
culation of this QED correction in atomic Li.

E. 6Li - 7Li isotopic hfs difference

A further test of consistency of the measured hfs values
can be obtained by examining the isotope shift of the nor-
malized hfs values in Li and Li+. On the theoretical side, all
QED contributions vanish in the isotope-shift difference. The
only noticeable correction is the nuclear recoil contribution,
which is nevertheless tiny and amounts to δ(2)

rec (6Li-7Li) =
−1 × 10−7. Therefore, the 6Li - 7Li difference of the normal-
ized experimental hfs values can be almost solely attributed
to the nuclear structure effect. This means that the isotope-
shift difference of the nuclear structure contributions can be
extracted from the experimental hfs values of atomic Li almost
without any theoretical input; see Table IX. The table presents
the 6Li - 7Li isotope shift of the nuclear-structure contribution
δstruct obtained from the experimental hfs values of atomic
Li [3]. The result is compared with the corresponding value
extracted from Li+ (see Table V). We observe very good
agreement of the isotope-shift differences of δstruct obtained
from atomic Li and Li+, which indicates the consistency of
the experimental results.

This consistency can be studied further by constructing
the difference � from the normalized hfs isotope shifts as

TABLE VII. Hfs splitting in Li2+.

Term 6Li 7Li

δ(2)(Li2+-Li+) −0.000 013 3 −0.000 013 3
δ

(2)
rec.mix(Li2+-Li+) −0.000 002 4 −0.000 006 2

δ(3)(Li2+-Li+) −0.000 000 5 −0.000 000 5
δexpt (Li+) [1,2] 0.001 299 9 (24) 0.001 197 6 (29)
δ(Li2+) 0.001 283 8 (24) 0.001 177 6 (29)
EF (Li2+) (GHz) 8.468 319(4) 29.819 898(5)
Ehfs(Li2+) (GHz) 8.479 190 (21) 29.855 013 (86)

TABLE VIII. Li-Li+ hfs difference.

Term 6Li 7Li

δ(2)(Li-Li+) 0.000 204 8 0.000 204 8
δ

(2)
rec.mix(Li-Li+) −0.000 002 4 −0.000 006 2

δ(3)(Li-Li+) −0.000 000 5 (47) −0.000 000 5 (47)
δ(Li-Li+)theor 0.000 201 9 (47) 0.000 198 0 (47)
δ(Li-Li+)expt [1–3] 0.000 212 9 (24) 0.000 209 5 (29)

follows:

� = [δ(6Li+) − δ(7Li+)] − [δ(6Li) − δ(7Li)]. (66)

From the theoretical point of view, this difference comes
mostly from δ

(2)
rec.mix, is very small numerically, and can be

calculated very accurately. We obtain

�theor = −3.9 × 10−6, (67)

which can be compared to the experimental value

�expt = −3.4 (3.8) × 10−6, (68)

obtained from the experimental results [1–3]. The conserva-
tive estimate of uncertainty for �expt is obtained by adding
quadratically the uncertainties of individual independent mea-
surements, with the assumption that they are not correlated.

The above comparison constitutes a strict test of consis-
tency of the four different measurements of hfs in 6,7Li+ and
6,7Li [1–3]. By contrast, if we use the recent value for the
6Li hfs, 228.201 5(14) MHz from Ref. [28], then the experi-
mental difference moves away from the theoretical prediction
and becomes �expt = 13.1 (7.2) × 10−6, which casts some
doubts about the correctness of the uncertainty estimation in
Ref. [28].

VI. CONCLUSION

We have performed calculations of the QED effects of
order mα7(= α3 EF ) to the magnetic dipole hyperfine struc-
ture in Li+. This calculation greatly improves the theoretical
value of hfs in Li+ in the point-nucleus limit. By comparing
the theoretical point-nucleus result with the experimental Li+

hfs value, we determine the nuclear-structure contribution and
parametrize it in terms of the effective Zemach radius. We
confirm the surprising result, pointed out in Ref. [25], that
the effective Zemach radius of 6Li is smaller than that of 7Li,
which is in contrast with the charge radius of 6Li being larger
than that of 7Li. The probable explanation of this fact is large
contributions of inelastic effects, for which no calculations
exist up to now.

TABLE IX. 6Li - 7Li isotope shift of atomic ground-state hfs.

Term Value

δ(6Li-7Li)theor −0.000 000 1
δ(6Li-7Li)expt [3] 0.000 105 7(5)
δstruct (6Li-7Li) 0.000 105 8(5)
δstruct (6Li+-7Li+) 0.000 106 3(38)
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It is demonstrated that the nuclear-structure contribution,
when normalized by the Fermi energy EF , is nearly the same
numerically in Li2+, Li+, and atomic Li. The charge-state
dependent contributions to δstruct are of order O(Z α)2 and very
small numerically. Using this statement, we obtain accurate
predictions for the hfs in 6Li

2+
and 7Li

2+
, for which no exper-

imental data is available so far. Examination of the normalized
differences of the hfs values of Li+ and Li and of the corre-
sponding isotope-shift differences allowed us to demonstrate
the consistency of four different measurements of hfs in 6,7Li+

and 6,7Li [1–3]. By contrast, the recent measurement of 6Li hfs
[28] leads to a 2σ tension in the consistency test.
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APPENDIX A: ASYMPTOTIC EXPANSION COEFFICIENTS
OF THE BETHE-LOGARITHM CONTRIBUTION

Here we present a summary of formulas derived for the
coefficients in the asymptotic expansion of the integrand PL(k)
of the low-energy contribution EL given by Eq. (31). As in
Sec. IV A, we work in atomic units and pull out the overall α7

prefactor. The asymptotic coefficient A is

A = −2

〈
�P2 1

(E0 − H0)′
VF

〉
, (A1)

where �P = �p1 + �p2 and VF is given by Eq. (28). For the
numerical evaluation, we transform the second-order matrix
element to a more regular form by using the identity (42).
After simple calculation, we obtain

A = g

3 M
〈�I · �S〉

[
−

〈
�P2 1

(E0 − H0)′
VR

〉
+ 4 π Z 〈δ3(r1) + δ3(r2)〉 + 2

〈
�P
(

Z

r1
+ Z

r2

)
�P
〉

+ 〈 �P2〉
(

4E0 −
〈

2

r

〉)]
. (A2)

The coefficients B and C originate from the exchange of
high-momenta photons. The corresponding formulas are de-

rived by considering the forward scattering amplitude with
two and three photon exchanges, correspondingly, perturbed
by the Fermi contact interaction. The results are proportional
to the expectation values of the local contact interaction and
are given by

B = − 8
√

2 gZ2

3 M
〈�I · �S〉 〈π (δ3(r1) + δ3(r2))〉, (A3)

C = − 4 gZ3

3 M
〈�I · �S〉 〈π (δ3(r1) + δ3(r2))〉. (A4)

The calculation of the coefficient D is more complicated.
It consists of the low- and high-energy parts which are calcu-
lated separately using the dimensional regularization, similar
to that for the Lamb shift [21]. The result is

D = g

6 M
〈�I · �S〉

[
〈16π Z2(δ3(r1) + δ3(r2))〉

〈
1

r1
+ 1

r2

〉
+ 2

〈
Z2

r4
1

+ Z2

r4
2

〉
+

〈
VR

1

(E0 − H0)′
VR

〉
+

〈
�p1 4π Z δ3(r1) �p1 −

(
E0 + (3Z − 1)

r2
− p2

2

2

− 6Z2 + 5Z2 ln 2

)
8π Z δ3(r1) + (1 ↔ 2)

〉]
. (A5)

APPENDIX B: DERIVATION OF H (7)
hfs

In this section we derive H (7)
hfs,A and H (7)

hfs,B in Eq. (35). The

effective operator H (7)
hfs,A is given by Eq. (36), which can be

rewritten as

H (7)
hfs,A =

∑
a

κ

[
Zα

2
�σa · �ra

r3
a

× ( − e �Aa
)

− e

16
�σa · � �Ba + e

4
( �pa · �σa)( �Ba · �pa)

]
+

∑
a,b;a �=b

κ
α

2r3
ab

�σa · �rab × (e �Aa − e �Ab). (B1)

The individual parts of this expression are calculated as fol-
lows:

∑
a

Zα

2
�σa · �ra

r3
a

× [−e �A(�ra)] = g (Zα)2

3 M

∑
a

�sa · �I
r4

a

, (B2)

∑
a

e

4
( �pa · �σa)[ �B(�ra) · �pa] = gZα

12 M

∑
a

�sa · �I
[

− 8π

3
pi

a δ3(ra) pi
a + pi

a

1

r3
a

(
δi j − 3

ri
ar j

a

r2
a

)
pj

a

]
, (B3)

∑
a

− e

16
�σa · � �B(�ra) = gZα

6 M

∑
a

�sa · �I �π δ3(ra), (B4)

∑
a,b;a �=b

α

2r3
ab

�σa · �rab × (e �A(�ra) − e �A(�rb)) = − gZα2

3 M

∑
a,b;a �=b

�sa · �I �rab

r3
ab

·
( �ra

r3
a

− �rb

r3
b

)
. (B5)

Deriving the above formulas we used 〈SiI j〉 = 〈�I · �S〉 δi j/3, which is valid for the triplet S states. After simple calculations we
obtain the result for H (7)

hfs,A as given by Eq. (39).
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Turning to H (7)
hfs,B, we evaluate it as

H (7)
hfs,B =

∑
a

− e

2

[
F ′

1 (0) + F ′
2 (0) − α

15 π

]
�σa · � �B(�ra)

=
∑

a

g

2 M
Zα

[
F ′

1 (0) + F ′
2 (0) − α

15 π

]
8π

3
�sa · �I�δ3(ra), (B6)

where the index a = 1, 2 runs over the two electrons. Deriving the above formula, we again omitted terms vanishing for the
triplet S states. We simplify the result by rewriting all terms as a sum of symmetric and antisymmetric in spin parts. For example,∑

a

�sa · �I δ3(ra) = 1

2
(�s1 + �s2) · �I [δ3(r1) + δ3(r2)] + 1

2
(�s1 − �s2) · �I [δ3(r1) − δ3(r2)]. (B7)

The expectation value of the antisymmetric part vanishes for the triplet S states and only the symmetric part contributes. Taking
into account that the sum of the spins of both electrons is equal to the total spin �S, we can make the replacement �sa → �S/2 in all
expressions.

APPENDIX C: REGULARIZED FORM OF THE SECOND-ORDER CONTRIBUTION

Here we consider the singular part of the second-order contributions in Eq. (25), namely, terms containing the Dirac δ

functions. With the help of Eqs. (42) and (45) the singular second-order contributions are transformed into a form suitable
for numerical calculation, whereas all divergences are transferred to the first-order matrix elements. We thus write

2

〈
H (4)

hfs

1

(E0 − H0)′
(
κ H (4)

nfs + H (5)
nfs

)〉 = Esec,A + Efo,A. (C1)

After simple but tedious calculations we obtain

Esec,A = α g

9 π M
〈�I · �S〉

〈
VR

1

(E0 − H0)′

[
α2

(
5

6
− 1

5
+ ln

α−2

2λ

)
VR − 7 α2

r3
+ 3π κ HR

]〉
(C2)

and

Efo,A = 〈�I · �S〉 g

M

{
α3

9 π

[(
5

6
− 1

5
+ ln

α−2

2λ

)(〈
16π Z[δ3(r1) + δ3(r2)]

〉〈 Z

r1
+ Z

r2

〉
−

〈
16π Z[δ3(r1) + δ3(r2)]

(
Z

r1
+ Z

r2

)〉
+ 2

〈
Z2

r4
1

+ Z2

r4
2

〉)
− 14

〈
1

r3

〉〈
Z

r1
+ Z

r2

〉
+ 14

〈
1

r3

(
Z

r1
+ Z

r2

)〉]
+ κ α

3

[
α

4

〈
Z2

r4
1

+ Z2

r4
2

− 2

(
Z�r1

r3
1

− Z�r2

r3
2

)
· �r

r3

〉
+

〈(
Z

r1
+ Z

r2

)
(E0 − V )2

〉
− 1

2

〈
p2

1

(
Z

r1
+ Z

r2

)
p2

2

〉
+ 2 E (4)

〈
Z

r1
+ Z

r2

〉
+

〈
pi

1

(
Zα

r1
+ Zα

r2

)(
δi j

r
+ rir j

r3

)
pj

2

〉
− 〈π Zα [δ3(r1) + δ3(r2)]〉

〈
Z

r1
+ Z

r2

〉]}
, (C3)

where E (4) is the relativistic correction of order mα4 to the centroid energy. The above formulas contain contributions from the
self-energy and the vacuum polarization. The latter is induced by the vacuum-polarization correction to the Coulomb potential,

δV (1) = −4 α2

15
Z δ3(r1) + (1 ↔ 2), (C4)

and is a part of the H (5) Hamiltonian in Eq. (26).

APPENDIX D: MATCHING THE HYDROGENIC LIMIT

In this section we obtain the hydrogenic (Z → ∞) limit of our formulas derived for the heliumlike atom. We first consider
the normalized difference of hfs energies, �E (7) ≡ n3 E (7)(nS) − E (7)(1S), for which the obtained limit should agree with the
known results derived for the hydrogenlike atoms. Next, we consider the 1S state, for which the limit of our formulas should
differ from the hydrogen result by a term proportional to the electron-nucleus Dirac δ function. By matching these two results,
we obtain the missing δ-function contribution.

We start with the self-energy part. To get the hydrogenic limit of our formulas, we make the replacement �S → 2�s1 and drop all
the electron-electron terms containing r and terms containing variables of the second electron. For the normalized hfs difference,
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omitting the low-energy part E ′
L and using known results for the expectation values of effective operators with hydrogenic wave

functions, we obtain

�E (7)(se) = Z6

π

g

2 M
〈�s1 · �I〉

[
71

18
− 79

27n
− 55

54n2
+ 214

27
(γ + �(n) − ln(n)) + (− ln(α)−2 + ln 2)

×
(

−16

3
+ 64

9n
− 16

9n2
− 64

9

[
γ + �(n) − ln(n)

])]
. (D1)

This agrees with the result from Ref. [29] after the replacement ln(Zα)−2 → ln(α)−2, which is caused by the different choices
of the photon cutoff in the low-energy part. For the 1S state, the hydrogenic limit of our formulas is

E (7)(se, 1S) = Z6

π

g

2 M
〈�s1 · �I〉

[
−319

18
+ 16 ln � + 646

27
ln 2 + 214

27
ln Z − 64

9
(ln2 2 + ln 2 ln � + ln Z ln � + ln 2 ln Z )

]
+ 2Z6 ηse 〈�s1 · �I〉, (D2)

where ηse parametrizes the missing δ-function self-energy contribution. The above result should agree with the hydrogenic 1S
self-energy result given by the sum of FM and FH in Eqs. (A12) and (A13) of Ref. [8]. In these equations the intermediate cutoff ε

is the same as cutoff � = α2λ used in this work. Matching Eq. (D2) with the result from Ref. [8], we get the missing contribution

ηse = g

4 π M

[
−7

6
− 44π2

27
− 10

3
ζ (3) + 896

27
ln 2 + 16

9
ln2 2 − 64

3
ln � + 16

9
ln2 �

+ 160

9
ln 2 ln � + ln(α)

(
214

27
− 64

9
ln � − 64

9
ln 2

)]
. (D3)

Adding the corresponding contribution from the second electron, then employing Eq. (B7) to rewrite their sum as a combination
of the symmetric and antisymmetric parts, and dropping the antisymmetric part since it does not contribute for the 3S state, we
get the complete δ-function self-energy contribution for helium.

For the vacuum polarization we proceed in a similar fashion. For normalized difference of S states, the hydrogenic limit of
our formulas,

�E (7)(vp) = − 32 Z6 g

45 π M
〈�s1 · �I〉

[
3

4
− 1

n
+ 1

4n2
+ γ + �(n) − ln(n)

]
, (D4)

agrees with the result in Ref. [29]. For the 1S state, the hydrogenic limit of our formulas,

E (7)(vp, 1S) = Z6

π

2g

45 M
〈�s1 · �I〉 (36 − 16 ln 2 − 16 ln Z ) + 2Z6 ηvp 〈�s1 · �I〉, (D5)

is matched with the literature result [4], yielding the missing δ-function contribution

ηvp = − g

45π M

[
472

15
+ 16 ln(α)

]
. (D6)

It should be noted that for the vacuum polarization we checked this result by a direct derivation of the δ-function contribution
by using the dimensional regularization.

The sum of the self-energy and vacuum-polarization δ-function contributions yields the term Efo,B given by Eqs. (51) and
(52).

APPENDIX E: CANCELLATION OF λ-DEPENDENT TERMS

In this section we obtain the final formulas for the mα7 correction and demonstrate the cancellation of terms depending on
the low-energy cutoff λ. We start with the self-energy contribution, which is represented as a sum of three terms,

E (7)(se) = EL + Esec(se) + Efo(se). (E1)

Here, EL is the Bethe-logarithm low-energy contribution given by Eq. (32). The second-order self-energy contribution Esec(se)
is obtained in Appendix C as

Esec(se) = g

2 π M

{
2

9
〈�I · �S〉

〈
VR

1

(E0 − H0)′

[(
5

6
+ ln

α−2

2λ

)
VR − 7

r3
+ 3

2
HR

]〉
+ 2Z

〈[ �r1

r3
1

× �p1 + �r2

r3
2

× �p2

]
· �I 1

(E0 − H0)′

[
Z

4

( �r1

r3
1

× �p1 + �r2

r3
2

× �p2

)
− 1

2
�r
r3

× ( �p1 − �p2)

]
· �S

〉

− 3

2
Z

〈
SiI j

[
1

r3
1

(
δi j − 3

ri
1r j

1

r2
1

)
+ 1

r3
2

(
δi j − 3

ri
2r j

2

r2
2

)]
1

(E0 − H0)′
1

4

( �σ1 �σ2

r3
− 3

�σ1 · �r �σ2 · �r
r5

)〉}
. (E2)

052802-11



PACHUCKI, PATKÓŠ, AND YEROKHIN PHYSICAL REVIEW A 108, 052802 (2023)

The first-order self-energy contribution reads

Efo(se) = g

4 π M
〈�I · �S〉

[
2

9

(
71

3
+ 32 ln

α−2

2λ

)〈
π Z δ3(r1)

〉〈 Z

r1
+ Z

r2

〉
+

(
143

108
+ 8

9
ln

α−2

2λ

)〈
Z2

r4
1

〉

− 2

3

(
85

6
+ 16 ln

α−2

2λ

)〈
π Z2 δ3(r1)

1

r2

〉
− 56

9

〈
1

r3

〉〈
Z

r1

〉
+ 56

9

〈
Z

r3 r1

〉
− 13

12

〈
Z �r1

r3
1

· �r
r3

〉

+ 4Z

3
E (4)

〈
1

r1

〉
+ 2Z

3

〈
1

r1
(E0 − V )2

〉
− Z

3

〈
p2

1
1

r1
p2

2

〉
+ 2Z

3

〈
pi

1
1

r1

(
δi j

r
+ rir j

r3

)
pj

2

〉

+ Z

9

(
77

6
+ 16 ln

α−2

2λ

)〈
pk

1 π δ3(r1) pk
1

〉 − π Z

9

(
95

3
+ 32 ln

α−2

2λ

)〈(
E0 − 1

r2
− p2

2

2

)
δ3(r1)

〉]
+ 〈�I · �S〉 ηse Z3 π 〈δ3(r1)〉 + (1 ↔ 2). (E3)

For the simplification of the result we used the identity〈
pi

1
1

r3
1

(
δi j − 3

ri
1r j

1

r2
1

)
pj

1

〉
=

〈
2

3
pk

1 Z π δ3(r1) pk
1 + Z2

r4
1

− Z �r1

r3
1

· �r
r3

−
(

E0 + Z − 1

r2
− p2

2

2

)
Z πδ3(r1)

〉
. (E4)

By algebraic calculations we checked that the dependence on the photon momentum cutoff λ is canceled in the sum of EL,
Esec(se), and Efo(se). After that, we can remove the λ dependence by setting λ = 1 in all formulas. In this way we obtain the final
formulas given by Eqs. (56) and (57). The second-order contribution in Eq. (57) is obtained from Eq. (E2) after spin averaging
with the help of a formula, 〈

SiI jQi j
1 σ a

1 σ b
2 Qab

2

〉 = 〈�I · �S〉
3

〈Qi j
1 Qi j

2 〉, (E5)

in the second and the third line of Eq. (E2), correspondingly.
The final result for the vacuum-polarization contribution is a sum of the corresponding parts of the second-order contribution

in Eq. (C1), the first-order contribution contained in H (7)
hfs in Eq. (35), and the additional Dirac-δ-like part obtained in Appendix D.

We thus get

E (7)(vp) = Esec(vp) + Efo(vp), (E6)

Esec(vp) = − g

45 π M
〈�I · �S〉

〈
VR

1

(E0 − H0)′
VR

〉
, (E7)

Efo(vp) = − g

45 π M
〈�I · �S〉

{
〈16π Z δ3(r1)〉

〈
Z

r1
+ Z

r2

〉
+ 4 〈 �p1 π Z δ3(r1) �p1〉 +

〈
8π (Z − 3Z2) δ3(r1)

1

r2

〉

− 8

〈(
E0 − p2

2

2

)
π Z δ3(r1)

〉
+ 2

〈
Z2

r4
1

〉
+

(
472

15
+ 16 ln(α)

)
〈π Z3 δ3(r1)〉 + (1 ↔ 2)

}
. (E8)
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