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Fast quantum gates are of paramount importance for enabling efficient and error-resilient quantum compu-
tations. In the present work we analyze Landau-Zener-Stückelberg-Majorana (LZSM) strong driving protocols,
tailored to implement fast gates with particular emphasis on small-gap qubits. We derive analytical equations to
determine the specific set of driving parameters for the implementation of single-qubit and two-qubit gates
employing single-period sinusoidal pulses. Our approach circumvents the need to scan experimentally a wide
range of parameters and instead it allows to concentrate on fine-tuning the device near the analytically predicted
values. We analyze the dependence of relaxation and decoherence on the amplitude and frequency of the pulses,
obtaining the optimal regime of driving parameters to mitigate the effects of the environment. Our study focus
on the single-qubit X π

2
, Yπ

2
and identity gates. Also, we propose the

√
bSWAP as the simplest two-qubit gate

attainable through a robust LZSM driving protocol.

DOI: 10.1103/PhysRevA.108.052619

I. INTRODUCTION

One of the key ingredients in quantum computing is the
ability to implement fast gates, which are the essential build-
ing blocks to perform quantum algorithms. In recent years,
significant progress has been made in the design of quantum
gates using superconducting qubits, which have become one
of the most promising platforms due to their scalability, long
coherence times, and potential for fast high-fidelity operations
[1–3]. The transmon qubit [4] and the capacitively shunted
flux qubit [5] establish the basis for modern design of artifi-
cial atoms based on superconducting circuits. A more recent
addition, the fluxonium [6–11], has a low transition frequency
and a large anharmonicity, making it a promising candidate
for quantum simulations and high-fidelity gate operations.

A variety of techniques for implementing fast quantum
gates, including dynamical decoupling, composite pulses, and
optimal control, have been implemented so far [12–20]. These
techniques have led to significant improvements in gate fi-
delity. However, most of them rely on a resonant Rabi driving
with frequency ω ≈ � = E1 − E0 (the qubit energy gap) and
small amplitude, A � �, whose duration is adapted to per-
form the target operation (throughout this article we take
h̄ = 1). As the gate time tg is inversely proportional to the gen-
eralized Rabi frequency, i.e., tg ∝ 1

�R
∝ 1

A [21], these schemes
usually have limited gate speed involving time scales that are
in conflict with those imposed by decoherence processes.

One approach to mitigate decoherence is to reduce the
qubit coupling to the environment by using a low-frequency
or small-gap qubit as the heavy fluxonium. However, again
in these cases, methods based on the Rabi resonant control

*Present address: Quantronics group, Université Paris-Saclay,
CEA, CNRS, SPEC, 91191 Gif-sur-Yvette Cedex, France.

would be unfeasible as � is small and in the rotating wave
approximation (RWA), as A � � results in tg � t� = 2π

�
.

To circumvent the mentioned limitations, alternatives be-
yond the resonant Rabi protocol have been recently proposed
to experimentally implement fast gates with tg much smaller
than the decoherence time [22–25]. One of these schemes
is based on driving a composite qubit, formed by two ca-
pacitively coupled transmon qubits which have a small gap
between two energy levels [23]. The qubit is controlled by
a Landau-Zener-Stückelberg-Majorana (LZSM) driving pro-
tocol, which consists of driving the qubit with a strong
amplitude and/or an off-resonant harmonic signal [26–30].
LZSM protocols have been successfully implemented in in-
terferometry of superconducting qubits [31,32] and temporal
oscillations [33], and used in the quantum simulation of
universal conductance fluctuations and weak localization phe-
nomena [34,35].

On the theoretical side, the study of the LZSM driving
protocols requires the implementation of numerical meth-
ods, the most useful based on the Floquet formalism [28,36–
38], as the RWA is valid in the weak driving and resonant
cases, but breaks down in the strong driving regime where
analytical and perturbative approaches fail. It is well known
that the counterrotating terms lead to the shifts of resonances
(Bloch-Siegert shift) and additional beat patterns in the time
evolution [21,36] which are not captured in the RWA. In a
quite recent paper [39], the Bloch-Siegert shift was calculated
along the entire driving strength and frequency regime by a
simple analytical method based on a self-consistent unitary
transformation. The method uses a counterrotating hybridized
rotating wave approximation (CHRW) [20,39,40] and enables
to obtain an effective description of the qubit dynamics which
reproduces the numerical results not only when the driving
strength is moderately weak but also for large frequency and
strong driving strengths, far beyond the perturbation theory.
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In the present work, we conduct an analysis of LZSM
strong driving protocols suitable for implementing quantum
gates in small-gap qubits. By presenting precise analyti-
cal equations based on the CHRW approximation, we offer
a method to determine the driving parameters (amplitude,
frequency, initial and final idling times) required for both
single-qubit gates and the

√
bSWAP gate. The approach elimi-

nates the need for extensive experimental parameter scanning,
allowing to concentrate on fine-tuning the device based on the
analytically predicted parameters. We suggest the

√
bSWAP

gate as an ideal two-qubit gate achievable through a straight-
forward single one-period sinusoidal pulse using the strong
driving LZSM protocol.

The paper is organized as follows: In Sec. II we introduce
the CHRW to analyze the effective dynamics of the driven
qubit Hamiltonian in terms of the operator U (T ), for a single
period T of a sinuosoidal drive. As a figure of merit for
the accuracy of the CHRW we compute the error of this
approximation, defined in terms of the fidelity of the ap-
proximated evolution operator U (T ) with respect to the exact
evolution operator (computed numerically). In Secs. III and
IV we analyze the implementation of single-qubit X π

2
, Yπ

2
and

two-qubit
√

bSWAP gates, respectively, with special focus on
the determination of the optimal driving parameters in order
to engineer fast gates with strong nonresonant LZSM proto-
cols based on single-period sinusoidal drives. The effect of
relaxation and decoherence on the gate dynamics is analyzed
in Sec. V. Finally, the summary and conclusions are presented
in Sec. VI.

II. EFFECTIVE DYNAMICS FOR STRONGLY
DRIVEN QUBITS

We start by considering the standard two-level Hamiltonian
modeling a driven qubit,

H (t ) = −�

2
σ̂z − ε(t )

2
σ̂x, (1)

where σ̂z and σ̂x are the Pauli matrices and � is the qubit
energy gap. The Hamiltonian is written in the basis spanned
by the states |0〉 and |1〉, which correspond to the ground
and excited states of the qubit, respectively. We consider a
transverse driving protocol ε(t ) = A sin(ωt ), as used recently
in small-gap qubits like superconducting composite qubits
[23] and heavy fluxonium qubits [10,24].

For large-gap qubits, like the transmon, the driving strength
A is typically small compared with the qubit gap �, in
which case the qubit control is implemented in the Rabi-
driving regime at resonant frequencies ω ≈ � that can be
accurately described within the RWA. The recent development
of highly coherent qubits with small gaps requires operation
with nonresonant fast drives ω > � and large driving am-
plitudes, using control protocols based on LZSM transitions
[26,28–31]. In this case, and in contrast with the Rabi-driving
protocol, there are no simple expressions to predict the driving
parameters needed for the implementation of quantum gates.
Instead, calibration protocols scanning the pulse amplitude A
and frequency ω are usually performed in the experiments
[10,23,24]. For instance, in Ref. [23], as a first step in the
calibration protocol, the transition probability from the ground

FIG. 1. Intensity plot of P01 = |〈1|Unum(T )|0〉|2 as a function
of the driving frequency ω and amplitude A, both normalized by
the qubit gap �. P01 is computed numerically using a fourth-order
Trotter-Suzuki algorithm. See text for details. The color bar indicates
the probability P01.

state to the excited state after a single period T = 2π/ω of the
sinusoidal drive, P01 ≡ P|0〉→|1〉(T ), is measured as a function
of A and ω. From this scanned transition probability, values of
A and ω are chosen such that, for these values, P01 corresponds
to the implementation of a given quantum gate. In a second
calibration step, idling times before and after the driving pulse
are finely tuned up in order to implement the desired quantum
gate [23].

We have computed the time evolution with the H (t ) of
Eq. (1) using a fourth-order Trotter-Suzuki algorithm [41],
to compare with the calibration protocol of Ref. [23]. From
the time evolution operator computed numerically, Unum(t ),
we obtain P01 = |〈1|Unum(T )|0〉|2 and plot it in Fig. 1 as a
function of A and ω, scanning the same range of values as in
the experiment. The computed probabilities align closely with
the experimental results shown in Fig. S3 of Ref. [23].

An analytical accurate estimation of the amplitude and
frequency of the driving pulse could greatly simplify the cali-
bration procedure. The difficulty is that large driving strengths
require to go beyond the RWA and to account for coun-
terrotating effects. To obtain an effective description of the
qubit dynamics one strategy is to use the CHRW approxi-
mation [20,39,40], applied to this case. To this end, we start
with the transformation |ψ ′(t )〉 = Ux|ψ (t )〉, H ′ = UxHU †

x +
i(∂tUx )U †

x , with Ux = e−i φ

2 σ̂x . This gives [39]

H ′ = − (ε − φ̇)

2
σ̂x − �

2
(cos φσ̂z − sin φσ̂y). (2)

We take φ̇ = ξε, with ξ a parameter to be deter-
mined later. Thus, φ(t ) = −ξ A

ω
cos(ωt ) and exp (iφ) =

exp [−iξ A
ω

cos(ωt )]. Using the Jacobi-Anger expansion in
terms of Bessel functions for

eix cos a =
k=+∞∑
k=−∞

ikJk (x)eika = J0(x) +
∞∑

k=1

2ikJk (x) cos(ka),
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we approximate in Eq. (2) (to lowest order in the Fourier
expansion)

cos φ ≈ J0

(
ξ

A

ω

)
sin φ ≈ −2J1

(
ξ

A

ω

)
cos(ωt ), (3)

and therefore

H ′ =−ε(1−ξ )

2
σ̂x − �

2

[
J0

(
ξ

A

ω

)
σ̂z + 2J1

(
ξ

A

ω

)
cos(ωt )σ̂y

]
,

which can be rewritten as

H ′ = −�̃

2
σ̂z − 1

2
[A(1 − ξ ) sin(ωt )σ̂x + 2�J1(a) cos(ωt )σ̂y],

(4)
with �̃ = �J0(a) and a = ξA/ω.

After expressing ξ in terms of the self-consistent equation

A(1 − ξ ) = 2�J1

(
ξ

A

ω

)
= Ã, (5)

we can rewrite Eq. (4) as

H ′ = −�̃

2
σ̂z − Ã

2
[sin(ωt )σ̂x + cos(ωt )σ̂y]

= −�̃

2
σ̂z − Ã

2
[−ieiωt σ̂+ + ie−iωt σ̂−], (6)

which can be solved exactly. After transforming with the
unitary operator R = e−i ωt

2 σ̂z , we obtain

H ′′ = RH ′R† + i
dR

dt
R† = − δ̃

2
σ̂z − Ã

2
σ̂y, (7)

with δ̃ = �̃ − ω.
Equation (7) can be easily diagonalized with the transfor-

mation W = e−i θ
2 σ̂x , with tan θ = Ã/̃δ, obtaining

Hd = W H ′′W † = −�R

2
σ̂z, (8)

with

�R =
√̃

δ2 + Ã2 =
√

[�J0

(
ξ

A

ω

)
− ω]2 + 4�2J1

2

(
ξ

A

ω

)
the generalized Rabi frequency.

Taking into account the previous transformations, the
evolution operator associated with Eq. (1), in the CHRW
approximation, results in

U (t ) = U †
x (t )R†(t )W †ei �Rt

2 σ̂zW R(0)Ux(0). (9)

In our case, for the implementation of fast quantum gates,
we are interested in the evolution after one period of the
driving T , which is

U (T ) = −ei θ−a
2 σ̂x ei π�R

ω
σ̂z e−i θ−a

2 σ̂x

= −
(

cos α + i sin α cos θ̃ sin α sin θ̃

− sin α sin θ̃ cos α − i sin α cos θ̃

)
,

(10)

FIG. 2. (a) Transition probability P01 obtained from Eq. (11) as
a function of driving frequency ω/� and amplitude A/�. The color
bar indicates the probability P01. (b) Intensity plot of the error E of
the CHRW approximation. The color bar indicates the logarithmic
error − log10 |E |. Regions in white correspond to E < 10−8.

with α = π�R
ω

and θ̃ = θ − a = θ − ξ A
ω

. The transition prob-
ability between the qubit states, |0〉 → |1〉, can then be
obtained in this approximation as

P01 = |〈1|U (T )|0〉|2 = sin 2θ̃ sin 2α

=
[
Ã cos

(
ξ A

ω

) − δ̃ sin
(
ξ A

ω

)]
2

�2
R

sin 2 π�R

ω
. (11)

In Fig. 2(a) we plot the transition probability computed
from the analytical expression Eq. (11) as a function of the
amplitude of the driving A/� and the frequency ω/� (both
normalized in terms of the qubit gap). The agreement with
the numerical result of Fig. 1 is remarkable, despite some
noticeable differences in the range of small ω/A, due to nu-
merical instabilities in the solution of Eq. (5) originated in the
highly oscillatory behavior of the Bessel function J1(x) for
large values of its argument x.

In order to check the accuracy of the CHRW approximation
we compare the approximated U (T ) of Eq. (10) with the
the numerically exact Unum(T ). We quantify the error of the
approximation as

E = 1 − F = 1 − Tr(U †U ) + |Tr(U †
tgU )|2

d (d + 1)
, (12)
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FIG. 3. Location of the parameters for implementation of the
Yπ

2
gate. Intensity plot of the error function E that compares the

numerically exact evolution operator Unum with Yπ
2

. The color bar
corresponds to − log10 |E |. The point where E < 10−7 (practically
zero within numerical precision) gives the operational parameters of
the gate, frequency ωY and amplitude AY , which are in agreement
with the analytical estimates of Eq. (14), ωY ≈ 2.07� and AY ≈
2.87�.

where F is the standard expression for the fidelity of an
evolution operator U with respect to a target unitary operator
Utg [42]. In the present case is Utg = Unum(T ), with d = 2
the dimension of the space, and Tr(U †U ) = d , as U (T ) is
exactly unitary. In Fig. 2(b) we plot the error E . As expected
[40], the CHRW approximation is very accurate in the range
ω � A/2 and ω � � (with E � 10−3), which is also the range
of interest for the experiment of Ref. [23]. Other methods
of approximation such as the Magnus expansion (used in
Ref. [10]) and the RWA in a double rotating frame (used
in Refs. [43,44]) are less accurate (see Appendix B for a
comparison of the different approximations).

In the following sections we shall analyze different im-
plementations of single- and two-qubit gates following this
driving protocol.

III. IMPLEMENTATION OF SINGLE-QUBIT GATES

Here, we analyze the conditions to implement fast single-
qubit gates with a strong driving protocol based on nonreso-
nant sinusoidal pulses [see Eq. (1)].

First, we note that Zα = exp(−iασ̂z/2) gates, can be real-
ized by “idling” operations in the time evolution with the qubit
set at ε = 0 for a time t = α/�, as implemented in Ref. [23].
In addition to the continuous varying Zα gate a complete set of
single-qubit gates can be realized, implementing, for instance,
X± π

2
= exp(∓iπσ̂x/4) and Y± π

2
= exp(∓iπσ̂y/4) gates.

In the case of the Yπ
2

gate, we can write it in matrix form as

Yπ
2

=
√

2

2

(
1 −1
1 1

)
. (13)

A direct comparison of Eq. (13) with the CHRW expression
for the operator U (T ), Eq. (10), gives the following condition

FIG. 4. (a) Plot of the parameter sets ω and A for the implemen-
tation of X π

2
and Yπ

2
gates. The plotted points satisfy the analytical

expressions of Eqs. (17) and (22) with a 10−3 accuracy (except for
the low-frequency points, which correspond to the evaluation of the
condition P01 = 1/2 with the same accuracy as the numerically exact
evolution, since the CHRW approximation does not apply in this
case). Inset: Schematic representation of the pulsing protocol with an
idle time ti added before the sinusoidal drive and a second idle time t f

afterwards. (b) Values of ω and A to implement the identity operation
determined from Eq. (23), obtained with the same accuracy. In the
regions shaded in gray the CHRW approximation has an error of
0.01, as analyzed in Fig. 2(b).

to implement the Yπ
2

gate with the largest ω:

ω = 4

3
�R, θ − ξ

A

ω
= π

2
. (14)

Numerical solution of these equations together with Eq. (5)
give ωY ≈ 2.07� and AY ≈ 2.87�. The general conditions
for the Yπ

2
gate are ω = �R/(2k + 3/4), θ̃ = (2l + 1/2)π

and ω = �R/(2k + 5/4), θ̃ = (2l + 3/2)π for k, l integers.
Solutions with k �= 0, l �= 0 give low ω and large A, beyond
the parameter range for the CHRW approximation.

It is clear that the analytical estimate of the operational pa-
rameters for the gate implementation avoids the experimental
cost of scanning parameters in a wide range. In the exper-
iment, as described in the previous section, the fast gate is
implemented applying the sinusoidal pulse for a single period
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T = 2π/ω, and the corresponding values of A and ω are de-
termined by performing different measurements scanning the
amplitude and frequency. In a similar way, we can compute
numerically the exact evolution operator Unum(T ) varying the
parameters ω and A, for instance, in the range [0, 4�]. To ob-
tain the numerically exact conditions for the Yπ

2
gate, we show

in Fig. 3 the error function E from Eq. (12) with U = Unum(T )
compared with the target Utg = Yπ

2
. The point of minimum

E [which is near the numerical precision for our calculation
of Unum(T ), E ≈ 10−7] corresponds to the operational point
in A, ω for implementing the gate Yπ

2
. This point agrees very

accurately with the values (AY , ωY ) computed previously from
Eq. (14).

In the case of the X π
2

gate, its matrix representation is

X π
2

=
√

2

2

(
1 −i
−i 1

)
. (15)

A comparison with the approximate U (T ) given in Eq. (10)
shows that X π

2
cannot be realized directly, since sin α sin θ̃ �=

i. However, one can add after the sinusoidal pulse an idle
(Z gate) evolution [23,45] during a time t f = π

�
, such that

ei �
2 σ̂zt f = iσ̂z. Then, after the complete evolution given by

U (T + t f ) = iσ̂zU (T ), the main conditions to implement a
X π

2
gate result in

ω = 2�R, θ − ξ
A

ω
= 3π

4
. (16)

The numerical solution of these equations together with
Eq. (5) gives ωX ≈ 0.81� and AX ≈ 0.68�. The general con-
ditions for the X π

2
gate are ω = �R/(2k + 1/2), θ̃ = (2l +

3/4)π and ω = �R/(2k + 3/2), θ̃ = (2l + 5/4)π for k, l in-
tegers.

The problem with the above conditions, Eqs. (14) and
(16), is that each one requires very specific (and different)
frequencies (ωY and ωX ) and gate times (TY = 2π/ωY and
TX = 2π/ωX ) to implement them.

A more general procedure [23,45], which expands the pos-
sibilities in parameter space, is to add an idle time ti before
the sinusoidal drive and a second idle time t f afterwards, see
inset in Fig. 4(a). Calling τ+ = (ti + t f )�/2 and τ− = (t f −
ti )�/2, the evolution operator in the CHRW approximation
results in

U (ti + T + t f ) =
(−eiτ+ (cos α + i sin α cos θ̃ ) −eiτ− sin α sin θ̃

e−iτ− sin α sin θ̃ −e−iτ+ (cos α − i sin α cos θ̃ )

)
.

For both gates, X π
2

and Yπ
2
, the transition probability after one

period is P01 = |〈1|U |0〉|2 = 1/2, which corresponds to the
implicit condition for ω and A given from the equation

sin 2θ̃ sin 2α = 1
2 . (17)

Thus, after imposing this condition in U (ti + T + t f ) one gets

U (ti + T + t f ) =
√

2

2

(−ei(τ++ν) −eiτ−

e−iτ− −e−i(τ++ν)

)
, (18)

where

tan ν = tan α cos θ̃ . (19)

Then, the X π
2

gate can be obtained for

τ− = (2n + 1/2)π

τ+ = (2k + 1)π − ν (20)

being k and n integers, while the Yπ
2

gate can be implemented
for

τ− = 2nπ

τ+ = (2k + 1)π − ν, (21)

after straightforward comparisons with Eqs. (15) and (13),
respectively.

To summarize, in order to determine the driving parameters
ω, A, ti, t f for the gate implementation, one can proceed as
follows. For a given driving frequency ω one obtains the
possible amplitudes A after solving Eq. (17). Notice that since
the relevant solutions of Eq. (17) are for ω > A, it is very
accurate to use for the ξ parameter the expression

ξ ≈ ω

ω + �
(22)

from a first-order approximation of Eq. (5). The resulting
points in A, ω space are shown in Fig. 4(a), where all the
possible values for implementation of X π

2
and Yπ

2
gates are

plotted. Notice that the inclusion of idle times, implemented
as rotations around the z axis, can steer any state represented
by a point along the equator of the Bloch sphere to a rotated
state represented by another point along the equator, leading
to a ring of possible points in parameter space, in contrast to
the case without the inclusion of idle times.

The points in Fig. 4(a) were obtained evaluating the above
equations with an accuracy of 10−3. In particular, we see in
the plot that for large A and ω the conditions for the gate can
be satisfied in a wider range of points for the same accuracy.
We find in Fig. 4(a) that the relevant conditions for the X π

2
and

Yπ
2

fall within � � ω � 3� and �/2 � A � 3�.
Once the chosen driving parameters A, ω are determined

from Eq. (17), the values of the idling times ti and t f needed to
implement a X π

2
or a Yπ

2
gate can be obtained from Eqs. (20)

or (21), respectively.
It has been argued in Ref. [10] that, since different physical

qubits could have different � parameters, it is useful to have
variable-time single-qubit identity operations, to be able to
perform operations in one qubit, avoiding having a second
qubit acquire a dynamical phase at the same time. Comparing
the CHRW expression of U (T ) given in Eq. (10) with the
identity matrix, we obtain that the identity operation can be
implemented for the A, ω that satisfy the simple condition

ω = �R/(2k + 1). (23)

The resulting values of A, ω are shown in Fig. 4(b), where we
observe that in this case it is possible to use arbitrary large
values of ω (and large A). On the other hand, for the X π

2
and
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Yπ
2

gates one can see in Fig. 4(a) that there is an upper limit in
the frequency range for their implementation.

IV. TWO-QUBIT GATE: THE
√

bSWAP GATE

Any universal quantum instruction set requires the imple-
mentation of at least one entangling two-qubit gate [1,3,46].
Here, we consider the parametrically driven two-qubit Hamil-
tonian:

H2q(t ) = −�1

2
σ̂z ⊗ I − �2

2
I ⊗ σ̂z − ε(t )

2
σ̂x ⊗ σ̂x, (24)

with driving in the coupling parameter ε(t ) = A sin(ωt ). Its
matrix representation, using the basis {|00〉, |01〉, |10〉, |11〉},
is

H2q(t )=−1

2

⎛⎜⎜⎝
�1+�2 0 0 ε(t )

0 �1−�2 ε(t ) 0
0 ε(t ) �2−�1 0

ε(t ) 0 0 −�1−�2

⎞⎟⎟⎠.

This two-qubit Hamiltonian with a σ̂x ⊗ σ̂x tunable coupling
has been implemented, for example, in coupled fluxonium
qubits [10,47,48].

In the following, we show that with a single-period si-
nusoidal drive, it is straightforward to get the

√
bSWAP

entangling gate [49–51]:

Uent =
√

bSWAP =

⎛⎜⎜⎜⎝
√

2
2 0 0 −

√
2

2
0 1 0 0
0 0 1 0√

2
2 0 0

√
2

2

⎞⎟⎟⎟⎠, (25)

which generates the entangled states (|00〉 ± |11〉)/
√

2 and
leaves invariant the subspace spanned by {|01〉, |10〉}. It is
easy to show that it is locally equivalent to the

√
iSWAP gate

[46,49].
The

√
bSWAP gate can be exactly implemented in the ideal

case when both qubits have equal gaps, �1 = �2 = �. To
demonstrate its realization, we calculate the error function E
of the exact evolution operator Unum,2q(T ), computed numer-
ically from H2q(t ), compared with the target gate Utg = Uent,
as a function of the parameters ω and A. In the plot of Fig. 5(a)
we find a point AbS, ωbS with a minimum E , near the numerical
accuracy, which shows that it is possible to implement the√

bSWAP gate with this protocol. To illustrate the dynamical
process that leads to the

√
bSWAP gate, we show in Fig. 5(b)

the time evolution of the population transfers during a driving
period at ωbS, AbS . Furthermore, in Fig. 5(c) we see that in a
nonideal case, when there is a small difference in the gaps
of the qubits, �2 = 1.05�1, the

√
bSWAP gate can be re-

produced at a slightly shifted operational point and with error
E ≈ 10−6.

We can proceed as in the previous section in order to
provide an analytical estimate of the parameters for the√

bSWAP. To use the CHRW approximation of Sec. II it is
convenient to transform H2q(t ) to H̃2q = SH2qS† with

S =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠,

FIG. 5. (a) Plot, as a function of the parameters A and ω, of
the error E that compares

√
bSWAP with the numerically exact

Unum,2q, computed from H2q Eq. (24). The color bar scale corresponds
to − log10 |E |. The point where E < 10−7 (practically zero within
numerical precision) gives the operational parameters of the gate, fre-
quency ωbS and amplitude AbS . It agrees with the analytical estimate
of ωbS ≈ 4.14�, AbS ≈ 5.74�. (b) Time evolution of the popula-
tion transfers during a driving period for ωbS, AbS . Continuous lines
correspond to the evolution of the populations of the |00〉 (black)
and the |11〉 states (blue), after the initial state |00〉. Dashed lines
correspond to the evolution of the populations of the |01〉 (green) and
the |10〉 states (red), after the initial state |01〉. (c) Same as (a) but for
two slightly different qubits with �2 = 1.05�1. See text for more
details.
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obtaining

H̃2q(t )=−1

2

⎛⎜⎜⎝
�1+�2 ε(t ) 0 0

ε(t ) −�1 − �2 0 0
0 0 �2−�1 ε(t )
0 0 ε(t ) �1−�2

⎞⎟⎟⎠,

which separates into two independent blocks,

H̃2q(t ) =
[
−�+

2
σ̂z − ε(t )

2
σ̂x

]
⊗

(
1 0
0 0

)
+

[
−�−

2
σ̂z − ε(t )

2
σ̂x

]
⊗

(
0 0
0 1

)
, (26)

with �+ = �1 + �2 and �− = �2 − �1. Thus, in this basis
we can express the evolution operator Ũ2q in terms of single-
qubit operators as

Ũ2q(t ) = U+(t ) ⊗
(

1 0
0 0

)
+ U−(t ) ⊗

(
0 0
0 1

)
, (27)

where U+ (U−) is equal to the single-qubit evolution operator
after replacing � with �+ (�−). It is now straightforward to
obtain the evolution operator in the CHRW approximation,
following the same steps as in the single-qubit case for U+ and
U−. After one period T , and transforming back to the original
basis, we obtain

U2q(T ) = −

⎛⎜⎜⎝
a+ 0 0 b+
0 a∗

− b− 0
0 −b− a− 0

−b+ 0 0 a∗
+

⎞⎟⎟⎠, (28)

with

a+ = cos α+ + i sin α+ cos θ̃+
b+ = sin α+ sin θ̃+
a− = cos α− + i sin α− cos θ̃−
b− = sin α− sin θ̃−,

where α+(−), θ̃+(−) are obtained as in Sec. II after replac-
ing � → �+(�−) in the generalized Rabi frequency �R →
�+R(�−R) and (..)∗ denotes the complex conjugate operation.

When �1=�2 = �, since �− = 0, we have

U2q(T ) =

⎛⎜⎜⎝
−a+ 0 0 −b+

0 1 0 0
0 0 1 0

b+ 0 0 −a∗
+

⎞⎟⎟⎠. (29)

Therefore, to obtain the
√

bSWAP gate, a comparison with
Eq. (25) gives b+ = −a+ =

√
2

2 with �+ = 2�, and the main
the conditions are

ω = 4

3
�+R, θ+ − ξ+

A

ω
= π

2
. (30)

The numerical solution of these equations gives ωbS =
4.14�, AbS = 5.74�, which coincide with the optimal point
of Fig. 5(a). (Note that they are the same as for the Yπ

2
gate

after the substitution � → 2�, and so similarly the general
conditions can be obtained.)

As in the single-qubit case, for the
√

bSWAP gate we
can extend the set of parameters to those A, ω which satisfy

P00→11 = 1/2. It is straightforward to show that this set is
obtained from the solution of

P00→11 = |〈11|U2q(T )|00〉|2
= sin 2θ̃+ sin 2α+ = 1

2 . (31)

To implement the
√

bSWAP gate for the parameters satis-
fying the above equation, one has to add an idle time ti before
the sinusoidal drive and a second idle time t f afterwards.
Calling τ+ = (t1 + t2)�, τ− = (t2 − t1)�, we have

U (ti + T + t f ) = ei τ2
2 (σ̂z⊗I+I⊗σ̂z )U (T )ei τ1

2 (σ̂z⊗I+I⊗σ̂z ) (32)

=

⎛⎜⎜⎝
−eiτ+a+ 0 0 −eiτ−b+

0 1 0 0
0 0 1 0

e−iτ−b+ 0 0 −e−iτ+a∗
+

⎞⎟⎟⎠. (33)

Defining ρeiν = cos α+ + i sin α+ cos θ̃+, where tan ν =
tan α+ cos θ̃+, we can write⎛⎜⎜⎜⎜⎝

−ρei(τ++ν) 0 0 ∓eiτ−
√

1 − ρ2

0 1 0 0

0 0 1 0

±e−iτ−
√

1 − ρ2 0 0 −ρe−i(τ++ν)

⎞⎟⎟⎟⎟⎠. (34)

For the case P00→11 = 1 − ρ2 = 1/2 this corresponds to⎛⎜⎜⎜⎜⎜⎝
√

2
2 ei(τ++ν) 0 0 ∓

√
2

2 eiτ−

0 1 0 0

0 0 1 0

±
√

2
2 e−iτ− 0 0

√
2

2 e−i(τ++ν)

⎞⎟⎟⎟⎟⎟⎠. (35)

Then, the
√

bSWAP gate can be obtained for τ− = 2kπ and
τ+ + ν = (2n + 1)π .

This gate is robust against a small difference in the param-
eters of the two qubits. For �2 − �1 = ε�, the invariance
under gate operation of the subspace spanned by {|01〉, |10〉}
cannot be attained exactly. Then, the error in the gate op-
eration can be estimated from evaluating the probability
P|10〉→|01〉, which should be zero for a perfect gate. For ε � 1
we estimate the error from Eq. (28) as Eε ∝ P|10〉→|01〉 = b2

− ≈
ε2π2( �

ω
)2J2

0 ( A
ω

) sin2( A
ω

). For the case (AbS, ωbS ) and ε = 0.01
the error is E0.01 ≈ 2 × 10−5 and it decreases as ∼ω−2 for
increasing ω.

V. RELAXATION AND DECOHERENCE UNDER
STRONG DRIVE

In the previous sections we have found more than one
choice for the operational parameters ω, A to implement
single-qubit and two-qubit gates with a LZSM protocol. In
this section we analyze the environmental influences on the
gate fidelity. It has been shown by Chow et al. [52] that the
limits on gate fidelity are imposed by qubit decoherence, and
that gate errors scale as �1tg, with �1 the relaxation rate and
tg the gate time length. For weak drives, the main dependence
of transition rates is given by the bath temperature and the
system-environment coupling strength. On the other hand, it
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is known that for strong driving the transition rates also de-
pend on the driving parameters [28,38,53–56]. Therefore, the
dependence of relaxation and decoherence rates on ω, A has
to be considered to optimize the fidelity in the implementation
of qubit gates under these protocols (at fixed temperature and
system-reservoir coupling strength). We will discuss here the
single-qubit case, but the analysis can be extended straight-
forwardly for the case of two qubits considering that the
dynamics of the Hamiltonian of Eq. (24) can be transformed to
the dynamics of two independent qubits as shown in Eqs. (26)
and (27).

The effect of the environment can be described by the
global Hamiltonian H(t ) = Hs(t ) + Hb + Hsb, where Hs(t ) =
Hs(t + T ) is the Hamiltonian of the driven qubits with time
period T = 2π/ω. The Hamiltonian Hb corresponds to a ther-
mal bath and Hsb = Ô ⊗ B̂ is the system-bath coupling term,
with B̂ representing the quantum noise due to the bath and Ô
is the observable of the system coupled to the noise.

The natural basis to compute relaxation and decoherence
rates in the case of strong time periodic drives is the Floquet
basis [36], since in this basis the density matrix in the steady
state becomes diagonal [38,53,54,57–62]. In the case of a
two-level system, like the Hamiltonian of Eq. (1), the wave
functions have the time dependence |�(t )〉 = cae−iεat |a(t )〉 +
cbe−iεbt |b(t )〉, where the Floquet states |a(t )〉, |b(t )〉 are pe-
riodic with time period T , and εa, εb are the associated
quasienergies [36,54,57,63]. In the CHRW approximation,
|a(t )〉 and |b(t )〉 can be obtained from the eigenstates of the
static Hamiltonian H ′′, Eq. (7), after performing on them
a time-dependent transformation back to the representation
of the original Hamiltonian Eq. (1). In the limit A → 0 the
Floquet states tend to the eigenstates of the undriven Hamil-
tonian: |a(t )〉 → |0〉, |b(t )〉 → |1〉, and similarly the Floquet
gap �F = |εb − εa| tends to the undriven gap, �F → � =
E1 − E0.

From the Floquet-Markov quantum master equation (see
Appendix A) the relaxation rate can be obtained as

�1 =
+∞∑

q=−∞
S(εb − εa + qω)

∣∣∣∣ 1

T

∫ T

0
〈a(t )|Ô|b(t )〉eiqωt dt

∣∣∣∣2

≈ S(�F )

∣∣∣∣ 1

T

∫ T

0
〈a(t )|Ô|b(t )〉dt

∣∣∣∣2

, (36)

where S(�) is the noise power spectrum. The second line
of Eq. (36) approximates �1 with the q = 0 term, which is
the dominant contribution in the sum of the first line. It is
also direct to show that in the undriven limit, A → 0, we can
recover the standard result �1 = S(�)|〈0|Ô|1〉|2.

We consider here that the main source of quantum noise
is through the same channel as the driving, and thus we take
for the noise coupling operator Ô = σ̂x. An approximate ex-
pression of �1 can be obtained calculating the matrix elements
〈a(t )|σ̂x|b(t )〉 in the CHRW approximation (see Appendix A),

�1 ≈ S(�F ) cos4 θ

2
, (37)

where �F = |�R − ω| in this case. We have calculated
the dependence of �1 with the frequency ω and the am-
plitude A considering noise with power spectrum S(�) =

FIG. 6. (a) Plot of the relaxation rate �1 as a function of A/�

for ω = 1.92�. The black continuous line corresponds to the nu-
merically exact value and the dashed line the CHRW approximation,
Eq. (37). (b) Plot of the dephasing rate �φ as a function of A/� for
ω = 1.92�. The black continuous line corresponds to the numeri-
cally exact value and the dashed line to the CHRW approximation.
Also, the decoherence rate �2 is plotted (blue continuous line, numer-
ically exact values only). In both (a) and (b), the arrows indicate the
values of A where the X π

2
, Yπ

2
gates can be implemented, as obtained

from Fig. 4(a); the rates �1, �φ, �2 are normalized by the noise
strength parameter γ and correspond to a thermal bath at temperature
Tb = 0.1�.

2γ� coth(�/2Tb). We obtain the values of �1 normalized by
the noise strength parameter γ . In order to see more clearly
the dependence with the driving parameters, we show the case
for a low temperature Tb = 0.1�. We find that the general
behavior for ω > � is that the relaxation rate decreases with
increasing A, as seen in Fig. 6(a) for frequency ω = 1.96�

in the range of interest [64]. Higher temperatures (Tb � �)
give a similar behavior but with a milder dependence with A.
The arrows in Fig. 6(a) indicate the values of A for which the
X π

2
, Yπ

2
gates could be implemented at this driving frequency,

as obtained from Fig. 4(a). Considering that �1 is smaller
for larger A, the value indicated by the second arrow in the
plot should be the preferred choice for a reduced effect of the
environment in the qubit dynamics. We also plot in Fig. 6(a)
the CHRW approximation of Eq. (37) and the numerically
exact evaluation of Eq. (36) (after calculating the Floquet
states and quasienergies and summing terms in q up to ±32),
showing that they are in good agreement.

To complete the analysis of the effect of the environment,
we have to calculate the decoherence rate �2 = �1/2 + �φ .
The dephasing rate �φ can be obtained from the Floquet-
Markov quantum master equation as

�φ =
∑
q�0

2S(qω)

∣∣∣∣ 1

T

∫ T

0
dt〈a(t )|Ô|a(t )〉eiqωt

∣∣∣∣2

. (38)
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In the case under consideration, with noise coupling operator
Ô = σ̂x, the q = 0 term is exactly zero. Moreover, in the
undriven limit A → 0 the dephasing rate completely vanishes,
�A→0

φ = 0, corresponding to the fact that the qubit of Eq. (1) is
in a “sweet spot” [23]. But, for finite driving, the q �= 0 terms
start to contribute to dephasing, with the dominant term being
the q = 1 term, leading to the expression

�φ ≈ 2S(ω)

∣∣∣∣ 1

T

∫ T

0
dt〈a(t )|σ̂x|a(t )〉eiωt

∣∣∣∣2

. (39)

In this case, the CHRW approximation gives

�φ ≈ 2S(ω)

[
sin θ (J0 + J2) + sin2 θ

2
(J1 + J3)

]2

, (40)

where we have denoted Jl ≡ Jl (ξA/ω). We plot in Fig. 6(b)
the dephasing rate �φ as a function of A for ω = 1.96�.
As stated, we find that �φ = 0 for A = 0, and then that �φ

increases for increasing A. Therefore, dephasing is increased
by the driving, which is in the opposite direction as the effect
of driving on the relaxation rate, analyzed in the previous
paragraph. However, to determine the optimal parameters for
the gate, one has to analyze the decoherence rate �2 that com-
bines dephasing and relaxation. As can be seen in Fig. 6(b),
the decoherence rate changes mildly as a function of the
driving strength A, being nearly the same for the two cases
indicated by the arrows. Therefore, considering the previously
discussed driving effect on relaxation, the larger A is still the
better choice for the implementation of the gates. We also
compare in Fig. 6(b) the approximated and the numerically
exact �φ , which are in good agreement.

When considering lower ω the behavior of �1 and �2

is more complex. In Figs. 7(a) and 7(b) we show intensity
plots of �1 and �2, respectively, as a function of A and ω,
plotting the numerically exact values in the full range of ω (the
approximated values discussed above are accurate only for
ω > �). We also plot in Fig. 7 (with black dots) the values of
A, ω corresponding to the conditions for the implementation
of the X π

2
, Yπ

2
gates. The relaxation rate �1 decreases for

increasing A for any of the frequencies in the range of interest
(ω � �), thus large A would always be more convenient for
gate implementations in order to minimize relaxation. In the
plot of Fig. 7(a) this corresponds to the gate parameters that
fall within the blue region (which indicates lowest values of
�1 in the color scale of the plot).

On the other hand, the decoherence rate �2 is large in
the regions near resonance ω ∼ � and for A � 2�, within
the red region in Fig. 7(b). This behavior is almost in-
dependent of temperature, i.e., higher temperatures (Tb �
�) give similar plots except for a larger overall value of
�2, because the relevant dependence is on the matrix el-
ement | 1

T

∫ T
0 dt〈a(t )|σ̂x|a(t )〉eiωt |2. Therefore, off-resonant

large-frequency driving is always more convenient for the
gates analyzed here, since for ω � � the decoherence rate
is low and nearly insensitive to variations in the driving am-
plitude A.

The combined analysis of the competing conditions for
minimal relaxation and minimal decoherence leads to the
conclusion that the best parameters for the implementation of

FIG. 7. Intensity plot of (a) the relaxation rate �1 and (b) the
decoherence rate �2, as a function of A/� and ω/�. The black dots
indicate the parameter sets ω and A for the implementation of X π

2
and

Yπ
2

gates, as in Fig. 4(a). The white circle shows the optimal parame-
ter region to minimize environmental effects. All rates correspond to
a bath at temperature Tb = 0.1�. The color bar scale corresponds to
the rates �1, �2 normalized by the noise strength parameter γ .

the X π
2
, Yπ

2
gates are within the region in A, ω highlighted with

a circle in Fig. 7.

VI. SUMMARY AND CONCLUSIONS

We have analyzed LZSM strong driving protocols for the
implementation of quantum gates which are well suited for
small gap qubits. We provide accurate analytical equations to
obtain the driving parameters (amplitude, frequency, initial
and final idling times) for single-qubit gates and for the√

bSWAP two-qubit gate. Our approach avoids the need to
scan experimentally a wide range of parameters and instead it
allows to focus on fine-tuning the device near the analytically
predicted parameters.

We have found that the X π
2

and Yπ
2

gates can be efficiently
implemented with a single strong one-period sinusoidal drive,
with parameters in the range � � ω � 3� and �/2 � A �
3�. We note that the X π

2
and Yπ

2
gates could also be im-

plemented using a half-period sinusoidal drive, which would
allow for operation at even larger amplitudes and frequencies
[it is easy in the CHRW calculation to obtain the U (T/2) oper-
ator and the corresponding conditions for the gates]. However,
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a one-period sinusoidal drive is preferred since it has zero time
integral and thus the dc components associated with pulse
transients cancel out [23].

The high amplitude and high frequency of the sinusoidal
pulses make it necessary to take into account the dependence
of relaxation and decoherence with the driving parameters.
We have shown that relaxation decreases with increasing
amplitude. Therefore, large A should be preferred. However,
leakage to higher energy levels could induce gate errors for
large drives. This effect depends on the specific multilevel
structure of the quantum device. A rule-of-thumb argument is
that the amplitude A should be smaller than E2 − E1, with E2

the energy of the third level (and E0, E1 the qubit two-level en-
ergies), to avoid leakage effects. In the optimal region signaled
in Fig. 7 we find A ∼ 3� for minimal relaxation, then re-
quiring E2 − E1 � 3(E1 − E0). Most superconducting qubit
devices fulfill this condition. Decoherence is much smaller
in the off-resonant case, for frequencies ω > �. Considering
that the gate time is given by the driving period, tg ∼ T ,
the gate error [52] due to relaxation can be estimated as
proportional to �1T = 2π�1/ω, and similarly the error due
to decoherence as proportional to 2π�2/ω. Therefore, high
frequencies, which imply faster gates, are always preferred to
reduce the detrimental effects of the environment.

Here, we propose the
√

bSWAP gate as the simplest two-
qubit gate that can be implemented with a strong driving
LZSM protocol. Previous implementations of the

√
bSWAP

gate used protocols based on two-photon transitions [49–51].
The protocol based on LZSM transitions proposed here only
requires a single one-period sinusoidal pulse, and thus it
can be easier to realize, and possibly faster, than the “two-
photon” protocols. Therefore, we consider it to be worthwhile
to implement in the future this two-qubit gate in small-gap
superconducting qubits.
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APPENDIX A: FLOQUET STATES AND QUANTUM
MASTER EQUATION

1. Floquet states

Consider the two-level Hamiltonian:

H (t ) = −�

2
σ̂z − ε(t )

2
σ̂x, (A1)

with ε(t ) = A sin(ωt ).
According to the Floquet theorem for time-periodic Hamil-

tonians, the solutions of the Schrödinger equation are of
the form |�α (t )〉 = eiεαt/h̄|uα (t )〉, where the Floquet states
|uα (t )〉 satisfy |uα (t )〉=|uα (t + T )〉 and are eigenstates of
[Hs(t ) − ih̄∂/∂t]|uα (t )〉 = εα|uα (t )〉, with εα the associated
quasienergy [36,54,57]. The evolution operator can be written
in matrix form as

U (t ) = P(t )e−iHF t P†(0),

where P(t + T ) = P(t ) is the matrix that contains the compo-
nents of the Floquet states (in a given basis). In the CHRW

approximation we obtain for the matrix of Floquet states

P(t ) = U †
x (t )R†(t )W †ei ωt

2 σ̂z ,

where we have taken for HF the form

HF = −�R − ω

2
σ̂z,

which gives the correct ω → ∞ limit.
From the columns of the P(t ) matrix we obtain the Floquet

states

|uα (t )〉 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|a〉 =

(
cos θ

2 cos φ

2 − e−iωt sin θ
2 sin φ

2

i cos θ
2 sin φ

2 + ieiωt sin θ
2 cos φ

2

)

|b〉 =
(

i cos θ
2 sin φ

2 + ie−iωt sin θ
2 cos φ

2

cos θ
2 cos φ

2 − eiωt sin θ
2 sin φ

2

) ,

where θ = arctan Ã/̃δ and φ(t ) = −ξ A
ω

cos(ωt ) were already
defined in Sec. II. The corresponding quasienergies are

εa/b = ∓�R − ω

2
,

and the so-called Floquet gap is �F = |εb − εa| = |�R − ω|.

2. Floquet-Markov master equation and transition rates

The open system dynamics can be described by the
global Hamiltonian H(t ) = Hs(t ) + Hb + Hsb, where Hs(t ) =
Hs(t + T ) is the Hamiltonian of the qubits driven by periodic
external fields with time period T = 2π/ω. The Hamiltonian
Hb corresponds to a bosonic thermal bath at temperature Tb

and spectral density J (�). The bath is linearly coupled to the
qubit system in the form Hsb = Ô ⊗ B̂, with B̂ an observable
of the bath and Ô an observable of the system. After perform-
ing the Born and Markov approximations, a quantum master
equation can be obtained [38,53,54,57–62]. In most situations
(away from resonances) an additional secular approximation
can be realized [38,53,54,57–62,65], leading to the quantum
master equation

ρ̇ = −i[Hs(t ), ρ] +
∑
αβ

�αβ

(
LαβρL†

αβ − 1

2
{L†

αβLαβ, ρ}
)

,

(A2)
where Lαβ = |uα (t )〉〈uβ (t )| are the corresponding jump oper-
ators, and the transition rates �αβ can be written as

�αβ =
+∞∑

q=−∞
g(εαβ,q)|Oαβ (q)|2, (A3)

where the q-Fourier components of the transition matrix ele-
ments are

Oαβ (q) = 1

T

∫ T

0
dt〈uα (t )|Ô|uβ (t )〉eiqωt ,

and g(x) is the spectral bath correlation function,
g(x) = J (x)nth(x), with J (x) the spectral density,
nth(x) = [exp (x/kBT ) − 1]−1, and εαβ,q = εα − εβ + qh̄ω.

In the case of a two-level system like the Hamiltonian of
Eq. (A1), the relaxation rate can be obtained from Eq. (A3) as

�1 =
+∞∑

q=−∞
g(εab,q)|Oab(q)|2 + g(εba,q)|Oba(q)|2.
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Using that Oab(q) = [Oba(−q)]∗, we can write

�1 =
+∞∑

q=−∞
S(εab,q)|Oab(q)|2,

where S(�) is the noise power spectrum, S(�) = g(�) +
g(−�). The decoherence rate is �2 = �1

2 + �φ with the de-
phasing rate,

�φ =
+∞∑

q=−∞
g(qω)|Oaa(q) − Obb(q)|2.

Without loss of generality we can choose Tr(Ô) = 0, and then
Oaa(q) = −Obb(q), giving

�φ =
∑
q�0

2S(qω)|Oaa(q)|2.

For Ô = σ̂x the matrix elements are 〈uα (t )|Ô|uβ (t )〉 =
〈uα (t )|σ̂x|β(t )〉 ≡ Xαβ (t ). In the CHRW approximation we
obtain the expressions

Xab(t ) = cos 2 θ

2
+ sin 2 θ

2
cos 2ωt

− i(sin ωt sin θ sin φ + sin 2ωt cos φ)

Xaa(t ) = − sin ωt sin θ cos φ + sin 2ωt sin 2 θ

2
sin φ.

To evaluate the rates, the q Fourier components Xαβ (q)
have to be calculated. After using the expansions for sin φ(t )
and cos φ(t ),

sin φ(t ) =
+∞∑

l=−∞
(−1)l+1J2l+1ei(2l+1)ωt

cos φ(t ) =
+∞∑

l=−∞
(−1)l J2l e

i2lωt ,

with Jl ≡ Jl (ξA/ω), we have

Xab(2l + 1) = 0

Xab(2l ) = (−1)l+1

2
[sin θ (J2l+1 + J2l−1)

− J2l−2 + J2l+2]

+ δl,0 cos 2 θ

2
+

(
δl,1 + δl,−1

2

)
sin 2 θ

2

Xaa(2l + 1) = i2l+1

2

[
sin θ (J2l + J2l+2)

− sin 2 θ

2
(J2l−1 − J2l+3)

]
Xaa(2l ) = 0.

In the lowest approximation the relaxation rate is dominated
by the q = 0 term, giving

�1 ≈ 2S(�F )|Xab(0)|2 = 2S(�F ) cos4 θ

2
,

where the noise spectrum is evaluated at the Floquet gap
�F = |�R − ω|. On the other hand, for the dephasing rate,

the q = 0 term is zero, and we have to take the next term as
an approximation,

�φ ≈ 2S(ω)|Xaa(1)|2

= S(ω)

[
(J0 + J2) sin θ + (J1 + J3) sin2 θ

2

]2

.

APPENDIX B: OTHER APPROXIMATION METHODS
TO THE DYNAMICS

The dynamics of a driven two-level system has been stud-
ied extensively over the last years. Different approximation
methods have been attempted to solve the time evolution of
a strongly driven qubit, given by the Hamiltonian Eq. (1)
for ε(t ) = A sin(ωt ). In the following we review some and
compare them with the CHRW approximation.

1. Double rotating frame rotating wave approximation

The dynamics can also be approximated following the ap-
proach of Refs. [43,44], where an improved (second-order)
rotating wave approximation is performed to calculate the
Floquet states and quasienergies, after a basis transformation
to a rotating frame with a time-dependent rotation frequency
and a truncation of the transformed Floquet Hamiltonian to a
2 × 2 matrix.

Here, we obtain the same result following a different
(but equivalent) procedure, where we perform two rotation
transformations of the Hamiltonian Eq. (1) and a RWA ap-
proximation at the end. We start with the x rotation |ψ ′(t )〉 =
Ux|ψ (t )〉, with Ux = e−i φ

2 σ̂x , and φ(t ) = − A
ω

cos(ωt ). After
the rotation, the transformed Hamiltonian is H ′ = UxHU †

x +
i(∂tUx )U †

x , and thus

H ′ = −�

2
(cos φσ̂z − sin φσ̂y). (B1)

Using the expansion of eiφ(t ) in terms of Bessel functions,
we approximate in Eq. (B1) (neglecting the high-frequency
terms)

cos φ ≈ J0

(
A

ω

)
sin φ ≈ −2J1

(
A

ω

)
cos(ωt ), (B2)

and therefore

H ′ = −�

2

[
J0

(
A

ω

)
σ̂z + 2J1

(
A

ω

)
cos(ωt )σ̂y

]
.

The second rotation is a z rotation with the unitary operator
Uz = e−i ωt

2 σ̂z , for which we obtain

H ′′ = − δ̃

2
σ̂z + ν̃

2
[(1 + cos 2ωt )σ̂y − sin 2ωt σ̂x], (B3)

being δ̃ = �J0(a) − ω, ν̃ = �J1( A
ω

), and a = A/ω. Neglect-
ing the fast oscillating terms with frequency 2ω (RWA
approximation),

H ′′ ≈ − δ̃

2
σ̂z + ν̃

2
σ̂y. (B4)
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Equation (B4) can be easily diagonalized with the transforma-
tion W = e−i θ

2 σ̂x , being tan θ = ν̃/̃δ, obtaining

Hd = W H ′′W † = −�R

2
σ̂z, (B5)

with

�R =
√̃

δ2 + ν̃2 =
√[

�J0

(
A

ω

)
− ω

]2

+ �2J1
2

(
A

ω

)
the generalized Rabi frequency.

Taking into account the previous transformations, the evo-
lution operator associated with Eq. (1) results in

U DR(t ) = U †
x (t )U †

z (t )W †ei �Rt
2 σ̂zWUz(0)Ux(0), (B6)

which after one period of the driving, T = 2π/ω, is

U DR(T ) = −ei θ−a
2 σ̂x ei π�R

ω
σ̂z e−i θ−a

2 σ̂x

= −
(

cos α + i sin α cos θ̃ sin α sin θ̃

− sin α sin θ̃ cos α − i sin α cos θ̃

)
,

(B7)

with α = π�R
ω

and θ̃ = θ − A
ω

.
We can now calculate in this approximation the transition

probability between the qubit states |0〉 → |1〉 after a time t =
T as

PDR
01 = |〈1|U (T )|0〉|2 = sin 2θ̃ sin 2α, (B8)

which is very similar in form to the probability obtained in the
CHRW approximation. (Note that here the frequency �R and
the angles α, θ , etc. have different expressions).

2. Magnus expansion approximation

In Ref. [10] the dynamics is approximated with a Magnus
expansion [66,67]. Considering a Hamiltonian H (t ), the Mag-
nus expansion for the evolution operator U (t f , ti ) from time
t = ti to time t = t f , with �t = t f − ti, is

U
(
t f , ti

) = exp{−iH̄�t}, (B9)

with

H̄ = H̄ (1) + H̄ (2) + H̄ (3) + H̄ (4) + · · · , (B10)

where the first terms H̄ (n) of the expansion are

H̄ (1) = 1

�t

∫ t f

ti

dtH (t ),

H̄ (2) = 1

2i�t

∫ t f

ti

dt
∫ t

ti

dt ′[H (t ), H (t ′)]. (B11)

Since for fast gates we are interested in the evolution
after one period of the drive T = 2π/ω, the Magnus ex-
pansion can be used to estimate U (T ) for the Hamiltonian
H given in Eq. (1). Following the approach of Ref. [10],
we start by applying the transformations |ψ ′(t )〉 = U0|ψ (t )〉,
H ′ = U0HU †

0 + i(∂tU0)U †
0 , with U0 = e−i χ

2 σ̂x , and χ (t ) =
− A

ω
[cos(ωt ) − 1]. This gives

H ′ = −�

2
(cos χσ̂z − sin χσ̂y). (B12)

FIG. 8. Plot of the transition probability P01 as a function of ω/�

for A = 1.16� comparing different approximation methods. Black
squares: numerically exact values. Red circles: CHRW, as given by
Eq. (11). Blue triangles: double rotating frame rotating wave approx-
imation (DR), as given by Eq. (B8). Green stars: Magnus expansion
approximation (ME), first order, as given by Eq. (B13).

For the evolution after one period T = 2π/ω we consider the
lowest order in the Magnus expansion:

U ′(T ) ≈ e−i 1
T

∫ T
0 dtH ′(t ).

The Magnus expansion converges for ‖H (t )‖�t � 1, which
in this case corresponds to the high-frequency limit � � ω.
Thus, one obtains [10]

U ′(T ) ≈ −
(

cos α + i sin α cos θ sin α sin θ

− sin α sin θ cos α − i sin α cos θ

)
,

with α = π�
(0)
R /ω, θ = A/ω, and �

(0)
R = �J0( A

ω
). Since

U0(0) = U0(T ) = I , the evolution operator is U (T ) =
U0(T )U (T )U †

0 (0) = U ′(T ). Therefore, the transition proba-
bility P01 in this first-order Magnus expansion approximation
is

PME
01 = |〈1|U (T )|0〉|2 = sin 2θ sin 2α

= sin2

(
A

ω

)
sin 2 π�J0

(
A
ω

)
ω

. (B13)

3. Comparison of the different approximations

We now compare the different approximations for the cal-
culation of the transition probability P01. In Fig. 8 we show
P01 as a function of the frequency ω for A = 1.16�. We plot
the numerically exact values obtained with a highly accurate
fourth-order Trotter-Suzuki algorithm [41]. We find that the
first-order ME approximation of Eq. (B13) only agrees with
the exact results for ω � 3�. On the other hand, the DR
approximation of Eq. (B8) agrees reasonably well with the
exact dependence with frequency, with errors ∝ 10−2 in the
frequencies of interest and improving accuracy for large fre-
quencies.

The CHRW approximation is very accurate for ω � �, and
it is almost indistinguishable from the exact results in the scale
of the plot. From Fig. 2 one can see that for this amplitude and
ω � � the error is E < 10−5.
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