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Average-value estimation in nonadiabatic holonomic quantum computation
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Nonadiabatic holonomic quantum computation has been attracting continuous attention since it was proposed.
Until now, various schemes of nonadiabatic holonomic quantum computation have been developed and many
of them have been experimentally demonstrated. It is known that at the end of a computation, one usually
needs to estimate the average value of an observable. However, computation errors severely disturb the final
state of a computation, causing erroneous average value estimation. Thus, for nonadiabatic holonomic quantum
computation, an important topic is to investigate how to better give the average value of an observable under
the condition of computation errors. While the above topic is important, the previous works in the field of
nonadiabatic holonomic quantum computation pay woefully inadequate attention to it. In this paper, we show that
rescaling the measurement results can better give the average value of an observable in nonadiabatic holonomic
quantum computation when computation errors are considered. Particularly, we show that by rescaling the
measurement results, 56.25% of the computation errors can be reduced when using the depolarizing noise model,
a widely adopted noise model in quantum computation community, to analyze the benefit of our method.
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I. INTRODUCTION

Unlike classical computation, quantum computation can
use quantum parallelism to process information encoded
in physical systems. For this reason, quantum computation
can solve many problems, such as factoring large integers
and searching unsorted databases, much faster than classical
computation [1]. However, while the advantages of quan-
tum computation are attractive, achieving them in practice
is difficult. The main reason is that compared to classical
systems, quantum systems are much more prone to be af-
fected by noise, so that quantum computation, which builds
on quantum systems, is difficult to be realized with high
fidelity. To overcome the noise problem and thereby realize
high-fidelity quantum computation, researchers pay contin-
uous attention to investigating robust quantum computation
and until now impressive progresses have been made in this
direction.

Geometric phases are important in both theory and
application. The first kinds of geometric phases discov-
ered by researchers were adiabatic and Abelian geometric
phases [2]. These kinds of geometric phases can be ac-
quired by evolving a quantum system in a nondegenerate
eigenstate adiabatically and cyclicly. Soon after, the notion
of adiabatic and Abelian geometric phases was gradually
generalized: a quantum system with degenerate eigenstates
undergoing adiabatic cyclic evolution can acquire adiabatic
and non-Abelian geometric phases or adiabatic quantum
holonomies [3]; a quantum system with nondegenerate
eigenstates undergoing nonadiabatic cyclic evolution can ac-
quire nonadiabatic and Abelian geometric phases [4]; and
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a quantum system with degenerate eigenstates undergo-
ing nonadiabatic cyclic evolution can acquire nonadiabatic
and non-Abelian geometric phases or nonadiabatic quantum
holonomies [5]. Besides the above seminal works, there are
also other remarkable works enriching the field of geometric
phases [6,7].

Since geometric phases are only dependent on the path
in which the quantum system evolves but independent of its
evolutional details, quantum computations based on geomet-
ric phases are robust against certain control errors. As one
important geometric quantum computation paradigm, nonadi-
abatic holonomic quantum computation [8,9] builds its gates
on nonadiabatic and non-Abelian geometric phases [5]. More-
over, nonadiabatic holonomic quantum computation does not
have the constraint of adiabatic evolution condition [10–12]
and thereby has the feature of being implemented with high
speed. Because of the above features, nonadiabatic holonomic
quantum computation has been attracting continuous atten-
tion since it was proposed. Until now, a number of relevant
schemes have been put forward [13–45], and some schemes
have been experimentally demonstrated in circuit quantum
electrodynamics [28–32], nuclear magnetic resonance sys-
tems [33–35], nitrogen-vacancy centers [36–39], and trapped
ions [40].

When using quantum computation to implement a compu-
tational task, an important step is to estimate the average value
of an observable at the end. However, computation errors
can disturb the final state of the computation, thereby affect-
ing the estimation of the average value. When implementing
a computational task, many nonadiabatic holonomic gates
are needed. While these nonadiabatic holonomic gates have
robustness, they cannot be perfect in practice. And these im-
perfections can accumulate, resulting in severe computation
errors. Thus, for nonadiabatic holonomic quantum computa-
tion, it is of significance to investigate how to better give the
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FIG. 1. The structure of each of the n three-level systems. The
three states are denoted by |0〉, |1〉, and |2〉, and they form a �

structure.

average value of an observable when the above computation
errors are taken into account.

In this paper, we show that when computation errors in
nonadiabatic holonomic quantum computation are consid-
ered, rescaling the measurement results is a better way to give
the average value of an observable than the conventional way.
Our proposal is based on the fact that while the ideal final
state of nonadiabatic holonomic quantum computation resides
in the logical space, the support of the noisy final state can
occupy the whole Hilbert space. We also use the depolarizing
noise model, which is a widely adopted noise model in the
quantum computation community, to conduct the analysis and
find that 56.25% of the computation errors can be reduced
when using the rescaling method to give the average value.

II. THE FRAMEWORK

We now start to illustrate our framework. Before proceed-
ing further, we first briefly review how to realize a nonadia-
batic holonomic gate. We consider an N-dimensional quantum
system governed by Hamiltonian H (t ), of which the evo-
lution operator is denoted as U (t ) = T exp[−i

∫ t
0 H (t ′)dt ′],

with T being time ordering. We use {|φμ(t )〉}N
μ=1 to

represent N orthonormal solutions of the Schrödinger
equation i∂|φμ(t )〉/∂t = H (t )|φμ(t )〉. Assume there is an
L-dimensional subspace S(t ) = Span{|φμ(t )〉}L

μ=1 evolving
cyclicly with the period τ , i.e., S(τ ) = S(0), and satisfying
the parallel transport condition, i.e., 〈φμ(t )|H (t )|φν (t )〉 = 0,
μ, ν = 1, 2, . . . , L. The computational basis can then be en-
coded into S(0) and the final evolution operator U (τ ) acting
on S(0) is a nonadiabatic holonomic gate.

From the above review, one can readily see that to realize
a nonadiabatic holonomic gate, the logical space needs to be
smaller than the whole Hilbert space, i.e., the logical space is
just a subspace of the whole Hilbert space. Thus, instead of
using two-level systems, one usually uses three-level systems
to build nonadiabatic holonomic quantum computation, and
for each three-level system, only two of its three internal states
are used as logical states [8].

Clearly, when using nonadiabatic holonomic quantum
computation to implement a specific computational task, one
needs more than one three-level system, and without loss of
generality, we assume the required number is n. As shown
in Fig. 1, for each of these n three-level systems, we denote
its three states by |0〉, |1〉, and |2〉, respectively. Between
these three states, the transitions |0〉 ↔ |2〉 and |1〉 ↔ |2〉 are
allowed, while the transition |0〉 ↔ |1〉 is forbidden. Of these

…

.

…

FIG. 2. The procedure of using nonadiabatic holonomic quantum
computation to implement a computational task. ρ is the initial state
of the computation, ρ f is the final state of the computation, G j are
the nonadiabatic holonomic gates used in the computation, and E =
Tr(ρ f Ô) is the average value we want to get.

three states, states |0〉 and |1〉 are used as logical states and
state |2〉 is used as an auxiliary state. When implementing
a computational task, these n three-level systems are first
prepared in an initial state ρ, i.e., the initial state of the
computation. Then, a family of nonadiabatic holonomic gates
G j are performed on ρ, generating the final state ρ f of the
computation. That is,

ρ f = Gm · · ·G3 · G2 · G1(ρ), (1)

where m is the number of the performed nonadiabatic holo-
nomic gates in the computation. At the end, a measurement
is performed on the final state ρ f , aiming to give the average
value of some observable. That is,

E = Tr(ρ f Ô), (2)

where Ô is the observable whose average value we want to es-
timate and E denotes the average value. The above procedure
can also be seen from Fig. 2.

However, while nonadiabatic holonomic quantum gates
have robustness, they cannot be perfect in practice i.e.,
they can be noisy [46,47]. Particularly, many nonadiabatic
holonomic quantum gates are needed for implementing a
computational task, and the imperfections of these gates can
be accumulated, seriously affecting the quality of the final
state ρ f . Specifically, in practice we can not get the ideal final
state ρ f , but instead we get a final state written as

ρ ′
f = G′

m · · ·G′
3 · G′

2 · G′
1(ρ), (3)

where G′
j represents the jth noisy nonadiabatic holonomic

gate and ρ ′
f represents the noisy final state of the computation.

In this case, if the conventional way is used to estimate the
average value of Ô, one will get

E ′ = Tr(ρ ′
f Ô), (4)

instead of the desired average value E = Tr(ρ f Ô).
Clearly, E ′ is not a good estimation of the desired average

value E = Tr(ρ f Ô). To improve the estimation, we analyze
the difference between the ideal final state ρ f and the noisy
final state ρ ′

f . Recall that for each of the n three-level systems,
states |0〉 and |1〉 are used to encode the logical informa-
tion, while state |2〉 is used as an auxiliary state. Thus, for
these n three-level systems, the whole Hilbert space is H =
{|0〉, |1〉, |2〉}⊗n, while the logical space is L = {|0〉, |1〉}⊗n.
As it is well known, if a nonadiabatic holonomic gate is
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perfect, it transforms states in the logical space to states in
the logical space. Thus, the support of the ideal final state ρ f

is a subspace of the logical space L . On the other hand, when
the performed nonadiabatic holonomic gates G j are noisy, we
do not expect the support of the noisy final state ρ ′

f to be
a subspace of the logical space L because the computation
errors can cause the logical information to leak from the
logical space. And the leakage problem can be induced by
either the inaccuracy of the system Hamiltonian [48,49] or
decoherence. Generally, the relation between ρ ′

f and ρ f can
be simply expressed as

ρ ′
f = (1 − Pε )ρ f + Pερε, (5)

where Pε is a probability describing the strength of the compu-
tation errors and ρε is a noisy state. Note that the support of ρ f

is a subspace of the logical space L , but the support of ρε can
be the whole Hilbert space H . Thus, if we detect the state
outside the logical space, we known errors have occurred.
This inspires us to use the quantum error detection principle
to reduce the errors [1]. Specifically, based on the difference
between ρ f and ρε , we consider the following projector:

P̂ = (|0〉〈0| + |1〉〈1|)⊗n. (6)

According to Eqs. (5) and (6), one can see that the weight of
the ideal final state ρ f within αP̂ρ ′

f P̂ is higher than that within
ρ ′

f , where α is a normalization factor. The reason for the above

is that under the action of the projector P̂, the ideal final state
ρ f is totally retained, i.e., P̂ρ f P̂ = ρ f , while the noisy state
ρε is only partly retained. The above discussion indicates that
it is better to extract the information of the average value of Ô
from αP̂ρ ′

f P̂ than from ρ ′
f .

To proceed further, we analyze the properties of the ob-
servable Ô. Because Ô is an observable, we can choose the
eigenvectors of Ô so that these eigenvectors constitute an or-
thonormal basis for the whole Hilbert space H . Without loss
of generality, we denote the eigenvectors of the observable
Ô by | j〉 and the eigenvalue corresponding to | j〉 by λ j . As
mentioned before, {| j〉} constitute an orthonormal basis for the
whole Hilbert space H . Since the support of Ô is a subspace
of the logical space L , we can always appropriately choose
{| j〉} so that they can be divided into two parts: some of the
eigenvectors are in the logical space L and the others are in
the subspace L⊥, where L⊥ is the subspace orthogonal to
the logical subspace. Then, extracting the information of the
average value of Ô from αP̂ρ ′

f P̂ is equivalent to the following
formula:

Er =
∑

j Pjλ j∑
j Pj

s.t. | j〉 ∈ L , (7)

where Pj = Tr(ρ ′
f | j〉〈 j|) and by s.t. | j〉 ∈ L , we mean the

summation
∑

j is only calculated for the eigenvectors belong-
ing to the logical space L . With the eigenvectors of Ô denoted
by | j〉 and eigenvalues denoted by λ j , we can also rewrite
E ′ = Tr(ρ ′

f Ô) in Eq. (4) as follows:

E ′ =
∑

j

Pjλ j . (8)

According to Eqs. (7) and (8), one can readily see the dif-
ference: one is the summation range and the other is that the
probabilities in Eq. (7) are rescaled by the factor

∑
j Pj while

the probabilities in Eq. (8) are not rescaled.
In the above, we have shown that extracting the informa-

tion of the average value of the observable Ô from αP̂ρ ′
f P̂ is

better than from ρ ′
f , that is, Eq. (7) is better to estimate the

desired average value of the observable Ô than Eq. (8). In the
following, we will analyze to what extent one can get benefit
from using the rescaling method, i.e., Eq. (7).

It is known that the depolarizing noise model is widely
used to describe computation errors in the quantum com-
putation community. Thus, we here adopt this noise model
to conduct our analysis. As shown in Fig. 2, a family of
nonadiabatic holonomic gates G j are used in the computation.
Usually, these nonadiabatic holonomic gates are one-qubit
and two-qubit gates. That is, only one-qubit and two-qubit
gates are used to process the information. Moreover, these
gates are not perfect but experience depolarizing noise [50].
Since the quality of the gates is high, it is reasonable to as-
sume only one gate in the computation is erroneous. Because
one-qubit gates are much more reliable than two-qubit gates,
the erroneous gate in the computation can be assumed to be a
two-qubit gate.

Without loss of generality, we assume the erroneous two-
qubit gate acts on the three-level systems a and b, that is,

G′
k = Nab · Gab, (9)

where k ∈ {1, 2, . . . , m}, Gab = Gk represents the ideal gate,
and Nab represents the errors. It is very important to note that
k is not a fixed number. Recall that we have assumed only one
gate in the computation is erroneous. But this does not mean
a fixed gate is erroneous every time we implement the com-
putation. Instated, this means that every time we implement
the computation, one of the performed gates is erroneous but
which one is erroneous is not fixed.
Nab has the possible values described by the generalized

Pauli operators

(X )a1 (Z )a2 ⊗ (X )b1 (Z )b2 . (10)

In the above, operators (X )a1 (Z )a2 and (X )b1 (Z )b2 respectively
act on three-level systems a and b, where a1, a2, b1, b2 ∈
{0, 1, 2}, X |s〉 = |s + 1 mod 3〉 and Z|s〉 = [exp(2π i/3)]s|s〉,
with |s〉 ∈ {|0〉, |1〉, |2〉}. According to Eq. (10), one can see
thatNab has 81 possible values in total: one error-free operator
and 80 error operators. The error-free operator is given by
a1 = a2 = b1 = b2 = 0 and it is in fact the identity operator
acting on three-level systems a and b. Because the depolar-
izing noise model is symmetric, these 80 error operators are
equally likely.

Usually, the initial state of a computation is chosen to be
a very easily prepared state. Thus, the fidelity of the initial
state is very high. So, we can think of the initial state of the
computation as a pure state residing in the logical space L =
{|0〉, |1〉}⊗n, and we denote this initial state by |�0〉. After the
action of the nonadiabatic holonomic gates, the final state of
the computation can be written as

Gafter · G′
k · Gbefore(ρ) = Gafter ·Nab · Gab · Gbefore(ρ), (11)
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where Gbefore = Gk−1 · · ·G2 · G1 and Gafter = Gm · · ·Gk+2 ·
Gk+1 respectively represent the gates performed before and
after G′

k , and ρ = |�0〉〈�0|.
We first consider the action of Gbefore and Gab on ρ. Since

the gates Gbefore and Gab are ideal, Gab · Gbefore(ρ) is a pure
state residing in the logical space. Without loss of generality,
this pure state can be written as

|�〉 =
∑

l1l2l3l4

αl1 |l1〉|0〉a|0〉b + βl2 |l2〉|0〉a|1〉b

+ γl3 |l3〉|1〉a|0〉b + δl4 |l4〉|1〉a|1〉b, (12)

where αl1 , βl2 , γl3 , δl4 are normalization coefficients, while |l1〉,
|l2〉, |l3〉, |l4〉 are the states of the n three-level systems except
for a and b, with l1, l2, l3, l4 being bit strings consisting of 0
and 1.

We next consider the action of Nab on Gab · Gbefore(ρ).
Recall thatNab has 81 possible values: one error-free operator
and 80 error operators. Before proceeding further, we divide
these 80 error operators into four subsets: S1, S2, S3, and S4.
Subset S1 contains the following 36 error operators:

(X )1(Z )a2 ⊗ (X )1(Z )b2 ,

(X )1(Z )a2 ⊗ (X )2(Z )b2 ,
(13)

(X )2(Z )a2 ⊗ (X )1(Z )b2 ,

(X )2(Z )a2 ⊗ (X )2(Z )b2 ,

where a2, b2 ∈ {0, 1, 2}. Subset S2 contains the following 18
error operators:

(X )1(Z )a2 ⊗ (X )0(Z )b2 , (X )2(Z )a2 ⊗ (X )0(Z )b2 . (14)

Subset S3 contains the following 18 error operators:

(X )0(Z )a2 ⊗ (X )1(Z )b2 , (X )0(Z )a2 ⊗ (X )2(Z )b2 . (15)

Subset S4 contains all the rest of the error operators not
contained in subsets S1–S3. That is, subset S4 contains the
following nine error operators:

(Z )a2 ⊗ (Z )b2 . (16)

Consider the case where one of the error operators in
subset S1 occurs, and without loss of generality, we as-
sume this error operator is (X )1(Z )a2 ⊗ (X )1(Z )b2 , that is,
Nab = (X )1(Z )a2 ⊗ (X )1(Z )b2 . Note that here a2 and b2

are fixed numbers. In this case, the action of Nab on
Gab · Gbefore(ρ), i.e., Nab · Gab · Gbefore(ρ), is equivalent to
(X )1(Z )a2 ⊗ (X )1(Z )b2 |�〉. By calculation, one can get that
(X )1(Z )a2 ⊗ (X )1(Z )b2 |�〉 reads

|�1a21b2〉 =
∑

l1l2l3l4

αl1 |l1〉|1〉a|1〉b + βl2 ei 2π
3 b2 |l2〉|1〉a|2〉b

+ γl3 ei 2π
3 a2 |l3〉|2〉a|1〉b

+ δl4 ei 2π
3 (a2+b2 )|l4〉|2〉a|2〉b. (17)

From the above equation, one can see that while the first
component

∑
l1l2l3l4

αl1 |l1〉|1〉a|1〉b resides in the logical space

L , the left three components
∑

l1l2l3l4
βl2 ei 2π

3 b2 |l2〉|1〉a|2〉b +
γl3 ei 2π

3 a2 |l3〉|2〉a|1〉b + δl4 ei 2π
3 (a2+b2 )|l4〉|2〉a|2〉b reside in the

subspace L⊥, i.e., the subspace orthogonal to L .

In the above, we have discussed the action of Gbefore, Gab,
and Nab on ρ, i.e., Nab · Gab · Gbefore(ρ), where Nab is as-
sumed to have the value of the error operator (X )1(Z )a2 ⊗
(X )1(Z )b2 . We then consider the action of Gafter, that is,
Gafter ·Nab · Gab · Gbefore(ρ). Specifically, after the action of
Gafter, the state |�1a21b2〉 turns into

|�1a21b2〉 f =
∑

l1l2l3l4

αl1Gafter|l1〉|1〉a|1〉b

+βl2 ei 2π
3 b2Gafter|l2〉|1〉a|2〉b

+ γl3 ei 2π
3 a2Gafter|l3〉|2〉a|1〉b

+ δl4 ei 2π
3 (a2+b2 )Gafter|l4〉|2〉a|2〉b. (18)

It is known that the gatesGafter are ideal:Gafter transform states
in the logical space L to state in the logical space L , and
transform states in the subspace L⊥ to states in the subspace
L⊥. Thus, after the action of Gafter, the first component still
resides in the logical space L , while the left three components
still reside in the subspace L⊥.

We now analyze to what extent one can get benefit from
using the rescaling method, i.e., Eq. (7), under the condi-
tion thatNab = (X )1(Z )a2 ⊗ (X )1(Z )b2 . In this case, using the
rescaling method is equivalent to ruling out the components of
|�1a21b2〉 f residing in the subspace L⊥. Note that it is the error
operator (X )1(Z )a2 ⊗ (X )1(Z )b2 that causes the appearance of
the components of |�1a21b2〉 f residing in the subspace L⊥.
Thus, ruling out the components of |�1a21b2〉 f residing in the
subspace L⊥ is equivalent to ruling out the error operator
(X )1(Z )a2 ⊗ (X )1(Z )b2 . By calculation, the probability of rul-
ing out the error operator (X )1(Z )a2 ⊗ (X )1(Z )b2 reads

P(1a21b2) = 〈�1a21b2 | f (I − P̂)|�1a21b2〉 f

= 〈�1a21b2 |(I − P̂)|�1a21b2〉
=

∑

l2l3l4

| βl2 |2 + | γl3 |2 + | δl4 |2, (19)

where I is the identity operator acting on the whole Hilbert
space H . Note that the above probability is a conditional
probability and the condition is that Nab is assumed to be
the error operator (X )1(Z )a2 ⊗ (X )1(Z )b2 . That is, under the
condition of the error operator (X )1(Z )a2 ⊗ (X )1(Z )b2 occur-
ring, with probability P(1a21b2) a measurement yields an
eigenstate | j〉 which does not belong to the logical subspace.

With a similar discussion, we can get the conditional
probabilities P(1a22b2), P(2a21b2), and P(2a22b2) that re-
spectively describe the possibilities of ruling out the error
operators (X )1(Z )a2 ⊗ (X )2(Z )b2 , (X )2(Z )a2 ⊗ (X )1(Z )b2 , and
(X )2(Z )a2 ⊗ (X )2(Z )b2 in subset S1. Specifically, these condi-
tional probabilities read

P(1a22b2) =
∑

l1l3l4

|αl1 |2 + |γl3 |2 + |δl4 |2,

P(2a21b2) =
∑

l1l2l4

|αl1 |2 + |βl2 |2 + |δl4 |2,

P(2a22b2) =
∑

l1l2l3

|αl1 |2 + |βl2 |2 + |γl3 |2. (20)
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With a similar discussion, we can also get the conditional
probabilities corresponding to the error operators in subsets
S2–S4. For example, consider the case where the error operator
(X )1(Z )a2 ⊗ (X )0(Z )b2 occurs, i.e.,Nab = E1a20b2 . Then, after
the action of the operator, the state |�〉 turns into

∣∣�1a20b2

〉 =
∑

l1l2l3l4

αl1 |l1〉|1〉a|0〉b + βl2 ei 2π
3 b2 |l2〉|1〉a|1〉b

+ γl3 ei 2π
3 a2 |l3〉|2〉a|0〉b

+ δl4 ei 2π
3 (a2+b2 )|l4〉|2〉a|1〉b. (21)

Then, after the action of Gafter, the above state turns into
∣∣�1a20b2

〉
f =

∑

l1l2l3l4

αl1Gafter|l1〉|1〉a|0〉b

+βl2 ei 2π
3 b2Gafter|l2〉|1〉a|1〉b

+ γl3 ei 2π
3 a2Gafter|l3〉|2〉a|0〉b

+ δl4 ei 2π
3 (a2+b2 )Gafter|l4〉|2〉a|1〉b. (22)

According to the above equation, we can get that the
conditional probability corresponding to the error operator
(X )1(Z )a2 ⊗ (X )0(Z )b2 reads

P(1a20b2) = 〈�1a20b2 | f (I − P̂)|�1a20b2〉 f

=
∑

l3l4

|γl3 |2 + |δl4 |2. (23)

To sum up, the other conditional probabilities can also be
obtained similarly and they can be written as

P(2a20b2) =
∑

l1l2

|αl1 |2 + |βl2 |2,

P(0a21b2) =
∑

l2l4

|βl2 |2 + |δl4 |2,

P(0a22b2) =
∑

l1l3

|αl1 |2 + |γl3 |2. (24)

The error operators in subset S4 do not cause the logical
information to leak from the logical space L = {|0〉, |1〉}⊗n

because these error operators are formed by using only the
generalized Pauli operator Z . So, the corresponding condi-
tional probabilities have the value of zero.

We have obtained the conditional probabilities correspond-
ing to each error operator. And we know that the depolarizing
noise model is symmetric and therefore these error operators
are equally likely. Using the above information, we can get
the probability ruling out the depolarizing noise and it reads

[N (S1) + N (S2) + N (S3)]/80 = 56.25%, (25)

where N (S1) =∑
a2b2

P(1a21b2) + P(1a22b2) + P(2a21b2)+
P(2a22b2) = 27 is the sum of the conditional probabilities

corresponding to the error operators in the subset S1, N (S2) =∑
a2b2

P(1a20b2) + P(2a20b2) = 9 is the sum of the condi-
tional probabilities corresponding to the error operators in
subset S2, and N (S3) = ∑

a2b2
P(0a21b2) + P(0a22b2) = 9 is

the sum of the conditional probabilities corresponding to the
error operators in subset S3. So, 56.25% of the computation
errors can be reduced when using the rescaling method to es-
timate the average value of the observable. While we assume
that the depolarizing noise model is symmetric in the above,
our method can also be applicable in the asymmetric case.
Note that the error operators are formed by the generalized
Pauli operators X and Z , and X is the reason for the logical
information to leak out the logical space. Thus, if X occurs
with high probability and Z occurs with low probability, the
efficiency of our method will be increased. But if X occurs
with low probability and Z occurs with high probability, the
efficiency of our method will be decreased.

III. CONCLUSION

In conclusion, we put forward a way to estimate the
average value of an observable in nonadiabatic quantum com-
putation. The specific procedure is to perform a measurement
with respect to the observable and then rescale the measure-
ment results so that one can get a better estimation of the
average value of the observable. Our way is based on the fact
that while the support of the ideal final state of nonadiabatic
holonomic quantum computation is a subspace of the logical
subspace, the support of the noisy final state can be the whole
Hilbert space. Thus, projecting the noisy final state onto the
logical space can increase the weight of the ideal final state,
making the estimation of the average value more accurate. We
use the depolarizing noise model, which is a widely adopted
noise model in quantum computation, to specifically ana-
lyze to what extent one can benefit from using the rescaling
method, and we find that 56.25% of the computation errors
can be reduced when assuming that one gate in the compu-
tation is erroneous. While our method is illustrated with �

system based nonadiabatic holonomic quantum computation,
its application may be generalized to other quantum compu-
tation paradigms. A quantum system used to build a qubit
usually has many levels, and two of these levels are chosen to
encode the logical information. If the logical information can
leak out to other levels when the quantum system experiences
inaccurate evolutions, the logical space cannot be seen as the
whole Hilbert space and our method is applicable.

ACKNOWLEDGMENT

The authors acknowledge support from the National
Natural Science Foundation of China through Grants No.
12174224 and No. 12305021.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2001).

[2] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[3] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[4] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

052617-5

https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.58.1593


GUO-FU XU AND P. Z. ZHAO PHYSICAL REVIEW A 108, 052617 (2023)

[5] J. Anandan, Phys. Lett. A 133, 171 (1988).
[6] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,

D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).
[7] D. M. Tong, E. Sjöqvist, L. C. Kwek, and C. H. Oh, Phys. Rev.

Lett. 93, 080405 (2004).
[8] E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M.

Johansson, and K. Singh, New J. Phys. 14, 103035 (2012).
[9] G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek,

Phys. Rev. Lett. 109, 170501 (2012).
[10] D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev.

Lett. 95, 110407 (2005).
[11] D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev.

Lett. 98, 150402 (2007).
[12] D. M. Tong, Phys. Rev. Lett. 104, 120401 (2010).
[13] J. Zhang, L. C. Kwek, E. Sjöqvist, D. M. Tong, and P. Zanardi,

Phys. Rev. A 89, 042302 (2014).
[14] Z. T. Liang, Y. X. Du, W. Huang, Z. Y. Xue, and H. Yan, Phys.

Rev. A 89, 062312 (2014).
[15] Z. Y. Xue, J. Zhou, and Z. D. Wang, Phys. Rev. A 92, 022320

(2015).
[16] C. F. Sun, G. C. Wang, C. F. Wu, H. D. Liu, X. L. Feng, J. L.

Chen, and K. Xue, Sci. Rep. 6, 20292 (2016).
[17] B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung,

Phys. Rev. Lett. 123, 100501 (2019).
[18] J. Zhang, T. H. Kyaw, D. M. Tong, E. Sjöqvist, and L. C. Kwek,

Sci. Rep. 5, 18414 (2015).
[19] G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Phys. Rev. A

92, 052302 (2015).
[20] E. Sjöqvist, Phys. Lett. A 380, 65 (2016).
[21] E. Herterich and E. Sjöqvist, Phys. Rev. A 94, 052310 (2016).
[22] Y. Wang, J. Zhang, C. Wu, J. Q. You, and G. Romero, Phys.

Rev. A 94, 012328 (2016).
[23] Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang,

Y. Hu, and J. Q. You, Phys. Rev. Appl. 7, 054022 (2017).
[24] Z. P. Hong, B. J. Liu, J. Q. Cai, X. D. Zhang, Y. Hu, Z. D. Wang,

and Z. Y. Xue, Phys. Rev. A 97, 022332 (2018).
[25] P. Z. Zhao, G. F. Xu, and D. M. Tong, Phys. Rev. A 99, 052309

(2019).
[26] N. Ramberg and E. Sjöqvist, Phys. Rev. Lett. 122, 140501

(2019).
[27] V. A. Mousolou, C. M. Canali, and E. Sjöqvist, New J. Phys.

16, 013029 (2014).
[28] A. A. Abdumalikov, J. M. Fink, K. Juliusson, M. Pechal, S.

Berger, A. Wallraff, and S. Filipp, Nature (London) 496, 482
(2013).

[29] S. Danilin, A. Vepsäläinen, and G. S. Paraoanu, Phys. Scr. 93,
055101 (2018).

[30] Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, Tao Chen, H. Wang, Y. P.
Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Phys. Rev. Lett. 121,
110501 (2018).

[31] T. X. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. S. Zhang, H.
Deng, Z. G. Yan, H. Rong, K. Q. Huang, M. H. Yung, Y. Z.
Chen, and D. P. Yu, Phys. Rev. Lett. 122, 080501 (2019).

[32] Z. X. Zhang, P. Z. Zhao, T. H. Wang, L. Xiang, Z. L. Jia, P.
Duan, D. M. Tong, Y. Yin, and G. P. Guo, New J. Phys. 21,
073024 (2019).

[33] G. R. Feng, G. F. Xu, and G. L. Long, Phys. Rev. Lett. 110,
190501 (2013).

[34] H. Li, Y. Liu, and G. L. Long, Sci. China Phys. Mech. Astron.
60, 080311 (2017).

[35] Z. N. Zhu, T. Chen, X. D. Yang, J. Bian, Z. Y. Xue, and X. H.
Peng, Phys. Rev. Appl. 12, 024024 (2019).

[36] S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G.
Balasubramanian, Nat. Commun. 5, 4870 (2014).

[37] C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang,
and L. M. Duan, Nature (London) 514, 72 (2014).

[38] Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka,
Nature Photon 11, 309 (2017).

[39] B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G.
Burkard, and D. D. Awschalom, Phys. Rev. Lett. 119, 140503
(2017).

[40] M. Z. Ai, S. Li, Z. B. Hou, R. He, Z. H. Qian, Z. Y. Xue, J. M.
Cui, Y. F. Huang, C. F. Li, and G. C. Guo, Phys. Rev. Appl. 14,
054062 (2020).

[41] G. F. Xu, P. Z. Zhao, E. Sjöqvist, and D. M. Tong, Phys. Rev. A
103, 052605 (2021).

[42] P. Z. Zhao, G. F. Xu, and D. M. Tong, Chin. Sci. Bull. 66, 1935
(2021).

[43] Y. Liang, P. Shen, T. Chen, and Z. Y. Xue, Phys. Rev. Appl. 17,
034015 (2022).

[44] P. Shen, Y. Liang, T. Chen, and Z. Y. Xue, Phys. Rev. A 108,
032601 (2023).

[45] J. Zhang, T. H. Kyaw, S. Filipp, L. C. Kwek, E. Sjöqvist, and
D. M. Tong, Phys. Rep. 1027, 1 (2023).

[46] P. Solinas, M. Sassetti, P. Truini, and N. Zanghì, New J. Phys.
14, 093006 (2012).

[47] M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B.
Hessmo, K. Singh, and D. M. Tong, Phys. Rev. A 86, 062322
(2012).

[48] J. Spiegelberg and E. Sjöqvist, Phys. Rev. A 88, 054301
(2013).

[49] G. O. Alves and E. Sjöqvist, Phys. Rev. A 106, 032406 (2022).
[50] S. Bhattacharyya and S. Bhattacharyya, Entropy 24, 1593

(2022).

052617-6

https://doi.org/10.1016/0375-9601(88)91010-9
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1103/PhysRevLett.93.080405
https://doi.org/10.1088/1367-2630/14/10/103035
https://doi.org/10.1103/PhysRevLett.109.170501
https://doi.org/10.1103/PhysRevLett.95.110407
https://doi.org/10.1103/PhysRevLett.98.150402
https://doi.org/10.1103/PhysRevLett.104.120401
https://doi.org/10.1103/PhysRevA.89.042302
https://doi.org/10.1103/PhysRevA.89.062312
https://doi.org/10.1103/PhysRevA.92.022320
https://doi.org/10.1038/srep20292
https://doi.org/10.1103/PhysRevLett.123.100501
https://doi.org/10.1038/srep18414
https://doi.org/10.1103/PhysRevA.92.052302
https://doi.org/10.1016/j.physleta.2015.10.006
https://doi.org/10.1103/PhysRevA.94.052310
https://doi.org/10.1103/PhysRevA.94.012328
https://doi.org/10.1103/PhysRevApplied.7.054022
https://doi.org/10.1103/PhysRevA.97.022332
https://doi.org/10.1103/PhysRevA.99.052309
https://doi.org/10.1103/PhysRevLett.122.140501
https://doi.org/10.1088/1367-2630/16/1/013029
https://doi.org/10.1038/nature12010
https://doi.org/10.1088/1402-4896/aab084
https://doi.org/10.1103/PhysRevLett.121.110501
https://doi.org/10.1103/PhysRevLett.122.080501
https://doi.org/10.1088/1367-2630/ab2e26
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1007/s11433-017-9058-7
https://doi.org/10.1103/PhysRevApplied.12.024024
https://doi.org/10.1038/ncomms5870
https://doi.org/10.1038/nature13729
https://doi.org/10.1038/nphoton.2017.40
https://doi.org/10.1103/PhysRevLett.119.140503
https://doi.org/10.1103/PhysRevApplied.14.054062
https://doi.org/10.1103/PhysRevA.103.052605
https://doi.org/10.1360/TB-2021-0036
https://doi.org/10.1103/PhysRevApplied.17.034015
https://doi.org/10.1103/PhysRevA.108.032601
https://doi.org/10.1016/j.physrep.2023.07.004
https://doi.org/10.1088/1367-2630/14/9/093006
https://doi.org/10.1103/PhysRevA.86.062322
https://doi.org/10.1103/PhysRevA.88.054301
https://doi.org/10.1103/PhysRevA.106.032406
https://doi.org/10.3390/e24111593

