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Entangled states shared among distant nodes are frequently used in quantum network applications. When
quantum resources are abundant, entangled states can be continuously distributed across the network, allowing
nodes to consume them whenever necessary. This continuous distribution of entanglement enables quantum
network applications to operate continuously while being regularly supplied with entangled states. Here, we
focus on the steady-state performance analysis of protocols for continuous distribution of entanglement. We
propose the virtual neighborhood size and the virtual node degree as performance metrics. We utilize the concept
of Pareto optimality to formulate a multiobjective optimization problem to maximize the performance. As an
example, we solve the problem for a quantum network with a tree topology. One of the main conclusions from
our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than
the fidelity requirements. The metrics that we establish in this paper can be utilized to assess the feasibility of
entanglement distribution protocols for large-scale quantum networks.
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I. INTRODUCTION

Quantum networks are expected to enable multiparty ap-
plications that are provably impossible by using only classical
information. These applications range from basic routines,
such as quantum teleportation [1,2], to more complex tasks,
such as quantum key distribution [3,4] and entanglement-
assisted distributed sensing [5,6]. Some of these applications
may operate in the background (e.g., a quantum key distribu-
tion subroutine that is continuously generating a secret key),
as opposed to sporadic applications that are executed after
the users actively trigger them. Most quantum network ap-
plications consume shared entanglement as a basic resource.
Entanglement distribution protocols are used to generate and
share multipartite entanglement among remote parties. There
are two main approaches to distribute entanglement among
the nodes [7,8].

(1) Protocols for on-demand distribution of entanglement
distribute entangled states only after some nodes request them.
The request may involve some quality-of-service require-
ments (e.g., a minimum quality of the entanglement). This
type of protocol typically involves solving a routing prob-
lem and scheduling a set of operations on a subset of nodes
[7,9–12].

(2) Protocols for continuous distribution of entangle-
ment (CD protocols) continuously distribute entangled states
among the nodes. These entangled states can be consumed
by the nodes whenever they need them. This allows back-
ground applications to continuously operate and consume
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entanglement in the background. In this paper, we focus on
CD protocols that provide entanglement to background appli-
cations.

On-demand distribution is generally more efficient, since
entanglement is only produced when it is needed. This makes
on-demand distribution more suitable for quantum networks
where the quantum resources are limited (e.g., networks with
a small number of qubits per node). As a consequence, previ-
ous work, both theoretical [7,9–12] and experimental [13–19],
has mostly focused on this type of protocol in quantum net-
works with a simple topology or with very limited number of
qubits per node.

On-demand distribution requires a scheduling policy that
tells the nodes when to perform each operation based on
specific demands. If the number of nodes involved in the
generation of entanglement is large, the scheduling policies
become more complex. In contrast, the continuous distribu-
tion of entanglement does not necessarily require an elaborate
application-dependent schedule. Therefore, CD protocols are
expected to allocate resources faster and prevent traffic con-
gestion in large quantum networks. Here, we focus on the
performance evaluation of CD protocols. Specifically, we con-
sider protocols that distribute bipartite entanglement among
remote nodes. We refer to shared bipartite entanglement as an
entangled link. We focus on entangled links because this is a
basic resource needed in many quantum network applications
[3,4,20,21], where nodes generally need many copies of a
bipartite entangled state with high enough quality. Even when
multipartite entanglement is required, it can be generated us-
ing entangled links [22–25].

We consider a quantum network with n nodes. Some pairs
of nodes are physical neighbors: they are connected by a
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FIG. 1. Illustration of a seven-node quantum network. The nodes
are represented as gray circles, and physical channels connecting
neighboring nodes are represented as gray lines. Entangled links are
represented as black lines connecting two occupied qubits (small
black circles). The physical topology is static, while the entangled
links are continuously created, discarded, and consumed.

physical channel, such as optical fibers [26,27] or free space
[13,28]. This is depicted in Fig. 1. To generate long-distance
entanglement, we assume the nodes can perform the follow-
ing basic operations: (i) heralded generation of entanglement
between physical neighbors [16,29], which successfully pro-
duces an entangled link with probability pgen and otherwise
raises a failure flag; (ii) entanglement swaps [30–32], which
consume one entangled link between nodes A and B and
another entangled link between nodes B and C to generate
a single link between A and C with probability ps; (iii) re-
moval of any entangled link that has existed for longer than
some cutoff time tcut to prevent the existence of low-quality
entanglement in the network [33–37]; and (iv) consumption of
entangled links in background applications at some constant
rate pcons. Note that the choice of cutoff time is determined by
the minimum fidelity required by the applications, Fapp. We
allow for multiple entangled links to be shared simultaneously
between the same pair of nodes (see Fig. 1).

Evaluating the performance of a CD protocol is a funda-
mentally different problem to evaluating the performance of
on-demand protocols, since each type of protocol serves a dif-
ferent purpose. In on-demand protocols, one generally wants
to maximize the rate of entanglement distribution among a
specific set of end nodes and the quality of the entanglement
(or some combined metric, such as the secret key rate [38]).
By contrast, the goal of a CD protocol is (i) to distribute en-
tanglement among the nodes such that it can be continuously
consumed in background applications and (ii) to ensure that
some entanglement is available for sporadic applications. To
quantify the performance of a CD protocol, we need metrics
that take these goals into account. A simple approach is to an-
alyze the configuration of entangled links that a CD protocol
can achieve. This configuration is time dependent due to the
dynamic nature of the entangled links. Most previous work
aimed at describing the connectivity of large-scale quantum
networks disregards the time dependence of the system. As
a consequence, previous results do not depend explicitly on
parameters that determine the evolution of the entanglement,
such as the coherence time. For example, in Refs. [39,40], the
authors study a graph in which the edges are entangled links
that exist at a specific instant. Some authors have described
the connectivity of a quantum network using percolation the-
ory [41–47], which also disregards the time evolution of the
entangled states, and often assumes specific topologies and
some form of preshared entanglement. Another line of related

work is the use of preshared entanglement for on-demand
applications [48,49].

In this paper, we consider quantum networks with arbi-
trary topologies where entanglement is continuously being
generated and consumed. We propose metrics to evaluate the
performance of CD protocols. These metrics take into account
the time dependence of the system and can be used to optimize
the protocol performance.

Our main contributions are the following.
(1) We define metrics to evaluate the performance of

CD protocols in heterogeneous quantum networks with an
arbitrary topology, namely, we define the virtual neighbor-
hood size and the virtual node degree. These metrics provide
information about the number of nodes that are able to contin-
uously run background applications and about the number of
existing backup entangled links to run sporadic applications.

(2) We provide analytical and numerical tools to compute
the performance metrics.

(3) We provide a mathematical framework to maximize the
virtual neighborhood size of every node in a heterogeneous
network, while providing some minimum quality-of-service
requirements (e.g., a minimum number of backup links). We
do this via the concept of Pareto optimality.

(4) We study the relation between the steady-state per-
formance of the entanglement distribution protocol and the
application requirements (minimum fidelity and link con-
sumption rate) in a quantum network with a tree topology.

Our main findings are the following.
(1) The expected virtual neighborhood size rapidly drops

to zero when the entanglement consumption rate increases
beyond the entanglement generation rate.

(2) In a quantum network with a tree topology and with
high entanglement generation rate, the consumption rate has
a stronger effect on the virtual neighborhood size than the
minimum fidelity required by the applications. In other words,
background applications that require a high consumption rate
affect the CD protocol performance more than applications
that require a high fidelity.

(3) The set of protocol parameters that maximize the vir-
tual neighborhood size is node dependent. Consequently, in
heterogeneous networks with an arbitrary topology we need
to solve a multiobjective optimization problem.

The structure of the paper is as follows. In Sec. II, we define
the network model (physical topology, quantum operations,
and quantum resources). In Sec. III, we provide an example
of a CD protocol. In Sec. IV, we formally define the virtual
neighborhood and the virtual node degree. We apply these
definitions to evaluate the performance of a CD protocol using
analytical and numerical methods. As an example, we analyze
a CD protocol in a quantum network with a tree topology.
In Sec. V, we discuss the implications and limitations of our
paper.

II. NETWORK MODEL

In this section we describe the physical topology of
the network and the quantum operations that the nodes
can perform. We also discuss the background applications
requirements and the management of quantum resources at
each node.
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FIG. 2. (2,3)-tree network. Each node is represented as a gray
circle and is connected to two other nodes in a lower level.

We consider a quantum network with n nodes (see Fig. 1).
Nodes can store quantum states in the form of qubits, and
they can manipulate them as we describe below. Additionally,
some nodes are connected by a physical channel over which
they can send quantum states. Qubits can be realized with
different technologies, such as nitrogen vacancy (NV) centers
[16–19,36], trapped ions [14,15], or neutral atoms [50], while
physical channels can be realized with optical fibers [26,27]
or free space [13,28].

A. Physical topology

Two nodes are physical neighbors if they share a physical
channel. The physical node degree di of node i is the number
of its physical neighbors. The set of nodes and physical chan-
nels constitutes the physical topology of the quantum network.
Early quantum networks are expected to have simple physical
topologies, such as a chain where each node is connected to
two other nodes [9,12,51] and a star topology where all nodes
are only connected to a central node [11,52]. More advanced
networks are expected to display a more complex physical
topology, such as a dumbbell structure with a backbone con-
necting two metropolitan areas.

The definitions and methods we develop in this paper are
general and apply to an arbitrary physical topology, which can
be described using an adjacency matrix A (element Ai j is 1 if
nodes i and j are physical neighbors and zero otherwise). To
illustrate how our methods can be valuable and effective, we
apply them to a quantum network with a tree topology as an
example. In a tree, any node can be reached from any other
node by following exactly one path. This topology is particu-
larly relevant as it has been shown that it requires a reduced
number of qubits per node to avoid traffic congestion [53].

Definition 1. A (d, k)-tree network is an undirected un-
weighted graph where nodes are distributed in k levels, with
dl nodes in level l ∈ 0, 1, . . . , k − 1. Each node in level l
is connected to d nodes in the (l + 1)th level, and is only
connected to one node in the (l − 1)th level.

The total number of nodes in a (d, k)-tree is n = (dk −
1)/(d − 1), and the network diameter is 2k. A (2,3)-tree net-
work is depicted in Fig. 2.

B. Entanglement distribution

The aim of a CD protocol is to distribute shared bipar-
tite entangled states, which we call entangled links. Ideally,
entangled links are maximally entangled states. However,
entanglement generation and storage are generally noisy pro-
cesses. Consequently, we assume that entangled links are

Werner states [54]: maximally entangled states that have been
subjected to a depolarizing process, which is a worst-case
noise model [55]. Werner states can be written as

ρ = 4F − 1

3
|φ+〉〈φ+| + 1 − F

3
I4, (1)

where |φ+〉 = (|00〉 + |11〉)/
√

2 is a maximally entangled
state, F is the fidelity of the Werner state to the state |φ+〉,
and Im is the m-dimensional identity. Here, the fidelity of a
mixed state ρ to a pure state |φ〉 is defined as

F (ρ, |φ〉) := 〈φ| ρ |φ〉 . (2)

We consider nodes that operate as first or second gen-
eration quantum repeaters [56]: physical neighbors generate
entangled links via heralded entanglement generation using
two-way signaling. This operation produces an entangled
link with probability pgen and otherwise raises a failure flag
[16,29]. The fidelity of newly generated links, Fnew, is gen-
erally a function of pgen. For example, in the single-photon
protocol [57], Fnew = 1 − λpgen, for some 0 � λ � 1 (as dis-
cussed in Ref. [58], the value of λ can be tuned by performing
a batch of entanglement attempts as a single entanglement
generation step [59]).

Long-distance entanglement between physically non-
neighboring nodes can be generated using entanglement
swapping [30–32], which consumes an entangled link be-
tween nodes A and B, with fidelity FAB, and another one
between B and C, with fidelity FBC , to produce a link be-
tween A and C, with fidelity FAC � FAB, FBC . This operation
succeeds with probability pswap (when it fails, both input
links are lost and nothing is produced). Note that entangle-
ment swapping also requires two-way classical signaling. See
Appendix A for further details on entanglement swapping.

C. Quantum applications

The main goal of a CD protocol is to provide a continuous
supply of entanglement for nodes to run applications without
the need for explicitly demanding entanglement. We assume
that each pair of nodes that share entanglement is continuously
running quantum applications in the background, consuming
entangled links at a rate pcons. For simplicity, we assume
0 � pcons � 1. Since we will assume time to be slotted (see
Sec. III), a consumption rate between zero and one can be
interpreted as the probability that, in each time slot, two nodes
that share some entangled links consume one link. We con-
sider entanglement purification [10,60,61] as an application
and therefore we omit it in our model (purification at the
physical link level can be included in our model by modifying
pgen and Fnew accordingly; see Appendix A for further details).

Background applications require entanglement of a high
enough quality. Specifically, we assume that they need entan-
gled links with fidelity larger than Fapp.

D. Mitigating decoherence

The operations involving entangled links and the storage
in memory have a negative impact on the quality of the links.
Each entanglement swap produces a link with a lower fidelity
than the input links [62]. To prevent the fidelity from dropping
too low, we must limit the maximum swap distance, defined
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as the maximum number of short-distance links that can be
combined into longer distance entanglement via swaps. We
denote this maximum number of links as M. Two nodes can
only share entanglement if they are at most M physical links
away.

Additionally, the fidelity of entangled links stored in mem-
ory decreases over time due to couplings to the environment
[55,63], making old links unusable for applications that re-
quire high fidelity states. A simple technique to alleviate the
effects of noisy storage consists in imposing a cutoff time tcut:
any link that has been stored for longer than the cutoff time
must be discarded [34].

To ensure that the fidelity of every entangled link is above
Fapp in a network where new links are generated with fidelity
Fnew, it is enough to choose the values of tcut and M such that
[12]

tcut � −T ln

[
3

4Fnew − 1

(
4Fapp − 1

3

) 1
M
]
, (3)

where T is a parameter that characterizes the exponential
decay in fidelity of the whole entangled state due to the qubits
being stored in noisy memories. In our analysis, we choose
the largest cutoff that satisfies (3). For further details on the
noise model, see Appendix A.

E. Limited quantum resources

Nodes have a limited number of qubits. These qubits can
be used for communication (short coherence times) or for
storage (long coherence times) [64,65]. Here, we assume
a simplified setup where every qubit can be used for en-
tanglement generation and for storage of an entangled link.
Intuitively, nodes with a larger number of physical neighbors
should have more resources available, to establish entangle-
ment with many neighbors simultaneously. We assume that
the maximum number of qubits that node i can store is dir,
where di is the physical node degree of node i and r ∈ N
is a hardware-dependent parameter that limits the maximum
number of qubits per node.

We make an additional simplifying assumption: each qubit
can only generate entanglement with a fixed neighboring
node. The physical motivation behind this assumption is the
lack of optical switches in the node. This assumption allows
us to uniquely identify each qubit using a three-tuple address
(i, j, m). The first index, i ∈ {0, . . . , n − 1}, corresponds to
the node holding the qubit. The second index, j ∈ {0, . . . , n −
1}, is the node with which the qubit can generate entanglement
(i �= j). The third index, m ∈ {0, . . . , r − 1}, is used to distin-
guish qubits that share the same indices i and j. A graphical
example is shown in Fig. 3.

III. PROTOCOL FOR CONTINUOUS DISTRIBUTION
OF ENTANGLEMENT

The operations discussed above—entanglement genera-
tion, swaps, entanglement consumption, and application of
cutoffs—are performed following a specific protocol for
continuous distribution of entanglement (CD protocol). Here
we consider a basic CD protocol that we will use to test our
performance optimization tools. We assume a synchronous

FIG. 3. Qubit addresses. Each qubit is identified by a qubit ad-
dress consisting of three values (i, j, m): i is the node holding the
qubit, j is the neighboring node that can generate entanglement
with that qubit, and m is used to distinguish qubits with the first
two indices i and j. In this example, each node has two qubits per
physical neighbor, i.e., r = 2.

protocol: time is divided into nonoverlapping time slots and
each operation is allocated within a time slot. This is a com-
mon assumption in the field of quantum networking (see, e.g.,
Refs. [12,66]), since nodes generally have to agree to perform
synchronized actions for heralded entanglement generation.
In what follows, we focus on the single random swap (SRS)
protocol, which is described in Algorithm 1. In this protocol,
(i) entanglement generation is attempted sequentially on every
physical link; (ii) swaps are performed using links chosen at
random; and (iii) every pair of nodes that shares an entangled
link consumes one link per time step with probability pcons.
The protocol has a single parameter, q ∈ [0, 1], which deter-
mines how many nodes must perform a swap at each time step
(if q = 0, no swaps are performed; if q = 1, every node must
perform a swap if possible; if 0 < q < 1, a random subset of
nodes may perform swaps). In step 3.2 of the SRS protocol,
the condition Ajk = 0 ensures that swaps will generally not
connect physical neighbors.

In step 5, we remove links that have too low fidelity since
they were produced after swapping too many shorter links. To
stop these links from forming in the first place, we would need
to consider a more complex swapping policy where nodes are
allowed to coordinate their actions (or a simple policy where
communication is assumed to be instantaneous).

In Table I we provide a summary of the network and
protocol parameters. In the next section we present our
performance metrics and how to use them to tune the pro-
tocol parameter(s) for an optimal performance. Note that our
methods can be applied to any other (synchronous and non-
synchronous) CD protocol.

IV. PERFORMANCE EVALUATION OF CD PROTOCOLS

As previously discussed, a CD protocol must ensure that
as many pairs of nodes as possible share entangled links, such
that they can run quantum applications at any time. Ideally, the
protocol should also provide many links between each pair
of nodes, as this would allow them to run more demanding
applications (e.g., applications that consume entanglement at
a high rate) or to have spare links to run sporadic one-time
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Algorithm 1. SRS entanglement generation protocol.

Inputs:
- Quantum network with an arbitrary configuration of
entangled links and

· physical adjacency matrix A;
· probability of successful entanglement generation pgen;
· probability of successful swap ps;
· maximum swap distance M;
· probability of link consumption pcons.

- q: probability of performing a swap.
Outputs:

- Quantum network with updated configuration of links.
Algorithm:

1: Cutoffs are applied and old links are removed.
2: Entanglement generation is attempted at every physical link

if enough qubits are available. One entangled link is generated
at each physical link with probability pgen.

3: Swaps are performed. Every node i does the following, in
parallel to each other:

3.1: Pick at random a qubit entangled to some qubit in
another node j.
3.2: Pick at random a qubit entangled to some qubit in node

k �= j, and with Ajk = 0. If not possible, go to step 4.
3.3: With probability q, perform a swap on both qubits,

which succeeds with probability ps. If it fails, both links
involved in the swap are discarded.

4: Classical communication: every node gains updated
information about every qubit (where it is connected to) and
about every entangled link (link age and number of swaps
used to create the link).

5: Long links removal: links that were produced as a
consequence of swapping more than M elementary-level links
are removed.

6: Consumption: each pair of nodes that share links consume
one of them with probability pcons.

applications. These notions of a good CD protocol motivate
the definition of the following performance metrics.

Definition 2. In a quantum network, the virtual neighbor-
hood of node i, Vi(t ), is the set of nodes that share an entangled
link with node i at time t . Two nodes are virtual neighbors if
they share at least one entangled link. The virtual neighbor-
hood size is denoted as vi(t ) := |Vi(t )|.

Definition 3. In a quantum network, the virtual node de-
gree of node i, ki(t ), is the number of entangled links
connected to node i at time t .

The virtual neighborhood size and the virtual node degree
combined are useful metrics to evaluate the performance of a
CD protocol. The size of the virtual neighborhood of node i
corresponds to the number of nodes that can run background
applications together with node i. Since our model includes
consumption of entanglement in such applications, the virtual
degree provides information about how many resources are
left to run sporadic applications.

The definitions above are similar to the notions of node
neighborhood and node degree in classical graph theory. How-
ever, the configuration of entangled links changes over time,
and therefore performance metrics from graph theory are ill
suited for this problem, as they generally do not include this

TABLE I. Parameters of the quantum network. The number
of nodes is given by the size of the adjacency matrix A. When
considering a (d, k)-tree topology, the adjacency matrix A can be
replaced by d and k. The cutoff time tcut is given by pgen, Fnew, Fapp,
and M via (3).

Physical topology

A Physical adjacency matrix

Hardware

pgen Probability of successful heralded entanglement
generation

Fnew Fidelity of newly generated entangled links
pswap Probability of successful entanglement swap
r Number of qubits per node per physical neighbor

Software (application related)

Fapp Minimum fidelity to run background applications
M Maximum number of short-distance links

involved in a sequence of swaps
pcons Probability that two nodes sharing some links

consume one of them in each time slot

CD protocol

q Probability of performing swaps according to the
SRS protocol

type of time dependence. In contrast to those metrics, vi(t )
and ki(t ) are not random variables but stochastic processes,
i.e., the value at each time slot is a random variable.

When consuming entanglement at a constant rate, the
steady state of the system is of particular interest since it
will provide information about the performance of the pro-
tocols in the long term. In Appendix B, we show that, when
running the SRS protocol (Algorithm 1), the network under-
goes a transient state and then reaches a unique steady-state
regime (the proof also applies to similar CD protocols that
use heralded entanglement generation, entanglement swaps,
and cutoffs). In what follows, we will focus on evaluating
the performance of the protocol during the steady state via
the steady-state expected value of the virtual neighborhood
size, vi ≡ limt→∞ E[vi(t )], and the virtual node degree, ki ≡
limt→∞ E[ki(t )].

Next, in Sec. IV A, we analyze the behavior of vi and
ki in the absence of swaps. In Sec. IV B, we analyze the
relationship between these metrics and the protocol parameter
q in a treelike network (although our methods are general and
apply to any arbitrary topology) and we find the optimal q
that maximizes the virtual neighborhood size of the nodes
in the lowest level of the tree. In Sec. IV C, we provide a
mathematical framework, based on Pareto optimization, to
provide a good quality of service in heterogeneous networks.

A. No swaps

To gain some intuition about the dynamics of the network
and to set a benchmark, we consider the SRS protocol with
q = 0, i.e., no swaps. In the absence of swaps, only physical
neighbors can share entanglement, and the virtual neighbor-
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hood size and the virtual node degree of node i in the steady
state are given by

vi ≡ lim
t→∞E[vi(t )] = di

1 − 1−pcons

1−pgen
λr

1 − pcons

pgen
λr

, (4)

ki ≡ lim
t→∞E[ki(t )] = di pgen

r + pcons(1−pcons )
pgen−pcons

(λr − 1)

pgen − pconsλr
, (5)

where λ ≡ pcons(1−pgen )
pgen (1−pcons ) ; pgen is the probability of successful

entanglement generation at the physical link level; pcons is the
link consumption rate; di is the physical node degree of node i;
and r is the number of qubits available at node i per physical
neighbor. Equations (4) and (5) are derived in Appendix C
using general random walks. Note that in the derivation we
assume large enough cutoffs, such that links are consumed
with a high enough probability before reaching the cutoff
time.

In the absence of swaps, both vi and ki are proportional to
the physical node degree di but independent of the rest of the
physical topology. This allows us to study these performance
metrics without assuming any specific physical topology.
Figure 4 shows the analytical solution for vi and ki when
each node has five qubits per physical neighbor (r = 5). The
figure shows a transition from large to small virtual neigh-
borhood size when increasing pcons beyond pgen. When the
consumption rate is smaller than the generation rate, the size
of the virtual neighborhood saturates and converges to the
number of physical neighbors. When pcons increases beyond
pgen, the virtual neighborhood size goes to zero. A similar
behavior is observed for the virtual degree, which takes larger
values for pcons < pgen. The same behavior is observed for
different values of r, as shown in Appendix C.

We conclude that, when the consumption rate is below the
generation rate and the cutoffs are large enough, each node can
produce sufficient entangled links with its neighboring nodes
for background applications and an extra supply of links for
sporadic applications.

In Appendix C, we use simulations to show that E[vi(t )]
and E[ki(t )] indeed converge to the steady-state values pre-
dicted by our analytical calculations as t goes to infinity.

B. Homogeneous set of users

Let us now consider a more general setting: the SRS pro-
tocol with q > 0. Nodes are now allowed to perform swaps
with some probability q. In this setup, a natural question
arises: what value of q should we choose to achieve the best
performance?

First, let us recall how we measure the performance. We
use the expected virtual neighborhood size in the steady state,
vi, to determine the number of nodes that can run applications
with node i in the background. We want to maximize vi. The
expected node degree ki determines the number of additional
entangled links that can be used for sporadic applications.
Whenever possible, we will try to have a large ki too, although
maximizing ki is not the purpose of a CD protocol (in fact, ki is
maximized when no swaps are performed, since they always
reduce the total number of entangled links, even when they
are successful). In what follows, we show how to optimize

FIG. 4. Larger consumption rates decrease the virtual neighbor-
hood size and the virtual node degree. Expected virtual neighborhood
size (a) and virtual node degree (b) in the steady state in a quantum
network with no swaps, with cutoff tcut = 10/pcons time steps, and
with five qubits per node per physical channel (r = 5). Both quanti-
ties are normalized by the physical degree of node i, di. The curves
were calculated using (4) and (5).

the SRS protocol in a quantum network with a (2,3)-tree
topology (although our methods apply to any quantum net-
work and any CD protocol). This tree network is particularly
interesting because it corresponds to a dumbbell network,
which could be used to model users (level-2 nodes) in two
metropolitan areas (level-1 nodes) connected by a central link
via the level-zero node. If we assume distances of the order
of 10 km, the communication time over optical fibers is of
the order of 1 ms. Hence, the time step must be at least of
the order of 1 ms. For demonstration purposes, we assume
a coherence time of T = 2000 time steps, which is of the
order of 1 s. As a reference, state-of-the-art coherence times
lie between milliseconds (e.g., T ≈ 11.6 ms in the NV cen-
ters experiment from Ref. [19]) and seconds (e.g., T ≈ 50 s
in the trapped-ion experiment from Ref. [67]). Additionally,
also for demonstration purposes, we assume probabilistic en-
tanglement generation, deterministic swaps, maximum swap
distance M = 4 (such that every node can share links with
every other node), and background applications that can be
executed with low fidelity links (Fapp = 0.6). We analyzed the
system by simulating the evolution of the network over time
and using Monte Carlo sampling. For further details about
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FIG. 5. The virtual neighborhood size of every node cannot
be maximized simultaneously. Expected virtual neighborhood size
(a) and virtual node degree (b) in the steady state in a (2,3)-tree
network running the SRS protocol vs the protocol parameter q. The
value of q that maximizes the virtual neighborhood size, indicated
by the dotted lines, is node dependent. The virtual node degree
decreases monotonically with increasing q, since more links are
consumed in swaps when q is large. Other parameter values used
in this experiment: pgen = 0.9, Fnew = 0.888, pswap = 1, r = 5, T =
2000 time steps, M = 4, pcons = pgen/4 = 0.225, Fapp = 0.6, tcut =
56 time steps [given by (3)]. Results are obtained using a network
simulation and Monte Carlo sampling with 106 samples. Error bars
are not shown since they are smaller than the line width—the stan-
dard errors are below 0.003 and 0.006 for the vi and ki, respectively.
The standard error is defined as 2σ̂ /

√
Nsamples, where σ̂ is the sample

standard deviation and Nsamples is the number of samples.

how we find the steady state and how we compute expectation
values from simulation data see Appendix D.

Figure 5 shows vi and ki for three different nodes. Due
to the symmetry of the topology, every node in the same
level of the tree has the same statistical behavior. Therefore,
we can describe the behavior of the whole tree network by
looking at one node per level. When no swaps are performed
(q = 0), the virtual neighborhood size vi [Fig. 5(a)] is upper
bounded by the number of physical neighbors di (di = 2, 3,

and 1, for nodes in level 0, 1, and 2, respectively). Increasing
q leads to an increase in vi, which reaches a maximum value
before decreasing again. If too many swaps are performed (q
close to 1), then vi decreases, since each swapping operation

consumes two links and produces only one. The maximum
virtual neighborhood size, maxq vi, is achieved at a different
value of q for each node. The virtual node degree ki [Fig. 5(b)]
behaves qualitatively in a similar way for every node: it is
maximized at q = 0 and, as we perform more swaps (increas-
ing q), more links are swapped and fewer links remain in the
system. A similar behavior was observed for larger trees and
for probabilistic swaps (see Appendix E).

In some cases, we may be only interested in providing a
good service to a subset of nodes U , the user nodes. The users
run applications but also perform swaps to support the en-
tanglement distribution among other pairs of users. The only
purpose of the rest of the nodes (repeater nodes) is to aid the
users to meet their needs. In the literature, users that consume
entanglement, but do not perform swaps to help other nodes,
are generally called end nodes. Here we assume every node
is a user or a repeater node. When some nodes are users and
some are repeaters, the performance metrics of repeater nodes
become irrelevant and we want to maximize vi, ∀i ∈ U . When
the set of users is homogeneous (i.e., all user nodes have the
same properties), the statistical behavior of all users is the
same and we can formulate a single-objective optimization
problem where we want to maximize vi for a single i ∈ U .
For example, in a tree quantum network, users are gener-
ally the nodes at the lowest level [53]. In the example from
Fig. 5, the lowest-level nodes are the level-2 nodes (green
line with crosses). If the level-2 nodes are the only users,
the performance of the protocol is optimized for q ≈ 0.65,
which maximizes their vi. The protocol optimization prob-
lem also becomes a single-objective optimization problem
in other networks with a strong symmetry, such as regular
networks [68].

In Fig. 6 we consider a (2,3)-tree network where the users
are the nodes at the lowest level, and we study the influence
of the background application requirements (Fapp and pcons)
on the maximum expected virtual neighborhood size of the
users. Here, we assume that the entanglement generation rate
is much larger than the consumption rate (pgen � 3pcons).
Otherwise, links are consumed shortly after they are generated
and the behavior of the system is not interesting, as discussed
in Sec. IV A. From the figure, we observe that the consump-
tion rate has a stronger effect on the virtual neighborhood.
For example, for Fapp = 0.8, decreasing pcons from 0.3 to 0.1
increases the maximum expected virtual neighborhood size
by 20.3%. However, when decreasing Fapp from 0.8 to 0.5,
the maximum increase in vi is 3.5% (for pcons = 0). The con-
sumption rate has a bigger effect on the virtual neighborhood
because it directly impacts the configuration of virtual links,
while Fapp only affects links via the cutoff. In this case, the
smallest cutoff is 17 time steps for Fapp = 0.8 and the largest
is 411 time steps for Fapp = 0.5. When the generation rate is
large, virtual neighbors are likely to share multiple entangled
links. In that case, cutoffs barely impact the virtual neighbor-
hood size since links can be regenerated quickly and they are
only removed after some time tcut. However, link consumption
can still have a strong impact on the virtual neighborhood
size since any link can be consumed at any time step. If the
cutoffs are very close to unity (e.g., when applications require
a fidelity Fapp > 0.8), the cutoff value may strongly affect the
virtual neighborhood size.
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FIG. 6. The consumption rate has a stronger impact on the
performance than the application fidelity when the entanglement
generation rate is high. Maximum virtual neighborhood size (max-
imized over q) of a layer-2 node in a (2,3)-tree network vs the
application fidelity, Fapp, and the consumption rate, pcons. Other
parameter values used in this experiment: pgen = 0.9, Fnew = 0.95,
pswap = 1, r = 5, T = 2000 time steps, M = 4. The cutoff time tcut

is given by (3). Results are obtained using a network simulation
and Monte Carlo sampling with 104 samples. The maximum error
is 0.015 (the error is defined as 2σ̂ /

√
Nsamples, where σ̂ is the sample

standard deviation and Nsamples is the number of samples). Note that
maxq(vi ) should be monotonic in Fapp and pcons but in this plot we
observer small deviations due to the sample size.

C. Heterogeneous set of users and multiobjective optimization

In a more general topology, the user nodes may have dif-
ferent properties and different physical degrees. In that case,
the size of the virtual neighborhood of each user may be
maximized for a different value of q. Hence, optimizing the
protocol for node i generally means that the protocol will
be suboptimal for some other node j �= i. This leads to a
multiobjective optimization problem where we must find a
tradeoff between the variables that we want to maximize. In
such a problem, optimality can be defined in different ways
[69]. A practical definition is the Pareto frontier.

Definition 4. Let U be the set of user nodes. Let �θ ∈ � be a
combination of parameter values describing the topology, the
hardware, and the software of the quantum network, where
� is the parameter space. Let vi(�θ ), with i ∈ U , be the set
of variables that we want to maximize. The Pareto frontier is
defined as

P = {�θ | ∀�θ ′ ∈ � ∃i s.t. vi(�θ ) � vi(�θ ′)}. (6)

Lemma 1. If the parameter space is nonempty, i.e., � �= ∅,
then the Pareto frontier is nonempty, i.e., P �= ∅.

Proof. If � �= ∅, there exists some �θ j =
argmax�θ∈�

(v j (�θ )), for any j ∈ U . Then, v j (�θ j ) � v j (�θ ′),
∀�θ ′ ∈ �, which means that �θ j ∈ P. Since �θ j always exists, we
conclude that P �= ∅. �

Note that the parameter space � can be a constrained
space, i.e., it does not necessarily include all combinations of
parameters values. For example, combinations of parameters
that are experimentally unfeasible may be excluded from �.
The Pareto frontier achieves a tradeoff in maximizing every
vi, i ∈ U . For all the points �θ in the Pareto frontier, we cannot

obtain an increase in vi(�θ ) without decreasing or keeping
constant some other v j (�θ ). Moreover, Lemma 1 ensures that
there is at least one point �θ in the Pareto frontier.

Note that the Pareto frontier may allow situations in which
the distribution of entangled links is not equitable (e.g.,
one user may maximize its virtual neighborhood size at the
expense of another user minimizing it). To avoid such situa-
tions, we can explicitly take into account quality-of-service
requirements from every user node. An example of simple
requirement from node i is to have some minimum number
of virtual neighbors ci. Then, the set of points that meet the
quality-of-service requirements can be written as

Q = {�θ | vi(�θ ) � ci}. (7)

An example of more specific requirement is to keep the num-
ber of entangled links between two specific nodes always
above a certain threshold.

Definition 5. The optimal region P∗ is the set of parameters
that are in the Pareto frontier and meet the quality-of-service
requirements, i.e.,

P∗ = P ∩ Q, (8)

where P is the Pareto frontier and Q is the set of points that
meet the quality-of-service requirements.

As an example, we consider a (2,3)-tree network where the
nodes in levels 1 and 2 are users. Due to the symmetry of
the topology, we only need to explicitly optimize vi for one
node in each level. In this case, it is possible to provide a
graphical representation of the Pareto frontier and the optimal
region. Figure 7 shows the expected virtual neighborhood size
in the steady state for a level-1 user and a level-2 user in
a quantum network with a (2,3)-tree topology running the
SRS protocol with probabilistic entanglement generation, de-
terministic swaps, and entanglement consumption at a fixed
rate. Each data point corresponds to a different value of the
protocol parameter q. The data points highlighted with blue
crosses form the Pareto frontier P. In this example, we want
the users in the first and second level to have an expected
virtual neighborhood size larger than 3 and 1.6, respectively.
Then,

Q = {�θ | v1(�θ ) � 3, v2(�θ ) � 1.6}. (9)

The regions shaded in red correspond to forbidden regions
where the quality-of-service requirements are not met. That
is, the points in the white region are in Q. The data points in
the optimal region P∗ are the blue crosses in the white region.
This corresponds to q ∈ [0.4, 0.65]. All these values of q can
be considered optimal, as they are part of the Pareto frontier
and meet the minimum user requirements.

As a final remark, note that we have used this multiob-
jective optimization framework to optimize the performance
of a single-parameter CD protocol. However, it can also be
used to choose from several CD protocols. This method can
be applied to heterogeneous quantum networks with arbitrary
topologies.
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FIG. 7. The optimal region determines the combinations of pa-
rameters that provide an optimal performance. Virtual neighborhood
size of a level-1 node, v1, and a level-2 node, v2, in a (2,3)-tree
network running the SRS protocol for different values of the protocol
parameter q (for q = 0, we have v1 = 3 and v2 = 1; we increase
q in intervals of 0.05 following the black line up to q = 1). The
data points with blue crosses form the Pareto frontier P. The regions
shaded in red are forbidden by the quality-of-service requirements
(c1 = 3, c2 = 1.6). The optimal region P∗ is formed by the blue
crosses in the white region. Other parameter values used in this
experiment: pgen = 0.9, Fnew = 0.888, pswap = 1, r = 5, T = 2000
time steps, M = 4, pcons = pgen/4 = 0.225, Fapp = 0.6, tcut = 56
time steps [given by (3)]. Results are obtained using a network
simulation and Monte Carlo sampling with 106 samples. Error bars
are not shown since they are smaller than the linewidth—the standard
errors are below 0.003 and 0.002 for v1 and v2, respectively. The
standard error is defined as 2σ̂ /

√
Nsamples, where σ̂ is the sample

standard deviation and Nsamples is the number of samples.

V. DISCUSSION

In this paper we have introduced metrics to evaluate the
performance of protocols for continuous distribution of en-
tanglement. The virtual neighborhood of a node is the set of
nodes that share entanglement with the node, and the virtual
degree of a node is the number of entangled states it shares
with other nodes. The goal of the protocol is to maximize the
size of the virtual neighborhood of every user. Here, as an
example, we have considered a simple tree network and we
have demonstrated how to formulate a single-objective and a
multiobjective optimization problem that can be used to opti-
mize the performance when the set of users is homogeneous
and heterogeneous, respectively.

In our calculations, we assumed that background applica-
tions consume entanglement at a given rate. We found that,
when the entanglement generation rate is large, the consump-
tion rate has a stronger impact on the size of the virtual
neighborhood than the fidelity requirements imposed by the
quantum applications.

Our formulation also allows the study of protocols that
continuously distribute entanglement to maintain a supply of
high quality preshared entanglement. Specifically, the SRS
protocol described in Algorithm 1 delivers preshared entan-
glement when the consumption rate is set to zero. This can
be useful to determine the feasibility of quantum network

protocols that assume preshared entanglement among the
nodes of the network. In this case, an application that uses
the available entanglement would disrupt the distribution of
entangled states and would bring the system to a new transient
state. Hence, an additional useful metric would be the time
required to converge to a steady state after such a disruption.
We leave this analysis for future work.

We also leave the generalization of the network model and
the protocol as future work. As an example, one can consider
nodes that have a pool of qubits that can be used for any
purpose, instead of having r specific qubits that can gener-
ate entanglement with each physical neighbor. One can also
define node-dependent protocols, where each node follows a
different set of instructions.

Lastly, note that we expect the coexistence of protocols
for on-demand and continuous distribution of entanglement
in large-scale quantum networks. Continuous distribution can
be used to supply entanglement to applications running at a
constant rate while on-demand distribution can support this
process during peak demands from sporadic applications.

Our code and the data shown in this paper can be found in
Ref. [70].
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APPENDIX A: FURTHER DETAILS
ON THE NETWORK MODEL

1. Entanglement swap

Two nodes that are not physical neighbors cannot generate
entanglement directly between them. Instead, they rely on
entanglement swap operations to produce a shared entangled
state between them [30–32]. As an example, consider two end
nodes A and B, which are not physically connected but share
a physical link with an intermediate node C. To generate an
entangled link between A and B, they need to first generate
entangled links between A and C, and also between C and
B. Then, node C can perform a Bell state measurement to
transform links A-C and C-B into a single entangled link
between A and B. When both input links are Werner states
with fidelities F1 and F2, the output state in a swap operation
is also a Werner state with fidelity [62]

Fswap(F1, F2) = F1F2 + (1 − F1)(1 − F2)

3
. (A1)

Note that this operation generally decreases the fidelity:
Fswap(F1, F2) � F1, F2.
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Additionally, entanglement swaps can be either proba-
bilistic [31,71,72] or deterministic [19], depending on the
hardware employed. With probability ps, the swap operation
succeeds and both input states are consumed to produce a
single entangled link. With probability 1 − ps, the swap op-
eration fails: both input states are consumed but no other
entangled state is produced.

2. Purification

If the fidelity of an entangled state is not large enough for
a specific application, nodes can run a purification protocol to
increase its fidelity. In general, these protocols take as input
multiple entangled states and output a single state with larger
fidelity [10,60,61].

For simplicity, we do not consider any kind of purifica-
tion in our analysis. Nevertheless, it is possible to integrate
purification of entangled states at the physical link level into
our model by decreasing the value of pgen, to account for all
the states that must be prepared in advance to perform the
purification protocol. This would also impact the fidelity of
newly generated links, Fnew, which would correspond now
to the fidelity of the links after purification at the physical
link level. The cutoff time would also need to be adjusted,
since the time step would take a longer time (it would have
to include more than one entanglement generation attempt). If
physically distant nodes require larger fidelity links, they can
run a purification subroutine as part of the application once
they have generated enough entangled links.

3. Cutoff times

Quantum states decohere, mainly due to environmental
couplings [55,63]. Decoherence decreases the fidelity of states
over time. We consider a depolarizing noise model, which is
a worst-case scenario (other types of noise can be converted
to depolarizing noise via twirling [55,73,74]). As shown in
Appendix A from Ref. [12], if we assume that each qubit of a
Werner state is stored in a different memory and experiences
depolarizing noise independently, the fidelity of the Werner
states evolves as

F (t + �t ) = 1
4 + (

F (t ) − 1
4

)
e− �t

T , (A2)

where F (t ) is the fidelity of the state at time t , �t is an arbi-
trary interval of time, and T is a parameter that characterizes
the exponential decay in fidelity of the whole entangled state.

When the fidelity of the entangled links drops below some
threshold, they are no longer useful. Hence, a common prac-
tice is to discard states after a cutoff time tcut to prevent
wasting resources on states that should not be used anymore
[34]. We refer to the time passed since the creation of a
quantum state as the age of the state. Whenever the age of
an entangled state equals the cutoff time, the state is removed,
i.e., the qubits involved are reset. As shown in Ref. [12], to
ensure that any two nodes that are at most M physical links
away will only share entangled states with fidelity larger than
Fapp, the cutoff time must satisfy

tcut � −T ln

[
3

4Fnew − 1

(
4Fapp − 1

3

)1/M]
, (A3)

where Fnew is the fidelity of newly generated entangled links.
This condition assumes that the output state in a swap opera-
tion takes the age of the oldest input link.

APPENDIX B: EXISTENCE OF A UNIQUE STEADY STATE

In this Appendix, we show that there is a unique steady-
state value for the expected number of virtual neighbors and
expected virtual degree of any node when a quantum network
is running CD Protocol 1, under the assumption that entangle-
ment generation is probabilistic (pgen < 1).

We consider the stochastic processes vi(t ) and ki(t ), which
correspond to the number of virtual neighbors of node i and
the virtual degree of node i, respectively. The expected values
over many realizations of the processes are denoted as E[vi(t )]
and E[ki(t )].

The state of the network can be represented using the
ages of all entangled links present in the network (the age is
measured in number of time slots). This can be written as an
array s with 1

2 r
∑n−1

i=0 di components, since there are n nodes
and each node i can store up to rdi entangled links, where di

is the physical degree of node i and r is a hardware-dependent
parameter that limits the maximum number of qubits per node.
Since we impose cutoff times on the memories, each of the
components of this vector can only take a finite set of values.
Let S be the set of all possible states, which is also finite.

Given a state s(t ) at time t ∈ N (recall that we consider
discrete time steps in our protocols), the transition to a new
state only depends on the number of available memories at
each node for generation of new links and on the number of
available links for performing swaps and for consumption in
applications. Hence, the transition does not depend on past
information:

Pr[s(t + 1) = σ | s(0), s(1), . . . , s(t )]

= Pr[s(t + 1) = σ | s(t )].

Consequently, the state of the network can be modeled as
a Markov chain with the following three properties.

(1) The chain is irreducible, since every state is reachable
from every other state. If pgen < 1, there is a nonzero proba-
bility that no links are generated over many time slots until all
existing links expire due to cutoffs and therefore the network
returns to the starting state with no links—from this initial
state, every other state can be reached.

(2) The chain is aperiodic. A sufficient condition for
an irreducible chain to be aperiodic is that Pr[s(t + 1) =
σ | s(t ) = σ ] > 0 for some state σ ∈ S [75]. When entangle-
ment generation is probabilistic (pgen < 1), the state with no
entangled links satisfies the previous condition (if all entan-
glement generation attempts fail, the network will remain in a
state with no links), and therefore the chain is aperiodic.

(3) The chain is positive recurrent (i.e., the mean time to
return to any state is finite), since it is irreducible and it has a
finite state space S (see Theorem 9.3.5 from Ref. [75]).

According to Theorem 9.3.6 from Ref. [75], from the three
properties above we can conclude that there exists a unique
steady-state probability distribution, i.e., the following limit
exists: limt→∞ Pr[s(t ) = σ ], ∀σ ∈ S .
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Let us now compute the expected number of virtual neigh-
bors in the steady state:

vi ≡ lim
t→∞E[vi(t )]

= lim
t→∞

n∑
v=0

vPr[vi(t ) = v]

=
n∑

v=0

v lim
t→∞ Pr[vi(t ) = v]

=
n∑

v=0

v lim
t→∞

∑
σ∈S

Pr[vi(t ) = v | s(t ) = σ ]Pr[s(t ) = σ ]

=
n∑

v=0

v
∑
σ∈S

lim
t→∞ Pr[vi(t ) = v | s(t ) = σ ] lim

t→∞ Pr[s(t ) = σ]

=
∑
σ∈S

lim
t→∞ Pr[s(t )= σ ]

n∑
v=0

v lim
t→∞ Pr[vi(t ) = v | s(t ) = σ ].

(B1)

Let us define a function κ (s; i, j) that takes as input a state s
and two node indices i and j. This function returns the number
of entangled links shared by nodes i and j in state s. The
virtual neighborhood size of node i at time t , vi(t ), is given
by the state of the network at time t , s(t ), and it can be written
as

vi(t ) = vi[s(t )] =
∑

j∈V \{i}
min(1, κ (s(t ); i, j)).

Consequently,

Pr[vi(t ) = v | s(t ) = σ ]

=
{

1, if v = ∑
j∈V \{i} min(1, κ (σ ; i, j))

0, otherwise
. (B2)

Using (B2), we can write (B1) as

vi =
∑
σ∈S

lim
t→∞ Pr[s(t ) = σ ]

∑
j∈V \{i}

min(1, κ (σ ; i, j)). (B3)

The expected virtual degree can be calculated sim-
ilarly but using its corresponding definition, ki[s(t )] =∑

j∈V \{i} κ (s(t ); i, j):

ki ≡ lim
t→∞E[ki(t )] =

∑
σ∈S

lim
t→∞ Pr[s(t ) = σ ]

∑
j∈V \{i}

κ (σ ; i, j).

(B4)

Since we have shown that the probability distributions that
appear in (B3) and (B4) exist and are unique, then the quan-
tities vi and ki also exist and are unique. That is, there is a
unique steady-state value for the expected number of virtual
neighbors and the expected virtual degree of any node i.

From our simulations, we also expect a unique steady state
for pgen = 1. The main difficulty in proving its existence is
that the Markov chain is not always irreducible (the state with
no links may not be reachable from some other states since
links are generated at maximum rate). However, if one can
show that there is a unique equivalence class (i.e., a unique
set of states that are reachable from each other) that is reached

after a finite number of transitions, the derivation above may
be applicable to this equivalence class, which would constitute
an irreducible Markov chain.

Lastly, note that in practice one may find an initial transient
state with periodic behavior. This happens in quasideterminis-
tic systems, i.e., systems in which all probabilistic events (e.g.,
successful entanglement generation) happen with probability
very close to 1. In quasideterministic systems, all realizations
of the stochastic processes are identical at the beginning with
a very large probability. For some combinations of param-
eters, these processes may display a periodic behavior with
a period on the order of the cutoff time. Over time, each
realization starts to behave differently due to some random
events yielding different outcomes. Consequently, the peri-
odic oscillations will dephase, and they will cancel out after
averaging over all realizations. In the example from Fig. 8, we
find that both E[vi(t )] and E[ki(t )] are periodic with period
approximately tcut. The amplitude of the oscillations vanishes
after a few periods.

APPENDIX C: ANALYTICAL PERFORMANCE METRICS
IN THE ABSENCE OF SWAPS

In this Appendix, we consider a CD protocol with the same
structure as the SRS protocol (see Algorithm 1 from the main
text) in the absence of swaps and with a large enough cutoff
time (tcut > r and tcut � 1

pcons
, where the cutoff is measured in

number of time steps). As discussed in the main text, when no
swaps are performed, we can derive closed-form expressions
to gain some intuition about the dynamics of the network and
to set a benchmark. Here, we show that the virtual neighbor-
hood size and the virtual node degree of node i in the steady
state are given by

vi ≡ lim
t→∞E[vi(t )] = di

1 − 1−pcons

1−pgen
λr

1 − pcons

pgen
λr

(C1)

and

ki ≡ lim
t→∞E[ki(t )] = di pgen

r + pcons(1−pcons )
pgen−pcons

(λr − 1)

pgen − pconsλr
, (C2)

where λ ≡ pcons(1−pgen )
pgen (1−pcons ) ; pgen is the probability of successful

entanglement generation at the physical link level; pcons is the
link consumption probability; di is the physical node degree
of node i; and r is the number of qubits per physical link
available at each node.

We define wi j as the number of entangled links shared
between nodes i and j (similar to the definition of κ in
Appendix B). In the absence of swaps, nodes i and j can
only share entangled links if they are physical neighbors,
since the only mechanism available is heralded entanglement
generation. If i and j are not physical neighbors, then wi j =
0. The entangled links shared between nodes i and j can
be consumed in some application or discarded when apply-
ing cutoffs. However, we also assume that entangled links
are always consumed before they reach the cutoff time, i.e.,
tcut � 1

pcons
(cutoff measured in number of time steps). This

assumption allows us to model wi j using the general random
walk shown in Fig. 9.
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FIG. 8. A transient state with periodic oscillations may exist in quasideterministic systems. Evolution of vi and ki in a quantum network
with a (2,3)-tree topology running the SRS protocol described in the main text. Each line (purple, blue, and green) corresponds to a node in
a different level of the tree (level 0, 1, and 2). The error for each solid line is shown as a shaded region, although it is hard to notice since its
maximum value is 0.040 in (a) and 0.084 in (b) (the error is defined as 2σ̂ /Nsamples, where σ̂ is the sample standard deviation and Nsamples is
the number of samples). Other parameters used in this experiment: pgen = 0.99, Fnew = 0.88, pswap = 1, r = 5, T = 2000 time steps, M = 4,
pcons = 0.01, q = 0.2, Fapp = 0.6, tcut = 20 time steps. Numerical results are obtained using a network simulation and Monte Carlo sampling
with 103 samples.

(1) The maximum value for wi j is the number of qubits
available per physical link, r. This state is reachable even
when entanglement generation is done sequentially, since
links can be stored for longer than r time steps (we assume
tcut > r).

(2) The probabilities of transition forward are pk =
pgen(1 − pcons), ∀k < r, and pr = 0.

(3) The probabilities of transition backwards are q0 = 0,
qk = pcons(1 − pgen), ∀0 < k < r, and qr = pcons.

(4) The no-transition probability is zk = 1 − pk − qk , ∀k.
The steady-state probability distribution of this Markov

chain is given by [75]

lim
t→∞ Pr[wi j (t ) = w | Ai j = 1]

=
⎧⎨
⎩

(
1 + ∑r

k=1

∏k−1
m=0

pm

qm+1

)−1
, w = 0(

1 + ∑r
k=1

∏k−1
m=0

pm

qm+1

)−1 ∏w−1
m=0

pm

qm+1
, w > 0

,

(C3)

where Ai j is a binary variable that indicates if nodes i and j
are physical neighbors (Ai j = 1) or not (Ai j = 0). After some
algebra, the previous equation can be rewritten in terms of the
original variables of the problem:

lim
t→∞ Pr[wi j (t ) = w | Ai j = 1]

=

⎧⎪⎪⎨
⎪⎪⎩

π0, w = 0

π0ρ
w, 0 < w < r

π0ρ
r (1 − pgen ), w = r

, (C4)

where

π0 ≡ pgen − pcons

(1 − pgen)(pgenρr − pcons)
and ρ ≡ pgen(1 − pcons)

pcons(1 − pgen )
.

(C5)

The expected value of wi j is

lim
t→∞E[wi j (t ) | Ai j = 1]

= lim
t→∞

r∑
w=0

wPr[wi j (t ) = w | Ai j = 1]

=
r∑

w=0

w lim
t→∞ Pr[wi j (t ) = w | Ai j = 1]

a= π0

r−1∑
w=0

wρw + rπ0ρ
r (1 − pgen)

= π0
ρ − rρr + (r − 1)ρr+1

(1 − ρ)2
+ rπ0ρ

r (1 − pgen)

= pgen

(pgen − pcons)(pgenρr − pcons)
[r(pgen − pcons)ρr

+ pcons(1 − pcons)(1 − ρr )], (C6)

where we have used (C4) in step a.
The virtual neighborhood size of node i is defined in terms

of the variables wi j as vi(t ) = ∑n
j=1 min(wi j (t ), 1), and the

expectation value can be calculated as follows:

vi ≡ lim
t→∞E[vi(t )]

= lim
t→∞E

[ n∑
j=1

min(wi j (t ), 1)

]

FIG. 9. General random walk modeling the number of entangled
links wi j between nodes i and j in the absence of swaps.
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=
n∑

j=1

lim
t→∞E[min(wi j (t ), 1)]

a=
n∑

j=1

lim
t→∞

r∑
x=0

xPr[min(wi j (t ), 1) = x]

=
n∑

j=1

r∑
x=0

x lim
t→∞ Pr[min(wi j (t ), 1) = x]

b=
n∑

j=1

lim
t→∞ Pr[min(wi j (t ), 1) = 1]

=
n∑

j=1

lim
t→∞ Pr[wi j (t ) > 0]

c=
n∑

j=1

lim
t→∞ Pr(Ai j = 1)Pr[wi j (t ) > 0 | Ai j = 1]

d=
n∑

j=1

Ai j lim
t→∞{1 − Pr[wi j (t ) = 0 | Ai j = 1]}

e=
n∑

j=1

Ai j (1 − π0)

f= di(1 − π0)

g= di

pr+1
gen (1 − pcons)r − pgen(1 − pgen)r−1 pr

cons(1 − pcons)

pr+1
gen (1 − pcons)r − (1 − pgen)r pr+1

cons

= di

1 − 1−pcons

1−pgen
λr

1 − pcons

pgen
λr

, (C7)

where λ ≡ pcons(1−pgen )
pgen (1−pcons ) , di is the physical degree of node i, and

n is the total number of nodes, and with the following steps.
(a) We use the definition of expected value and the fact that

wi j (t ) � r.
(b) We use the fact that min(wi j (t ), 1) ∈ {0, 1}.
(c) We use the law of total probability, i.e., Pr(X ) =∑
n Pr(Yn)Pr(X |Yn). Moreover, if two nodes i and j are not

physical neighbors (Ai j = 0), they cannot share any entangled
links due to the absence of swaps, i.e., Pr[wi j (t ) > 0 | Ai j =
0] = 0.

(d) Given the topology, Ai j is a binary variable with a fixed
value. Therefore, Pr(Ai j = 1) = Ai j .

(e) We use (C4).
(f) The physical node degree of node i can be computed as

di = ∑n
j=1 Ai j .

(g) We use (C5).
The virtual degree of node i is defined in terms of the vari-

ables wi j as ki(t ) = ∑n
j=1 wi j (t ), and the expectation value

can be calculated in a similar way to vi:

ki ≡ lim
t→∞E[ki(t )] = lim

t→∞E

[
n∑

j=1

wi j (t )

]
= lim

t→∞

n∑
j=1

E[wi j (t )]

a= lim
t→∞

n∑
j=1

Ai jE[wi j (t ) | Ai j = 1]

b= lim
t→∞E[wi j (t ) | Ai j = 1]

n∑
j=1

Ai j

c= di lim
t→∞E[wi j (t ) | Ai j = 1]

d= di pgen

r(pgen − pcons)pr
gen(1 − pcons)r + pcons(1 − pcons)

[
pr

cons(1 − pgen)r − pr
gen(1 − pcons)r

]
(pgen − pcons)

[
pr+1

gen (1 − pcons)r − pr+1
cons(1 − pgen)r

]
= di pgen

r + pcons(1−pcons )
pgen−pcons

(λr − 1)

pgen − pconsλr
, (C8)

where λ ≡ pcons(1−pgen )
pgen (1−pcons ) , and with the following steps.

(a) We use the law of total probability, i.e., Pr(X ) =∑
n Pr(Yn)Pr(X |Yn). Moreover, if two nodes i and j are not

physical neighbors (Ai j = 0), they cannot share any entangled
links due to the absence of swaps, i.e., Pr[wi j (t ) > 0 | Ai j =
0] = 0. Given the topology, Ai j is a binary variable with a
fixed value, therefore, Pr(Ai j = 1) = Ai j .

(b) In a homogeneous network with no swaps, wi j depends
on Ai j but is otherwise independent of the nodes i and j.
Hence, E[wi j (t ) | Ai j = 1] does not depend on j. This can
also be seen in (C6).

(c) The physical node degree of node i can be computed as
di = ∑n

j=1 Ai j .
(d) We use (C6).
Equations (C7) and (C8) can be used to study the perfor-

mance of the protocol in the limit of large number of resources
(r → ∞). When pgen > pcons we find

lim
r→∞ vi = di, lim

r→∞ ki = lim
r→∞ rdi = ∞. (C9)

This means that, when the generation rate exceeds the con-
sumption rate, the virtual neighborhood size will eventually
saturate and every node will share entanglement with every
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physical neighbor. In particular, the average number of en-
tangled links will increase infinitely (for large but finite r, ki

reaches a maximum value of ∼rdi). When pgen < pcons,

lim
r→∞ vi = di

pgen(1 − pcons)

pcons(1 − pgen)
,

lim
r→∞ ki = di pgen

1 − pcons

pcons − pgen
. (C10)

In Fig. 10, we plot the expected virtual neighborhood size
and expected virtual degree for different combinations of pa-
rameters, focusing on the interplay between pgen and pcons.
Both quantities decrease with increasing consumption rate, as
one would expect, and quickly drop to zero for pcons > pgen.

Lastly, Fig. 11 shows an example of the convergence of
E[vi(t )] and E[ki(t )] to vi and ki over time, respectively.
The time-dependent quantities have been calculated using a
simulation on a quantum network with a (2,3)-tree physical
topology. The dashed lines correspond to the steady-state val-
ues in the absence of swaps predicted by (C7) and (C8).

APPENDIX D: STEADY STATE
OF A STOCHASTIC PROCESS

In this Appendix we provide an algorithm to find the
steady-state expected value of a stochastic process given a
set of samples. In our paper, we employ this algorithm to
estimate the steady-state expected value of the virtual neigh-
borhood size, limt→∞ E[vi(t )], and the virtual node degree,
limt→∞ E[ki(t )], from numerical simulations.

Finding the steady state of a stochastic process using real-
izations of the process is not a trivial task. Algorithm 2 can be
used to estimate the start of the steady state of a stochastic
process given N realizations of the process. The algorithm
ensures that the expected values of the process at any two
times in the steady state are arbitrarily close with a large
probability. We provide formal definitions and a proof below.

Theorem 1. Let X (t ) ∈ [a, b], with a, b ∈ R, be a
stochastic process with constant steady-state mean, i.e.,
limt→∞ E[X (t )] = X∞ < ∞. Let X N (tk ) be a sample
mean over N samples at time tk ∈ {t0, t1, . . . , tM−1}, with
t0 < t1 < . . . < tM−1. Consider a minimum size of the
steady-state window w. When N → ∞, Algorithm 2 with
inputs X N (tk ), a, b, and w finds α such that

Pr[ E[X (ti )] ∈ ICi j ] � 0.815, ∀i, j � α

for an interval of confidence ICi j = [max(X N (ti), X N (t j )) −
ε, min(X N (ti ), X N (t j )) + ε], with ε = b−a√

N
, or the algorithm

aborts.
Proof. Let us consider a stochastic process X (t ) ∈ [a, b]

with constant steady-state mean, i.e., limt→∞ E[X (t )] =
X∞ < ∞, and with finite variance σ (t )2. Assume that we have
N realizations of the process where we took samples at times
t0 < t1 < t2, . . . . We denote the value taken in realization
n ∈ {0, 1, . . . , N − 1} at time t as xn(t ). We define the sample
average as

X N (t ) = 1

N

N−1∑
n=0

xn(t ). (D1)

Algorithm 2. Steady state estimation.

Inputs:
- X N (t ), t = t0, t1, . . . , tM−1: sample mean of a stochastic
process X (t ) over N realizations at t = t0, t1, t2, . . . , tM−1.

- a: minimum value of the stochastic process X (t ).
- b: maximum value of the stochastic process X (t ).
- w: minimum size of the steady state window.

Outputs:
- α: the steady state is assumed to start at t = tα . The protocol
aborts if it is not possible to find an α such that α � M − w.

Algorithm:
1: Define the error as ε ← b−a√

N
.

2: Define the steady state window: W ← {M − w, M − w + 1,

M − w + 2, . . . , M − 1}.
3: Calculate �i j ← 2ε − |X N (ti ) − X N (t j )|, ∀i, j ∈ W and i �= j.
4: If �i j < 3

2 ε for any i, j, then abort (steady state not found).
5: for z in [1, 2,..., M-w] do
6: k ← M − w − z.
7: Calculate �ik ← 2ε − |X N (ti ) − X N (tk )|, ∀i ∈ W .
8: If �ik < 3

2 ε for any i, then α ← k + 1 and go to step 12.
9: W ← W ∪ {k}
10: end for
11: α ← k.
12: return α.

The central limit theorem states that the distribution of the
random variable

√
N{X N (t ) − E[X (t )]} converges to a nor-

mal distribution N (0, σ (t )2) as N approaches infinity. After
rescaling and shifting this distribution, we find that E[X (t )]
converges to a normal distribution N (X N (t ), σ (t )2/N ) as N
approaches infinity. By the properties of the normal distribu-
tion,

Pr

[
E[X (t )] ∈

(
X N (t )−2σ (t )√

N
, X N (t )+2σ (t )√

N

)]
> 0.95.

(D2)

The values of X (t ) are constrained to the interval [a, b], and
therefore the standard deviation is upper bounded by [76]

σ (t ) � (b − a)/2. (D3)

Let us define the error as ε = b−a√
N

, and the interval of confi-
dence for the expected value of X (ti ) as

ICi = (X N (ti ) − ε, X N (ti ) + ε). (D4)

Using (D2), (D3), and (D4), we can write

Pr{E[X (ti)] ∈ ICi} > 0.95. (D5)

This result means that the expected value is arbitrarily close
to the sample mean with high probability. Next, we need to
show that any two expected values in the time window defined
by the algorithm are arbitrarily close to each other to conclude
that the window captures the steady-state behavior.

Let us define the interval of confidence i j as the overlap
in the intervals of confidence for the expected values of X (ti )
and X (t j ):

ICi j = [max(X N (ti), X N (t j )) − ε, min(X N (ti ), X N (t j )) + ε].
(D6)

052615-14



PERFORMANCE METRICS FOR THE CONTINUOUS … PHYSICAL REVIEW A 108, 052615 (2023)

FIG. 10. Larger consumption rates decrease the virtual neighborhood size and the virtual node degree. Expected virtual neighborhood
size (left) and virtual node degree (right) in the steady state in a quantum network with no swaps, cutoff tcut = 10/pcons time steps, and
r = 1, 2, 5, 10 qubits per node per physical channel (from top to bottom). All curves were calculated using Eqs. (C7) and (C8).
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FIG. 11. The expected virtual neighborhood size and the expected virtual node degree converge to the steady-state analytical values in
the absence of swaps. In this example, we ran the SRS protocol (Algorithm 1 from the main text) with q = 0 (i.e., no swaps) on a quantum
network with (2,3)-tree topology. Nodes 0, 1, and 2 correspond to nodes in levels 0, 1, and 2 of the tree, respectively (i.e., they have physical
node degrees d0 = 2, d1 = 3, and d2 = 1, respectively). Each solid line corresponds to each of the three nodes. The dashed lines correspond
to the expected steady-state values predicted by Eqs. (C7) and (C8) for each of the nodes. The standard error for each solid line is shown as a
shaded region, although it is hard to notice since its maximum value is 0.017 in (a) and 0.056 in (b). Other parameters used in this experiment:
pgen = 0.2, Fnew = 0.9, r = 5, T = 2000 time steps, pcons = 0.1, Fapp = 0.6, tcut = 221 time steps [given by (3)]. Numerical results are obtained
using a network simulation and Monte Carlo sampling with 104 samples.

The size of this interval of confidence is

�i j = 2ε − |X N (ti ) − X N (t j )|. (D7)

We provide a graphical intuition in Fig. 12.
Algorithm 2 finds the smallest α such that α � M − w and

�i j � 3
2ε, for any i, j > α. Then, we say that the steady state

starts at tα . If α does not exist, the algorithm aborts. Next, we
show that the condition stated in the theorem,

Pr{E[X (ti )] ∈ ICi j} � 0.815, ∀i, j � α, (D8)

is equivalent to �i j � 3
2ε, for any i, j > α. We proceed as

follows:

Pr[ E[X (ti )] ∈ ICi j ]
a= Pr{E[X (ti )] ∈ ( X N (ti ) − ε, X N (ti ) + �i j − ε )}

FIG. 12. Graphical intuition for the interval of confidence i j used
to identify the steady state. X N (i) corresponds to the sample mean at
i, ε is the error, and �i j is the size of the interval of confidence i j
(highlighted in yellow).

b=
∫ X N (ti )

X N (ti )−ε

fN (xi )dxi +
∫ X N (ti )+�i j−ε

X N (ti )
fN (xi )dxi

c
�

∫ X N (ti )

X N (ti )− 2σ (t )√
N

fN (xi )dxi +
∫ X N (ti )+�i j−ε

X N (ti )
fN (xi )dxi

d
� 0.95

2
+

∫ X N (ti )+�i j−ε

X N (ti )
fN (xi )dxi

e
� 0.475 +

∫ X N (ti )+ ε
2

X N (ti )
fN (xi )dxi

f
� 0.475 +

∫ X N (ti )+ σ√
N

X N (ti )
fN (xi )dxi

g
� 0.475 + 0.68

2

= 0.815 (D9)

with the following steps.
(a) Without loss of generality, assume X N (ti ) � X N (t j ).
(b) Let fN (xi ) be the probability distribution function

of E[X (ti )]. As previously shown, when N goes to in-
finity, this distribution converges to a normal distribution
N (X N (ti ), σ (t )2/N ). We assume N is sufficiently large.

(c) Using (D3), ε = b−a√
N
� 2σ (t )√

N
.

(d) The probability that a normally distributed random
variable takes a value between the mean and two stan-
dard deviations away is larger than 0.95

2 , i.e.,
∫ μ

μ−2σ
f (z)dz =∫ μ+2σ

μ
f (z)dz � 0.95

2 , where f (z) is the probability distribu-

tion of Z ∼ N (μ, σ 2).
(e) The algorithm only considers i and j such that

�i j � 3
2ε.

(f) Using (D3) again, ε � 2σ (t )√
N

.
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FIG. 13. Algorithm 2 can identify the steady state of a stochastic process. Evolution of the average virtual neighborhood size in a quantum
network with a (2,3)-tree topology running the SRS protocol described in the main text. Each line (purple, blue, and green) corresponds to
a node in a different level of the tree (level 0, 1, and 2). Dots indicate that the steady state has been reached, according to Algorithm 2. The
error for each solid line is shown as a shaded region, although it is hard to notice since its maximum value is 0.029 (the error is defined
as 2σ̂ /Nsamples, where σ̂ is the sample standard deviation and Nsamples is the number of samples). Other parameters used in this experiment:
pgen = 0.9, Fnew = 0.88, pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = 0.225, q = 0.1, Fapp = 0.6, tcut = 56 time steps. Numerical
results are obtained using a network simulation and Monte Carlo sampling with 103 samples. The simulation was run over 560 time steps (only
the first 300 are shown here) and the steady-state window was 112 time steps.

(g) The probability that a normally distributed random
variable takes a value between the mean and one stan-
dard deviation away is larger than 0.68

2 , i.e.,
∫ μ

μ−σ
f (z)dz =∫ μ+σ

μ
f (z)dz � 0.68

2 , where f (z) is the probability distribution

of Z ∼ N (μ, σ 2). �
Note that the validity of this method depends on the num-

ber of samples N , which must be sufficiently large in order to
apply the central limit theorem.

In our simulations, we employ Algorithm 2 to check
the existence of the steady state in the virtual neighbor-
hood size, vi(t ), and the virtual node degree, ki(t ), of every
node i. After identifying the steady state, we take the av-
erage at the final simulation time as an estimate for the
expected steady-state value, i.e., limt→∞ E[vi(t )] ≈ vi,N (tM−1 )
and limt→∞ E[ki(t )] ≈ ki,N (tM−1 ), where vi,N (t ) and ki,N (t ) are
the sample averages at time t . The virtual neighborhood size
of node i is upper bounded by b = min(rdi, n), where rdi is
the total number of qubits at node i and n is the total number
of nodes. The virtual degree of node i is upper bounded by
b = rdi. In this paper, each simulation was run over 10tcut time
steps, and the window used to estimate the steady state was
w = 2tcut.

When the standard error is very small and the mean value
is slowly converging to the steady-state value, the overlaps
between intervals of confidence (�i j) may be too small. Then,
our algorithm may abort, indicating that there is not steady
state. In practice, we would like the algorithm to declare that
the steady state has been reached once we are close enough to
the steady-state value. To prevent the algorithm from aborting
in such a situation, we can increase the value of b to increase
the size of the interval of confidence (ε) in the algorithm.

We considered employing other data analysis techniques,
such as bootstrapping and data blocking [77], to improve

our estimates. However, we decided to not use them since
(i) bootstrapping would require running the simulations over
many more time steps to be able to take many samples spaced
an autocorrelation time and (ii) data blocking requires a much
larger storage space.

As a final remark, we measure the error in the estimate
of the expected steady-state values using the standard error
ε = sN/

√
N , where sN is the sample standard deviation. In

particular, the error bars used in this paper correspond to ±2ε,
which provide a 95% interval of confidence.

Figure 13 shows an example of our algorithm finding the
steady state of the virtual neighborhood size when running the
SRS protocol in a network with a tree topology. The virtual
neighborhood size of three nodes is shown in different colors.
Dots correspond to the time tα at which the algorithm declares
that the steady state has been reached.

APPENDIX E: EXTRA EXPERIMENTS
ON A TREE NETWORK

Here, we provide more examples of the dependence of the
virtual neighborhood size, vi, and the virtual node degree, ki,
on the SRS protocol parameter q (probability that a node per-
forms a swap). In the main text, we discuss the dependence on
q using a network with the following baseline set of parame-
ters: (2,3)-tree topology, pgen = 0.9, Fnew = 0.888, pswap = 1,
r = 5, T = 2000 time steps, M = 4, pcons = 0.225, Fapp =
0.6, tcut = 56 time steps. Figure 14 shows similar plots for
networks with slightly different combinations of parameters
that correspond to larger trees, smaller consumption rate, and
probabilistic swapping. In all situations we observe the same
qualitative behavior as in the baseline case: the value of q that
maximizes the virtual neighborhood size is node dependent,
and ki is monotonically decreasing with increasing q.
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FIG. 14. Our performance metrics show the same qualitative behavior for different combinations of parameters. Expected virtual neigh-
borhood size (a), (c), (e), (g) and virtual node degree (b), (d), (f), (h) in the steady state in a tree network running the SRS protocol vs the
protocol parameter q. The value of q that maximizes the virtual neighborhood size is indicated by the dotted lines. Baseline parameters:
(2,3)-tree topology, pgen = 0.9, Fnew = 0.888, pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = 0.225, Fapp = 0.6, tcut = 56 time steps.
The subfigures in each row correspond to a different experiment (each caption indicates the parameters that have a different value in that
experiment). Results are obtained using a network simulation and Monte Carlo sampling with 103 samples. The error in the error bars is
defined as 2σ̂ /Nsamples, where σ̂ is the sample standard deviation and Nsamples is the number of samples.
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[34] F. Rozpędek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli,
A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, Parameter
regimes for a single sequential quantum repeater, Quantum Sci.
Technol. 3, 034002 (2018).

[35] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling,
Practical figures of merit and thresholds for entanglement distri-
bution in quantum networks, Phys. Rev. Res. 1, 023032 (2019).
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