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Multinucleon structure and dynamics via quantum computing
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We propose a framework for computing the structure and dynamics for second-quantized many-nucleon
Hamiltonians on quantum computers. We develop an oracle-based Hamiltonian input model that computes the
many-nucleon states and nonzero Hamiltonian matrix elements of the many-nucleon system. With our Fock-state
based input model, we show how to implement the sparse matrix simulation algorithms to calculate the dynamics
of the second-quantized many-nucleon Hamiltonian. Based on the dynamics simulation methods, we also present
the methodology for structure calculations of the many-nucleon system. In this work, we provide an explicit
circuit design of our input model of the second-quantized Hamiltonian within a direct encoding scheme that
maps the occupation of each available single-particle state in the many-nucleon state to the state of specific
qubit in a quantum register. We analyze our method and provide the asymptotic cost in computing resources for
structure and dynamics calculations of many-nucleon systems. For pedagogical purposes, we demonstrate our
input model with two model problems in restricted model spaces.
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I. INTRODUCTION

Ab initio calculations are powerful tools for investigat-
ing the structure (such as the spectrum and electromagnetic
moments) and dynamics (such as the transition probabili-
ties and scattering cross sections) of many-nucleon systems
[1–3]. In contrast with many-electron systems that reside in
an external potential and that are governed by the long-range
Coulomb force, many-nucleon systems are self-bound and
governed by multiscale interactions: the strong nuclear in-
teraction at short range, and the electromagnetic interaction
between the protons at long range. Constituent nucleons can
also interact with external probes via various types of interac-
tions, e.g., the electroweak interaction. Hence, the properties
and dynamics of many-nucleon systems are complex and
challenging.

Precision ab initio investigations of many-nucleon sys-
tems provide predictive power that complements experiments.
However, ab initio calculations exploit the quantum many-
body framework and are numerically demanding as large
Hilbert space dimensions are required to accurately account
for the multiple scales involved. Indeed, the required Hilbert
space dimension scales exponentially with the system size,
which makes the ab initio calculations intractable on world-
leadership supercomputers even for simple systems with more
than a few nucleons.

Quantum computers exploit the principles of quantum
mechanics to avoid the exponential scaling in computing re-
sources [4,5]. Hence, quantum computing techniques appear
to offer a promising cure for the dimensionality curse in
ab initio investigations of many-nucleon systems. To
date, prototype nuclear many-body calculations have been
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performed on real-world quantum hardwares [6–8]. Various
quantum algorithms [9–13] have been proposed for the struc-
ture and dymanics investigations for many-nucleon systems
on near-term noisy intermediate scale quantum (NISQ) de-
vices [14]. Future fault-tolerant quantum hardwares promise
to open up a fruitful path to revolutionize the investigations in
nuclear many-body theory.

In this work, we propose a framework for studying the
dynamics and structure of many-nucleon systems described
by second-quantized many-nucleon Hamiltonians [15–17] on
a quantum computer. We focus on the low-energy regime,
where a nonrelativistic particle number conserving Hamilto-
nian describes the fermion system.

The second-quantized many-nucleon Hamiltonian can be
expressed as a linear combination of monomials of the ladder
operators. For realistic calculations, one performs truncations
on the monomials and retains only up to few-body terms in the
Hamiltonian. Meanwhile, the retained monomials are further
restricted according to the symmetries of the many-nucleon
system. Due to such truncations and symmetry restrictions,
the second-quantized many-nucleon Hamiltonian is sparse,
which makes it appropriate for the applications of the sparse
matrix simulation methods [18–29].

One key question in applying such sparse matrix simula-
tion methods [18–29] to the second-quantized Hamiltonian
is the appropriate Hamiltonian input model for the second-
quantized Hamiltonian [30]. In contrast to the input models
proposed for the sparse Hamiltonian matrices, which access
the nonvanishing matrix elements via their row and column
indices, one deals with the Fock states within the formalism
of second quantization. Indeed, the adoption of the sparse
matrix simulation methods to the second-quantization for-
malism necessitates development of new Hamiltonian input
models that operate on Fock states directly in order to perform
corresponding structure and dynamics calculations.
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FIG. 1. Sketch of the algorithmic framework. The second-
quantized Hamiltonian H of the many-nucleon system is formulated
in Eq. (4). The identity of the block encoding is discussed in Eq. (51).
The oracles OF and OH are defined in Eqs. (43) and (44), respectively.

We develop an oracle-based Hamiltonian input model
that is suitable for simulating second-quantized Hamiltonians
(see the algorithmic framework in Fig. 1). We adopt the direct
encoding (DE) scheme (see details in Sec. III) which maps
the many-nucleon (Fock) states to binary strings in the quan-
tum registers. Our input model operates directly on the Fock
states, or the corresponding binary strings. The oracles of our
input model compute (1) the output Fock state based on the
corresponding input Fock state; (2) the active single-nucleon
bases that are first annhilated and then created in the input
Fock state to form the output state; and (3) the few-nucleon
kernel based on the active single-nucleon bases, where the ker-
nel eventually contributes to the Hamiltonian matrix element.
We achieve this oracle design by incorporating the monomi-
als of the ladder operators of the Hamiltonian, whereby the
symmetries of the Hamiltonian are encoded in the oracles.
Using oracle queries, we can construct a block encoding of
the Hamiltonian [27,31,32].

Based on our input model, high-level sparse-matrix sim-
ulation algorithms with optimal query complexities can be
implemented to simulate the second-quantized many-nucleon
Hamiltonians. The structure calculations share the circuit
construction of the same time-evolution unitary as that in
the simulation algorithms. Therefore, such Hamiltonian sim-
ulation algorithms can also be adapted to the structure
calculations of many-nucleon system. We analyze the cost of
our method for the dynamics and structure calculations for
many-nucleon systems, based on the query complexities of
the simulation algorithms and the cost of the oracles.

For pedagogical purposes, we illustrate our method with
two model problems in restricted model spaces. Whereas
the sparse-matrix algorithms are presented extensively in the
literature [18–29], we focus on demonstrating the design of
our input model. As a future research effort, we will perform
dynamics and structure calculations via our method for simple
many-nucleon systems with realistic internucleon interactions
within restricted model spaces.

Our work complements the work by Kirby et al. [30]. We
share the theme of developing efficient and precise quantum
algorithms for second-quantized Hamiltonians. The following
features distinguish our work: (1) different target Hamilto-
nians and single-particle basis representations; (2) different
encoding schemes; and (3) different designs of the input
model. While Ref. [30] employs the compact encoding (CE)
scheme (see details in Sec. III) and log-local operations for
controlled arithmetic calculations to improve the gate com-
plexity and qubit cost, which is preferable for the simulations
of quantum field theory on long-term quantum computers, we
adopt the DE scheme for the problems with fixed particle
number and species and design our input model based on
primitive gate operations, aiming for straightforward proto-
type nuclear structure and dynamics calculations on NISQ
devices. With further development, our method can be applied
to second-quantized Hamiltonians for systems with bosons
and fermions, and with particle creations and annihilations.

This work is organized as follows. In Sec. II we introduce
the elements of many-nucleon calculations, which include
the many-nucleon Hamiltonian and our choice of basis. In
Sec. III we discuss the encoding scheme for many-nucleon
calculations on quantum computers. In Sec. IV we present
algorithms for solving the structure and dynamics problems of
second-quantized many-nucleon Hamiltonians based on our
oracle-based input model that treats the Fock states directly.
We also discuss the query complexity of our algorithms. In
Sec. V we show the design of our oracles within the DE
scheme, where we also analyze their gate and qubit costs.
Combined with the query complexity, we present the asymp-
totic qubit and gate cost of our algorithms in Sec. VI, where
we compare our algorithm with those for simulating a molec-
ular Hamiltonian. We illustrate our method with two model
problems in Sec. VII. We conclude in Sec. VIII, where we
also provide an outlook.

II. MANY-NUCLEON SYSTEM

In this section we discuss the Hamiltonian of the many-
nucleon system. To facilitate the design of our input model,
we reformulate the second-quantized many-nucleon Hamil-
tonian. Finally, we discuss the constructions of the single-
particle (SP) basis and the many-nucleon bases.

A. Many-nucleon Hamiltonian

1. First quantization

The Hamiltonian of the A-nucleon system (A � 2), which
acts only on the internal degrees of freedom, reads [15–17]

HA = Trel + V =
A∑

i< j

( �pi − �p j )2

2mN A
+ VNN + VNNN + · · · , (1)

where mN denotes the nucleon mass, Trel denotes the kinetic
energy, and �pi denotes the momentum of the ith nucleon.
The inter-nucleon interaction V consists of the two-nucleon
interaction VNN, the three-nucleon interaction VNNN, etc. For
the purpose of demonstration, we restrict our discussion to
the two-nucleon interaction VNN and ignore the many-nucleon
interactions in this work. Generalization of the formalism in
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this work to the applications with many-nucleon interactions
is straightforward.

A popular choice of the SP basis employed in nuclear
physics is the three-dimensional harmonic oscillator basis
(3DHO) (see, e.g., Ref. [15] and references therein). This
basis, with appropriate many-body truncation, enables an ex-
act factorization of an eigenfunction of the nuclear system
into the “intrinsic” and “center of mass” (CM) components
in order to preserve Galilean invariance. With this advantage,
the spurious CM excitation due to the adoption of an SP
basis can be pushed higher than the physically interesting
spectrum by employing a Lipkin-Lawson Lagrange multiplier
term [33,34]. Overall, we have the total Hamiltonian as1

H = HA + �CM(HCM − 3�/2), (2)

where the second term is the Lipkin-Lawson term that penal-
izes the spurious CM excitation with the coefficient �CM > 0.
HCM is the Hamiltonian of the CM harmonic oscillator, which
is defined as

HCM = TCM + UCM = �P2

2MN
+ 1

2
MN�2 �R2 (3)

with MN = AmN . The total momentum of the A-nucleon sys-
tem is �P =∑A

i=1 �pi. � denotes the oscillator energy of the CM
harmonic oscillator, of which the zero-point energy is 3�/2.
The position vector of the mass center of the A-nucleon sys-
tem is �R = 1

A

∑A
i=1 �ri. One can readily show that [HA, HCM] =

0. The operator �CM(HCM − 3
2�) in Eq. (2) is semipositive

definite. It penalizes the solutions with CM excitations; the
spectrum of H with all the states in the lowest oscillator
eigenmode in the CM degree of freedom (with energy 3�/2)
corresponds to the available set of solutions for the intrinsic
motion of the A-nucleon system.

2. Second-quantized Hamiltonian

The Hamiltonian H [Eq. (2)] consists of three two-body
terms [recall that we retain only the two-nucleon interaction
VNN in HA (1)]. In the formalism of second quantization, we
can formulate H as a linear combination of the monomials of
ladder operators

H =
∑

p<q,r<s

〈pq|H |rs〉a†
pa†

qasar, (4)

where a†
p and aq are the fermionic creation and annihilation

operators, which obey the anti-commutation relations:

{a†
p, aq} = δpq, {a†

p, a†
q} = {ap, aq} = 0, (5)

with the subscript specifying the SP basis states that each
specific ladder operator acts on. For example, we have

a†
p|0〉 = |1〉p, ap|1〉p = |0〉, a†

p|1〉p = 0, ap|0〉 = 0, (6)

where |0〉 denotes the vacuum for SP state (no occupation),
and |1〉p denotes that the pth SP state is occupied. The Hamil-
tonian matrix element Hpqrs := 〈pq|H |rs〉 is

Hpqrs = Trel,pqrs + VNN,pqrs + HCM,pqrs, (7)

1We adopt natural units in this work and take h̄ = c = 1.

where we have

Opqrs ≡ 〈pq|O|rs〉

= 1

2

∫
[φ†

p(1)φ†
q (2) − (p ↔ q)]O

× [φr (1)φs(2) − (r ↔ s)]d�r1d�r2, (8)

with the operator O representing Trel, VNN, or (HCM − 3�/2).
φv (v = p, q, r, s) denotes the wave function of the vth SP
basis state that specified by the spatial, spin, and isospin
variables. The labels “1” and “2” in the parentheses are the
nucleon indices. Note that the integrals are over the spatial
variables �ri (i = 1, 2), while the matrix elements can be spin-
and isospin-dependent in general.

For the input Fock state |F〉 and the output Fock state |G〉,
we can calculate the Hamiltonian matrix element with Eq. (4)
as

〈G|H |F〉 =
∑

p<q,r<s

〈pq|H |rs〉〈G|a†
pa†

qasar |F〉. (9)

3. Modified second-quantized Hamiltonian
for quantum computing

We now introduce our modification to the second-
quantized Hamiltonian in order to facilitate the design of our
Hamiltonian input model in quantum computing. The basic
idea is to introduce tags to specify the monomials and their
respective coefficients in Eq. (4). To this end, we first rewrite
Eq. (4) as

H =
∑

P

∑
Q

H (Q, P)b†
QbP, (10)

where the tag P �→ {r, s} (with r < s) is an integer that indexes
the pair of SP bases (order sensitive) to be annihilated, while
the tag Q �→ {p, q} (with p < q) is an integer that indexes the
pair of SP bases (order sensitive) to be created. The tags P and
Q can be taken as positive integers, and we require that P = Q
if and only if r = p and s = q. We use the tags to specify the
pairwise creation operators and annihilation operators as b†

Q =
a†

pa†
q, bP = asar such that b†

QbP = a†
pa†

qasar . Correspondingly,
P and Q are also employed to index the matrix element
(two-nucleon kernel in this work)

H (Q, P) = 〈pq|H |rs〉. (11)

We note that Eq. (10) is equivalent to Eq. (4).
Next, we attach (decorate) each term in the right-hand

side of Eq. (10) with an additional selection operator (|Q〉〈P|)
constructed based on the tags P and Q, and obtain

H =
∑

P

∑
Q

H (Q, P)b†
QbP ⊗ |Q〉〈P|. (12)

Note that the tags P and Q are encoded in the ancilla registers
as the tag states |P〉 and |Q〉 in our design of input model,
respectively. Analogous to the term-selection scheme in the
algorithm of linear combination of unitary [35], we can oper-
ate on the tag states |P〉 and |Q〉 in the ancilla registers to select
the corresponding monomial b†

QbP (acting on the Fock states
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encoded in separate registers) together with the coefficient
H (Q, P).2

We now illustrate how to compute the Hamiltonian matrix
element 〈G|H |F〉 [Eq. (9)] with H via a concrete example.
These Fock states are constructed as the tensor products of the
elements in the SP basis set, where we take the total number
of the SP bases in the set to be Nsp. The conclusion of this
example is shown as Eq. (16) below.

We note that only a subset of monomials

{b†
QbP} = {a†

pa†
qasar | p < q, r < s,

and 0 � p, q, s, r � Nsp − 1} (13)

exist in the Hamiltonian according to the symmetries of the
Hamiltonian (e.g., the conservation of the baryon number, par-
ity, total angular momentum, etc.). For a pair of SP bases to be
annihilated in the input Fock state, only those pairs that satisfy
certain criteria can be created, such that the corresponding
〈G|H |F〉 is nonzero due to the restriction of the symmetries
of H (see Sec. VII for examples).

We assume the total number of the distinct symmetry-
preserving monomials b†

QbP to be D, and employ the index i to
label each distinct pair of tags as (Qi, Pi ) with i ∈ [0,D − 1],
Pi �→ {ri, si}, and Qi �→ {pi, qi}. According to Eq. (12), we
can write

H =
D−1∑
i=0

H (Qi, Pi )b
†
Qi

bPi ⊗ |Qi〉〈Pi|. (14)

Then, for the input Fock state |F〉 with the tag state |Pi〉
and the output Fock state |G〉 with the tag state |Qi〉, the
contribution of the two-nucleon matrix element with the active
SP bases labeled by Pi and Qi to the many-nucleon matrix
element is computed as

〈G, Qi|H|F , Pi〉

= (〈G|〈Qi|)
[D−1∑

j=0

H (Qj, Pj )b
†
Qj

bPj ⊗ |Qj〉〈Pj |
]

(|F〉|Pi〉)

= H (Qi, Pi )〈G|b†
Qi

bPi |F〉, (15)

where H (Qi, Pi ) = 〈piqi|H |risi〉 is the specific two-nucleon
matrix element. The factor 〈G|b†

Qi
bPi |F〉 accounts for the

weight that results from the anti-commutation relations
[Eq. (5)]; it can be ±1 or 0 (e.g., when |F〉 and |G〉 differ
for more than two SP bases in their respective compositions).

Finally, one sums over all the D pairs of (Qi, Pi ) to enu-
merate the possible two-nucleon kernels that could contribute
to the Hamiltonian matrix element

D−1∑
i=0

〈G, Qi|H|F , Pi〉 = 〈G|H |F〉. (16)

This reproduces the result of Eq. (9) in the case with Nsp SP
bases.

2In other words, we introduce the mapping between the tag states
{|Q〉, |P〉} and {H (Q, P) b†

QbP} in our algorithmic design. This
corresponds to the decoration with the selection operator |Q〉〈P| in
Eq. (12).

B. SP basis and many-nucleon basis

“Ab initio” nuclear theory addresses the nuclear structure
and the dynamics problems based on the best available inter-
nucleon interactions using a quantum many-body framework
that respects all the known symmetries of nuclear systems
[36]. In ab initio nuclear structure and dynamics calculations,
one specifies the SP basis by a set of quantum numbers.
With a set of SP bases, one constructs the many-nucleon
bases (or Fock states), which enable the construction of the
matrix representation of the many-nucleon Hamiltonian. With
the Hamiltonian matrix constructed, the resulting eigenvalue
problem is solved numerically to obtain structure observables
(e.g., eigenenergies) and dynamical quantities (e.g., cross sec-
tions). Due to the nature of the quantum many-body theory, ab
initio calculations are recognized to be computationally hard:
the dimension of the Hilbert space increases exponentially
with the number of SP bases. Even with world leadership
supercomputers, current “ab initio” nuclear structure and
dynamics calculations are limited to light nuclear systems
with restricted number of constituent nucleons and SP bases
[37]. One then seeks for the quantum advantage to facilitate
the ab initio investigations of increasingly complex nuclear
systems.

In this work, we construct the SP basis |β〉 as follows. We
adopt the 3DHO basis for the spatial degree of freedom. The
quantum number for the 3DHO basis is the radial quantum
number n and the orbital angular momentum l . The projection
of l is ml . The corresponding excitation quanta of 3DHO basis
state is 2n + l . Meanwhile, we have the spin part of the wave
function χSms , where the spin of the nucleon S is taken to be 1

2
and the spin projection ms is taken to be ± 1

2 . The total angular
momentum j is coupled from the orbital angular momentum
l and the spin S, with mj = ml + ms being the projection of
j. Finally, we include the isospin part of the wave function
χT τ , where T = 1

2 for the isospin doublet (proton and neutron)
and the isospin projection is τ (+1/2 for protons and −1/2
for neutrons). Overall, we have the SP basis |β〉 to be labeled
by the set of quantum numbers {n, l, S, j, mj, T, τ }.3 In the
following, we will omit the labels of the spin S and isospin T
(which take the constant values) for brevity.

We can construct the many-nucleon basis based on the SP
basis set S. In particular, we index the Nsp SP bases in the
basis set as S = {|β0〉, |β1〉, . . . , |βNsp−1〉}. A many-nucleon
basis can be written as

|F〉 = |α0, α1, . . . , αA−1〉 = a†
α0

a†
α1

· · · a†
αA−1

|0〉, (17)

where |0〉 denotes the vacuum. Each |αi〉 (with i = 0, 1, . . . ,

A − 1) represents a unique and exclusive element in the set S
according to the Pauli principle. Meanwhile, we also require
that the ordering of |α0〉, |α1〉, . . . , |αA−1〉 preserves the
ordering of S. This regulation of the ordering results from the
anticommutation relations [Eq. (5)] and is important to retain
the relative phases upon the action of the fermionic ladder
operators.

3Alternative choices of basis can be adopted. For example, one can
adopt the momentum basis for the spatial degree of freedom, which
is frequently used in the research of quantum field theories.
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We can construct the many-nucleon bases based on the set
S. In general, the number of the many-nucleon bases that can
be constructed for an A-nucleon system with Nsp available SP
bases is Nmp = (Nsp

A

)
. One can also index these many-nucleon

bases and obtain the many-nucleon basis set as

M = {|F0〉, |F1〉, . . . , |FNmp−1〉}. (18)

III. ENCODING SCHEME

Various encoding schemes can be employed to map a
many-nucleon state to a state of qubits in a quantum register.
In this work we choose to employ the DE scheme for this
mapping.

In the DE scheme, we implement a quantum register
containing Nsp qubits, where each qubit corresponds to a par-
ticular SP basis state in the set S = {|β0〉, |β1〉, . . . , |βNsp−1〉}
with elements fixed in order. While the locations of the qubits
are fixed (this preserves the order of SP bases in the set S),
the state of each qubit represents the occupation of the corre-
sponding SP state in the many-nucleon state: if the SP state is
occupied (vacant), the corresponding qubit is in the state |1〉
(|0〉). With this scheme, a particular many-nucleon state |F〉
in the set M is represented by a unique and order-sensitive
binary string.

The number of qubits required by the DE scheme equals
the number of the SP bases, and is independent of the num-
ber of nucleons in the system. As an example, provided the
SP basis set S = {|β0〉, |β1〉, |β2〉, |β3〉, |β4〉, |β5〉, |β6〉, |β7〉}
(Nsp = 8), it takes Nsp = 8 qubits for the DE scheme to encode
the particular five-nucleon (A = 5) state

|β1, β3, β4, β6, β7〉 = a†
β1

a†
β3

a†
β4

a†
β6

a†
β7

|0〉, (19)

as the binary string |01011011〉 on the qubit register, where we
obtain the binary string by (1) arranging these eight SP bases
in the set S from left to right and (2) recording the occupation
of each state. The total number of occupations corresponds to
the nucleon number A. Two more detailed examples can be
found in Sec. VII.

We comment that the DE scheme presented here fol-
lows directly the Jordan-Wigner encoding scheme [38–40],
which maps the occupations of fermionic SP states into a
string of binaries. The application of the DE scheme enables
us to develop the many-nucleon theories on quantum com-
puters following the well-established routine adopted in the
many-body theories via classical computing, such as the full-
configuration interaction approach (see, e.g., Ref. [41] and
references therein).

We note that the many-nucleon state can also be encoded
in other schemes as well. One alternative is the CE scheme
[30,42]. Compared to the DE scheme where the occupations
of all SP states are encoded as a binary string (whether they are
occupied or not), we can record only the indices (and/or the
corresponding quantum numbers) of the occupied SP states in
qubits. Respecting the anticommutation rule, one also requires
that the order of the indices (of the occupied states) recorded
in respective quantum registers preserve that of the SP bases
in the set S: this can be achieved by the reordering procedure
shown in Ref. [30], which would necessitate controlled arith-
metic operations on quantum computers.

In general, the cost of the qubit resources via the CE
scheme scales better than that of the DE scheme. In particular,
the CE scheme would take A quantum registers, each con-
taining �log2 Nsp� qubits, to encode an A-nucleon basis state
that is constructed based on Nsp SP bases, where each register
records one index of the corresponding occupied SP state. In
this case, the total number of qubits required is A�log2 Nsp�,
which scales better than Nsp via the DE scheme.

The price for achieving a better qubit cost via the CE
scheme is the circuit complexity, which requires log-local op-
erations for the controlled arithmetic operations on quantum
computers [30]. In order to achieve the straightforward proto-
type structure and dynamics calculations on the NISQ devices,
we proceed with the DE scheme in this work: while the qubit
cost is less favorable than the CE scheme, the circuit design
of the Hamiltonian input model is more straightforward within
the DE scheme.

IV. SPARSE HAMILTONIAN PROBLEMS
ON QUANTUM COMPUTER

In this section we first review some of the sparse ma-
trix simulation algorithms for simulating the time-dependent
and time-independent Hamiltonians. Then we discuss how
these algorithms can be implemented to simulate the second-
quantized Hamiltonian, where we devise the necessary input
model to access the Hamiltonian matrix in the Fock-state
representation in terms of the block-encoding scheme. Finally,
we propose a framework for solving structure problems based
on the second-quantized Hamiltonian.

A. Notation of matrix norms

For clarification, we first summarize the notation of dif-
ferent norms of the matrix B, where B is Hermitian and B ∈
CNdim×Ndim with Ndim being the matrix dimension. We denote
the spectral norm of B as ||B||. The induced 1-norm of B is
defined as

||B||1 := max
j

Ndim−1∑
k=0

|Bjk|, (20)

where j ∈ [0, Ndim − 1] and k ∈ [0, Ndim − 1] are the row and
column indices, respectively.

The max norm of B is defined as the largest matrix element
of B in absolute value,

||B||max := max
j,k

|Bjk|. (21)

The above three norms satisfy the inequality (Lemma 1 in
Ref. [43])

||B||max � ||B|| � ||B||1 � Ndim||B||max. (22)

Especially, when B is d sparse, i.e., there are at most d nonzero
entries in any row and column of B, the above inequality can
be written as [43]

||B||max � ||B|| � ||B||1 � d||B||max. (23)
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B. Input model and simulation algorithms
for sparse Hamiltonian matrices

Efficient sparse Hamiltonian simulation algorithms depend
on efficient input models of the Hamiltonian matrix. One
of the most widely used input models specifies the d-sparse
Hamiltonian matrix H via two types of oracles that can be
implemented in terms of elementary unitary operations. Orig-
inally defined in the quantum-walk-based algorithms [21,22],
the first type of the oracle computes the locations (in terms of
indices) of the nonzero matrix elements. This oracle is termed
as the “enumerator oracle.” It is typically defined as

O′
F| j, i〉 = | j, f ( j, i)〉, (24)

with j ∈ {0, 1, 2, . . . , Ndim − 1} and i ∈ {0, 1, . . . , d − 1}.
The function f ( j, i) gives the column index of the ith nonzero
Hamiltonian matrix element in the jth row.

The second oracle, referred to as the “matrix-element ora-
cle,” calculates the matrix element when provided the indices
computed by the enumerator oracle. The matrix-element ora-
cle can be defined as

O′
H| j, k, 0〉 = | j, k, Hjk〉. (25)

After O′
H functions, the matrix element Hjk is stored in the

quantum register (initialized in the |0〉 state as denoted by
0 in the left-hand side of the above equation) in the binary
form with some desired precision. It is worth noting that O′

H
operates only when the O′

F computes the pair of indices that
correspond to the nonzero matrix element.

With O(1) queries to the enumerator and matrix-element
oracles, one can construct the isometry for the discretized
quantum walk (Lemma 4 in Ref. [22])

T0 =
Ndim−1∑

j=0

| j〉|φ j〉〈 j|, (26)

where

|φ j〉 =
√

ρ

||H ||1
Ndim−1∑

k=0

√
H∗

jk|k〉|0〉 +
√

1 − ρσ j

||H ||1 |ζ j〉|1〉,

(27)

with |ζ j〉 being some superposition of the |k〉 and σ j =∑Ndim−1
k=0 |Hjk|. ρ ∈ (0, 1] is a parameter that can be tuned to

obtain a lazy quantum walk [22].
Based on the isometry T0, the quantum walk operator is

defined as [22]

W0 := iS′(2T0T †
0 − I), (28)

where the swap operator S′ is defined such that

〈 j|〈φ j |S′|k〉|φk〉 = ρ

||H ||1 Hjk . (29)

It can also be proved that [22]

T †
0 S′T0 = ρ

||H ||1 H ⊗ |0〉〈0| + |·〉〈·| ⊗ |1〉〈1|, (30)

where the first term is related to the Hamiltonian; it can be
projected onto by taking the ancilla to be in the state |0〉. The
second term is orthogonal to the first term, where |·〉〈·| denotes

some operator irrelevant to the Hamiltonian simulation. Equa-
tion (30) is a block-encoding of the Hamiltonian H [27,32].

The oracle-based sparse matrix input model is also adopted
in other well-known quantum simulation algorithms. For ex-
ample, qubitization employs the two queries to the O′

F oracle,
and one query to the O′

H oracle to construct the isometries
(Lemma 6 in Ref. [27])

T1 =
∑

j

|ψ j〉〈0|a〈 j|s, (31)

T2 =
∑

k

|χk〉〈0|a〈k|s, (32)

where

|ψ j〉 =
∑
p∈Fj

|p〉a3√
d

(√
Hpj

||H ||max
|0〉a1

+
√

1 − |Hpj |
||H ||max

|1〉a1

)
|0〉a2 | j〉s, (33)

〈χk| =
∑
k∈Fk

〈p|s√
d

(√
Hkp

||H ||max
〈0|a2

+
√

1 − |Hkp|
||H ||max

〈1|a2

)
|0〉a1 | j〉a3 , (34)

with 〈χk|ψ j〉 = Hk j

d||H ||max
. Fj = { f ( j, k)}k∈[d] denotes the set of

the column indices of all the nonzero entries in the jth row.
The construction of T1 and T2 follows that of T0 (see

Lemma 4 in Ref. [22]). Here one chooses the parameter ρ

such that
ρ

||H ||1 = 1

d||H ||max
. (35)

In doing so, one replaces ||H ||1 by the quantity ||H ||max. This
is useful in the cases where ||H ||1 is not known exactly, replac-
ing of ||H ||1 by some better known quantities (e.g., ||H ||max

in this case) is helpful. We see from Eqs. (33) and (34) that (1)
the amplitudes for the |0〉a1 state and the |0〉a2 state are at most
1 and (2) the single-qubit states in the parentheses correspond
to the simple rotations of the qubits a1 and a2 from the |0〉
states, respectively.

The d-sparse Hamiltonian H can be accessed via the block
encoding of Hamiltonian as

(〈G|a ⊗ Is)T †
2 T1(|G〉a ⊗ Is) = H

d||H ||max
, (36)

with |G〉 = |0〉a1 |0〉a2 |0〉a3 . For the dynamics simulation with
time-independent d-sparse Hamiltonian H , the quantum sig-
nal processing takes4

O

(
d||H ||maxt + log

(
1
ε

)
log log

(
1
ε

)) (37)

4We adopt the typical convention in computer science in this work.
For any functions w and v, w ∈ �(v) denotes that w is asymptot-
ically upper and lower bounded by multiples of v, while w ∈ O(v)
indicates that w is asymptotically upper bounded by v, and w ∈ o(v)
indicates that w/v → 0 in the asymptotic limit.
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queries to the oracles (Corollary 15 in Ref. [27]). It is note-
worthy that this scaling is optimal in the simulation error ε

(Theorem 1.2 in Ref. [23]), and the simulation time t (accord-
ing to the no-fast-forwarding theorem [22]).

Moreover, the oracle-based sparse matrix input model is
adopted in the rescaled Dyson-series (RDS) algorithm [29]
to simulate the time-dependent Hamiltonians H (t ) with the
L1-norm scaling. Besides O′

F and O′
H, the RDS algorithm

employs two additional oracles to rescale the Hamiltonian de-
pending on its instantaneous max-norm during the evolution.
These additional oracles are [29]

Ovar|ς, z〉 = |ς, z ⊕ f −1(ς )〉, (38)

Onorm|t, z〉 = |t, z ⊕ ||H (t )||max〉, (39)

where Ovar implements the inverse of changing variable and
Onorm computes the max-norm. f (t ) is defined as

f (t ) :=
∫ t

0
||H (t ′)||max dt ′, (40)

where the evolution is taken to be from the initial time ti = 0
to the final time t f = t , without loss of generality. As f (t )
increases monotonically, one can implement binary search to
compute f −1(ς ) up to precision δ̄ using O[log(t/δ̄)] queries
to f . As long as ||H (t )||max can be efficiently computed for
any time during the evolution, one can efficiently implement
the Ovar and Onorm oracles.

Overall, with the rescaled Hamiltonian H ( f −1(ς ))/
||H ( f −1(ς ))||max for a rescaled total evolution time of
||H ||max,1 := ∫ t

0 ||H (t ′)||max dt ′, the RDS algorithm takes

O

(
τ̃

log
(

τ̃
ε

)
log log

(
τ̃
ε

)) (41)

oracle queries of O′
F, O′

H, Ovar, and Onorm to simulate H (t ) for
time t within error ε [29]. Here τ̃ depends on the L1 norm of
the ||H (t ′)||max during the evolution,

τ̃ := d
∫ t

0
||H (t ′)||maxdt ′. (42)

The RDS algorithm achieves a near optimal scaling of the
oracle queries with respect to the evolution time t , and is
optimal in the scaling of the oracle queries with respect to
the simulation error ε.

C. Fock-state-based input model and algorithms
for structure and dynamics

In Sec. IV B we review the oracle-based input model
that accesses the sparse Hamiltonian matrix elements via
their indices. We also review the efficient simulation al-
gorithms that were developed based on this input model,
and perform efficient simulations for both time-dependent
and time-independent Hamiltonians. However, the above
input model can become inefficient when one treats second-
quantized Hamiltonians for many-nucleon systems, where one
deals with the Fock states instead of the row and column
indices and it would be complicated to switch between the
indices and the Fock states in many-body calculations [30].

In this section, we develop an input model for the second-
quantized Hamiltonian. This input model is constructed based

on the Fock states employing the idea of Ref. [30]. Com-
pared to the input model reviewed in Sec. IV B that accesses
the nonzero Hamiltonian matrix elements via their row and
column indices, we seek to restore the natural connection
between the Fock states and the matrix elements of the
second-quantized Hamiltonian in our input model. Here, we
first introduce our definitions of the oracles for the Fock states,
and then the construction of the isometry by O(1) queries to
these oracles. The isometry is implemented to block encode
the many-nucleon Hamiltonian. Our Fock-state-based input
model for the second-quantized Hamiltonian can be imple-
mented with those efficient simulation algorithms discussed
in Sec. IV B.

1. Oracle definitions

We define our enumerator oracle as

OF|F〉|i〉|0〉|0〉|0〉|0〉 = |F〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi(F , Pi, Qi )〉,

(43)

with yi(F , Pi, Qi ) = 0 or 1. That is, provided the input A-
nucleon (Fock) state |F〉 and the index i ∈ [0,D − 1], the
enumerator oracle computes )1) the pair of SP states {ri, si}
tagged by Pi to be annihilated in |F〉 (to form |FPi〉); (2)
the pair of SP states {pi, qi} tagged by Qi to be created in
|FPi〉 (to form |F ′

i 〉); (3) the output Fock state |F ′
i 〉; and (4)

the function yi(F , Pi, Qi ). Here D denotes the total number
of the different combinations of Pi and Qi, where each pair
is indexed by i. The OF oracle also uncomputes the ancilla
register that encodes the index i, which is initialized as |0〉.

We remark that (1) if |yi(F , Pi, Qi )〉 = |0〉, then |F ′
i 〉|Qi〉

connects to |F〉|Pi〉 via the term H (Qi, Pi )b
†
Qi

bPi |Qi〉〈Pi|
in Eq. (14), which, in principle,5 results in a nonvanish-
ing two-body kernel 〈F ′

i , Qi|H|F , Pi〉; and (2) otherwise,
if |yi(F , Pi, Qi )〉 = |1〉, then |F ′

i 〉|Qi〉 does not connect to
|F〉|Pi〉 via H (Qi, Pi )b

†
Qi

bPi |Qi〉〈Pi| and the two-body kernel
〈F ′

i , Qi|H|F , Pi〉 = 0. It is also noted that the index i here
does not number the location of the sparse matrix element; it
labels different terms in Eq. (14), each of which corresponds
to a distinct monomial b†

Qi
bPi = a†

pi
a†

qi
asi ari .

We define the matrix-element oracle OH as

OH|F〉|Pi〉|F ′
i 〉|Qi〉|0〉 = |F〉|Pi〉|F ′

i 〉|Qi〉|H(F ′
i , Qi;F , Pi )〉,

(44)

where H(F ′
i , Qi;F , Pi ) = 〈F ′

i , Qi|H|F , Pi〉 is defined in
Eq. (15) and its relation to the A-nucleon Hamiltonian matrix
element is shown in Eq. (16). Indeed, the OH oracle takes the
input from OF and it operates only when |yi(F , Pi, Qi )〉 = |0〉
[i.e., the corresponding H(F ′

i , Qi;F , Pi ) is, in principle, non-
vanishing]. This will always be the case for us in this work.

2. Isometry construction

In comparison to the standard definitions of the isometry
defined in Eqs. (26), (31), and (32), we define the isometry T

5This is determined by the value of the corresponding kernel
H (Qi, Pi ) up to some precision δ̄.
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for our matrix input model that is based on the Fock states as

T =
∑

b

∑
|F〉

|F〉〈F | ⊗ |b〉〈b| ⊗ |φF ,b〉, (45)

where we also introduce a single-qubit ancilla |b〉 with
b= 0, 1. We note that |b〉 plays the role of the ancilla state
that flags the signal operator (Hamiltonian) in the formalism
of the qubitization [26,27]. Based on the values of b, |φF ,b〉 is
defined as

|φF ,0〉 =
√

1

D�m

∑
i∈I(F )

[
√

〈F ′
i , Qi|H|F , Pi〉|0〉|Pi〉|F ′

i 〉|Qi〉|yi〉|0〉|0〉] +
√

1 − σF
D�m

|ζF 〉|1〉, (46)

|φF ,1〉 =|0〉|0〉|0〉|0〉|0〉|0〉|1〉, (47)

where we define

|ζF 〉 =
√

1

1 − σF
D�m

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉

]
(48)

with σF =∑D−1
i=0 |〈F ′

i , Qi|H|F , Pi〉|. The parameter �m is
defined as

�m � max
i

|〈F ′
i , Qi|H|F , Pi〉| = max

i
|〈piqi|H |risi〉|. (49)

I (F ) denotes the set of indices i for which
〈F ′

i , Qi|H|F , Pi〉 �= 0 and yi = yi(F , Pi, Qi ) = 0.
The isometry T defines the mapping

T |F〉|b〉 = |F〉|b〉|φF ,b〉. (50)

It can be proved that isometry T [Eq. (45)] can be imple-
mented with O(1) queries to OF and OH defined in Eqs. (43)
and (44) (see Lemma 1 in Appendix A 1 for the proof).

Analogous to Ref. [22], we find that the isometry T , to-
gether with the corresponding swap operator S, defines the
block encoding of the second-quantized Hamiltonian as (see
the proof in Appendix A 2)

T †ST = 1

D�m
H ⊗ |0〉〈0| + |0〉〈0| ⊗ |1〉〈1|. (51)

It follows that, with λ̃ j and |λ j〉 being the eigenvalue and
the corresponding eigenvector of the scaled Hamiltonian
H̃ = 1

D�m
H , we have

T †ST |λ j〉|0〉 =
[

1

D�m
H ⊗ |0〉〈0| + |0〉〈0| ⊗ |1〉〈1|

]
|λ j〉|0〉

= λ̃ j |λ j〉|0〉. (52)

We can also rewrite Eq. (51) as

(1 ⊗ 〈0|)(T †ST )(1 ⊗ |0〉) = 1

D�m
H, (53)

where 1 denotes the unit operator acting on the signal register
that encodes the Fock states, while |0〉 and 〈0| act on the an-
cilla register that encodes |b〉. We note that Eq. (53) is related
to Eq. (36). This can be seen by noticing that (1) the isometries
ST and T take the roles of T1 [Eq. (31)] and T2 [Eq. (32)],
respectively and (2) the sparsity d of the Hamiltonian matrix
is replaced by the number of the monomials (of the ladder
operators), D, in the second-quantized Hamiltonian, where
we have D ∈ O(N4

sp) for the many-nucleon Hamiltonian that
contains at most two-body terms [44].

In particular, we can compute the Hamiltonian matrix el-
ement for the second-quantized Hamiltonian as [Eq. (A24)]

〈F |〈0|(T †ST )|G〉|0〉 = 1

D�m
〈F |H |G〉, (54)

with the action of the Fock states |F〉 and |G〉.

D. Simulating the second-quantized many-nucleon Hamiltonian

Our input model can be directly implemented to high-level
algorithms to simulate the second-quantized Hamiltonians
with optimal and near-optimal oracle complexities with re-
spect to the simulation error and simulation time.

As for simulating the time-independent second-quantized
Hamiltonian, we can implement our input model with the
quantum signal processing [26,27]. Following Corollary 15
in Ref. [27], it takes

O

(
D�mt + log( 1

ε
)

log log( 1
ε

)

)
(55)

queries to the OF and OH oracles to simulate the time-
independent Hamiltonian H for time t within error ε.
Compared to Eq. (37), we note that the scaling of the simu-
lation time in the oracle complexity is replaced by D�m. This
can be understood by comparing Eq. (36) and Eq. (53), where
the scalings of the block-encoded Hamiltonians are 1

d||H ||max

and 1
D�m

within the frameworks of the first- and second-
quantization, respectively.

Our input model can also be directly implemented into the
RDS algorithm [29]. It follows from Theorem 10 in Ref. [29]
that one can simulate the evolution of the time-dependent
second-quantized Hamiltonian H = H (t ) for time t using

O

(
τ̃ ′ log

(
τ̃ ′
ε

)
log log

(
τ̃ ′
ε

)) (56)

oracle queries of OF and OH, as well as the compatible Ovar

and Onorm,6 within error ε. τ̃ ′ depends on the L1-norm of

6Here we define Ovar and Onorm according to �m = �m(t ) instead
of the max-norm of the instantaneous Hamiltonian ||H (t )||max in
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�m(t ) during the evolution,

τ̃ ′ := D
∫ t

0
�m(t ′) dt ′. (57)

�m(t ′) is defined based on the instantaneous Hamiltonian as
�m(t ′) � maxi |〈piqi|H (t ′)|risi〉| for i ∈ [0,D − 1] and t ′ ∈
[0, t], where the time-dependent kernel is defined as Eq. (15)
with the time dependence explicitly shown. We also note that
the scaling in τ̃ = d

∫ t
0 ||H (t ′)||max dt ′ in Eq. (41) is substi-

tuted by Eq. (57), as a consequence of the change in the
scaling of the block-encoded Hamiltonian, from 1

d||H (t ′ )||max
to

1
D�m (t ′ ) , in our input model [Eq. (53)].

E. Structure problems of the many-nucleon Hamiltonian

Besides simulating the dynamics of the many-nucleon sys-
tems, one is also interested in solving structure problems
which involve spectra and other observables. In such structure
problems, one confronts constructing functions of the Hamil-
tonian U (H ) (e.g., exp[−iHt]) and the controlled version of
U (H ), as those in dynamics simulations. The Hamiltonian
input model is a key ingredient shared between the structure
and dynamics problems.

A state-of-the-art approach to solve the spectra is the adia-
batic state preparation (ASP) [45] together with the quantum
phase estimation (QPE) (see Ref. [46] and references therein).
As the major idea, this approach prepares the ground state of
the Hamiltonian H by evolving the ground state of a simple
reference Hamiltonian Href via a parameterized adiabatic path
defined by the time-dependent Hamiltonian

H̄ (t ′) = g(t ′)Href + [1 − g(t ′)]H, (58)

where the g(t ′) is a smoothly behaved scalar function defined
in the domain of t ′ ∈ [0, t], with g(0) = 1 and g(t ) = 0. In
this way, one is guaranteed to obtain the ground state of H
according to the well-known adiabatic theorem [45,47]. The
consequent QPE algorithm [5,39,48,49] acts on the ground
state of H to obtain the corresponding ground-state energy of
H . In principle, this approach of eigensolver can be general-
ized to the excited states in cases where there is no degeneracy
or near-degeneracy for H̄ (t ′). To improve efficiency, one could
modify the adiabatic path by introducing appropriate refer-
ence Hamiltonian and/or perturbations to avoid level crossing
[50–52].

In this adiabatic approach, one can employ the RDS al-
gorithm to perform the ASP based on the time-dependent
Hamiltonian H̄ (t ′) and implement the quantum signal pro-
cessing to build the controlled version of the function ei2πγ (H )

for the QPE [53], where one can define, e.g., γ (H ) := xH + y
with x and y being scalars such that ||γ (H )|| < 1.

The ASP-QPE, in general, necessitates a deep circuit. Al-
ternatively, one can adopt the nonadiabatic approaches, such
as the quantum cooling algorithms [54–57], where it is shown

Eqs. (38), (39), and (40). Following the analysis in Ref. [29] which
deals with ||H (t )||max, we assume �m(t ) can then be efficiently
computed so it to be straightforward to implement Ovar and Onorm

during the simulation.

that the nonadiabatic approaches can be exponentially faster
than the ASP-QPE.

One example of the nonadiabatic approaches is the Rodeo
algorithm [55–57]. It is shown in the Rodeo algorithm can
be utilized to solve the spectrum of H . One can also pre-
pare the eigenstates of H by proper parameter settings of the
Rodeo algorithm,7 which enables solving other observables
and transition kernels, via, e.g., the Hadamard test, the Swap
test, or other methods [59,60], which will be the foci of further
work.

The elementary building block of the Rodeo algorithm
consists of a few copies of the controlled evolution unitary
e−iH� (with � being the standard deviation of a set of Gaus-
sian random variables), which can be constructed utilizing
the quantum signal processing based on the Hamiltonian in-
put model. As expected from evolving a time-independent
second-quantized Hamiltonian [Eq. (55)], the asymptotic
query complexity to the OF and OH in applying the Rodeo
algorithm for the structure calculation based on the second
quantized Hamiltonian is

O

(
D�m� + log( 1

ε
)

log log( 1
ε

)

)
, (59)

with ε being the error.
Our input model can also be implemented with other

promising algorithms for structure calculations. We do not
aim for a thorough review of these algorithms in this work
and interested readers are referred to Refs. [32,61–63] and
references therein.

V. ORACLE DESIGNS

In this work, we restrict our discussion on the second-
quantized many-nucleon Hamiltonian [Eq. (4) or, equiva-
lently, Eq. (12)] that includes only the two-body terms. Based
on this Hamiltonian, we introduce our designs for the enumer-
ator oracle [Eq. (43)] and the matrix-element oracle [Eq. (44)]
based on the DE scheme [Sec. III]. We also analyze the
complexity of implementing these oracles. It is worth noting
that our prototype oracle design can also be generalized to
many-nucleon Hamiltonians that include more than two-body
terms in a straightforward manner.

A. Enumerator oracle

We define the enumerate oracle OF [Eq. (43)] that takes
the input many-nucleon state |F〉 and the index i (encoded
in an ancilla register), and compute the quantities (1) the
output state |F ′

i 〉; (2) the tags Pi and Qi that marks the active
SP states; and (3) the function yi(F , Pi, Qi ) that marks the
possible error message in the construction. We construct the
OF as follows, where the procedures of the construction is
shown in Fig. 2.

Step 1: Duplicate the input Fock state. Provided the input
many-nucleon state, we duplicate the Fock state |F〉 to a

7There are subtleties regarding the choice of the input, e.g., the
preparation of proper initial state [58], which is beyond the scope
of this work.
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FIG. 2. Construction of the OF oracle.

second register. After a sequence of operations, the copy of
|F〉 will eventually produce the output state |F ′

i 〉 at the end of
the implementation. Note that duplicating a general quantum
state in quantum computing is not possible. However, for the
specific case of duplicating the Fock state |F〉 (represented by
a sequence of 0’s and 1’s), this operation can be performed.
In our case (also in the case treated in Ref. [30]), this du-
plication can be implemented, for example, using a sequence
of qubit-wise CNOT gates duplicating the input |F〉 from the
first register to the second register, which is initialized in the
all-zero state.

Step 2: Identify the active SP states. Based on the index i,
we compute the tags of the active pairs of SP states, Pi and
Qi, in the input and output many-nucleon state, respectively.
This can be achieved by the iterations with the classically
precomputed data table following the ideas in Refs. [30,64].
After the iteration, we access the tags Pi and Qi and store them
in the corresponding qubit registers, which are initialized in
the |0〉 states, as tag states |Pi〉 and |Qi〉, respectively. After
we compute the tags Pi and Qi via i, we also uncompute the
ancilla register that encodes the index i with the pair of tags
(Pi, Qi ). In the following steps (as well as the steps in the
OH oracles), it is sufficient to proceed with (Pi, Qi ), which is
uniquely determined by the index i.

Step 3: Identify the active SP states to be removed in |F〉
and check their occupancy. Given Pi and controlled by Qi, we
determine the active SP states {ri, si} (with ri < si) of which
the occupancies should be removed in the copy of |F〉 (recall
that each Pi tags a pair of SP states {ri, si}). However, before
the removal of occupancies, we need to check if the pair of
states {ri, si} are indeed occupied in |F〉. To achieve this, we
employ an ancilla qubit BP, which is initialized in the |0〉 state,
to flag the error cases; we require that |BP〉 remains in |0〉 only
when the SP bases {ri, si} are both occupied in the |F〉; and we
flip |BP〉 to be |1〉 if else. After this step, the state of the ancilla
qubit BP is denoted as |B′

P〉.

Step 4: Flip the active SP states tagged by Pi in the copy
of |F〉. Controlled on the tags Pi and Qi, we flip the qubits
which correspond to the rith and sith SP states in the copy of
|F〉. This could contain undesired operations where we could
add on the occupation(s) on the target SP state(s), instead
of removing the occupation(s), which results in undesired
many-nucleon states. However, the error messages stored in
the ancilla state |B′

P〉 shall help to distinguish such undesired
operations. As we shall discuss below (see Step 7), such
undesired states will not contribute to the Hamiltonian matrix
element eventually. After this step, the copy of |F〉 becomes
|F ′

Pi
〉 as shown in Fig. 2.

Step 5: Identify the active SP states to be added in |F ′
Pi
〉 and

check their occupancy. Similar to Step 3, we determine the
active SP states {pi, qi} (with pi < qi) with the tag Qi (recall
that we use Qi to tag such a pair SP states, i.e., {pi, qi}). The
occupations of this pair of SP states should be created in the
intermediate many-nucleon state |F ′

Pi
〉. However, we need to

first check that the pith and qith SP states are both vacant
in |F ′

Pi
〉 controlled by the tags Pi and Qi. If either or neither

of them are vacant, we shall record this error message in the
ancilla qubit BQ. In particular, we initialize |BQ〉 in the |0〉: (1)
it remains in the |0〉 state only if both pith and qith SP states
are vacant and (2) |BQ〉 is flipped to |1〉 otherwise. After this
step, the state of the ancilla qubit BQ is denoted as |B′

Q〉.
Step 6: Flip the active SP states tagged by Qi. Similar to

Step 4, we flip the pith and qith SP states (tagged by Qi) in
the intermediate many-nucleon state |F ′

Pi
〉 controlled by the

tags Pi and Qi. Again, this could include undesired operations
where either or both the pair of SP states are occupied, which
results in undesired output many-nucleon states. However, the
error message stored in |B′

Q〉 shall help to distinguish such
contributions (see Step 7 below). After this step, we obtain
the output many-nucleon state |F ′

i 〉.
Step 7: Compile the error messages. Controlled by the tags

Pi and Qi, we generate the desired many-nucleon state |F ′
i 〉
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FIG. 3. Sketch of the OH oracle.

only when both |B′
P〉 and |B′

Q〉 remain in the |0〉 states (same
as they are initialized). If we have mistakenly removed the
occupation(s) in the vacant SP state(s), or created the occupa-
tion(s) in the occupied state(s), we would generate undesired
output many-nucleon state, which produces vanishing matrix
element 〈F ′

i , Qi|H|F , Pi〉 [Eq. (15)]. In this step, we would
then flip the qubit y that is initialized in |0〉 to |1〉 if either or
both of |B′

P〉 and |B′
P〉 are in the |1〉 states. After this operation,

the qubit state |y〉 is denoted by |yi〉 = |yi(F , Pi, Qi )〉. We
remark that the output many-nucleon state |F ′

i 〉 is valid only
when |yi〉 = |0〉. The |F ′

i 〉 would, in principle, produce nonva-
nishing two-body kernel 〈F ′

i , Qi|H|F , Pi〉 with the input state
|F〉, and the tags (Pi, Qi ).

With the above steps, we construct the output many-
nucleon state |F ′

i 〉 based on the input state |F〉 and the index
i. We also identify the active SP bases (tagged by Pi and
Qi) that contribute to the integral to evaluate the Hamiltonian
matrix element (see in the follow-up matrix-element oracle).
In addition, we monitor the errors in the OF oracle via |yi〉.
After the construction, we uncompute the ancilla states |B′

P〉
and |B′

Q〉 by reversing the construction.
This completes the construction of OF oracle.

B. Matrix-element oracle

We now construct the OH oracle according to the def-
inition in Eq. (44). Taking the input from the OF oracle
[Eq. (43)], which are |F〉, |Pi〉, |F ′

i 〉, |Qi〉, and |yi〉, the OH

operates controlled on |yi〉 = |0〉, and it computes the kernel
〈F ′

i , Qi|H|F , Pi〉.
In practice, we divide the task of the OH oracle into two

parts according to Eq. (15): (1) computing the factor that
determines the phase, namely, 〈F ′

i |b†
Qi

bPi |F〉 and (2) obtaining
the value of the entry 〈Qi|H |Pi〉. We elect to compute the over-
all phase ci,1 · ci,2 by separately computing bPi |F〉 = ci,1|F̄i〉
and bQi |F ′

i 〉 = ci,2|F̄i〉, with the reference state |F̄i〉 satisfying

〈F̄i|F̄i〉 = 1. That is, we design the OH oracle to evaluate the
two-body kernel as

〈F ′
i , Qi|H|F , Pi〉 = ci,1ci,2H (Qi, Pi ) = ci,1ci,2〈piqi|H |risi〉.

(60)

As described in Fig. 3, the OH is constructed as follows.
Step 1: Compute ci,1 based on |F〉 and Pi. Controlled by

the tag states |Pi〉 and |Qi〉, we compute ci,1 provided the input
many-nucleon state |F〉 and the tag Pi. We first determine the
active SP bases {ri, si} (with ri < si) based on the tag Pi. Then,
we compute the total number of occupations, NPi

ocp, for the the
(ri + 1)th, (ri + 2)th, . . . , (si − 2)th, (si − 1)th SP bases of
|F〉. We encode mod(NPi

ocp, 2) in the ancilla qubit Bph,1, which
is initialized as |0〉: (1) if mod(NPi

ocp, 2) = 0, |Bph,1〉 remains
in the |0〉 state and (2) if mod(NPi

ocp, 2) = 1, we flip the |Bph,1〉
to be in the |1〉 state. This can be achieved, for example, by a
sequence of CNOT gates, where each of the qubits that encode
the (ri + 1)th, (ri + 2)th, . . . , (si − 2)th, (si − 1)th SP bases
in |F〉 serves as the control bit and the target bit is the ancilla
|Bph,1〉. After this step, the state of the ancilla qubit Bph,1

is denoted as |B′
ph,1〉. We note that the desired quantity ci,1

is encoded in |B′
ph,1〉. Indeed, we can access ci,1 with the

identity Z|B′
ph,1〉 = ci,1|B′

ph,1〉 = (−1)mod(N
Pi
ocp,2)|B′

ph,1〉, where
Z denotes the Pauli-Z gate.

Step 2: Compute ci,2 based on |F ′
i 〉 and Qi. This step is

similar to Step 1. We determine the active SP bases {pi, qi}
(pi < qi) with the tag Qi. Then we compute the number of
occupations NQi

ocp and encode mod(NQi
ocp, 2) in the ancilla qubit

Bph,2, which is initialized as |0〉: (1) the ancilla state |Bph,2〉
remains in the |0〉 state if mod(NQi

ocp, 2) = 0 and (2) we flip
the |Bph,2〉 to |1〉 if mod(NQi

ocp, 2) = 1. After this step, the
state of the ancilla qubit Bph,2 is denoted as |B′

ph,2〉. The de-
sired quantity ci,2 can be computed as Z|B′

ph,2〉 = ci,2|B′
ph,2〉 =

(−1)mod(N
Qi
ocp,2)|B′

ph,2〉.
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Step 3: Compute H (Qi, Pi ) based on Pi and Qi. Provided the
tags Pi and Qi, we compute the entry H (Qi, Pi ). We approach
this calculation via the database approach. In particular, we
apply the value of Pi and Qi to iterate with a classically
precomputed lookup table, in which process we pick the entry
H (Qi, Pi ) with the tags Pi and Qi. This value of the entry
is then recorded in the ancilla register Vtmp that is initial-
ized in the state |Vtmp〉 = |0〉 with the proper representation
and scaling [see Eqs. (A5) and (A21)]. After this step, we
denote the state of Vtmp as |V ′

tmp〉, which encodes the matrix
element.

Step 4: Compute 〈F ′
i , Qi|H|F , Pi〉. Controlled on the tags

Pi and Qi, we compute 〈F ′
i , Qi|H|F , Pi〉 with the phase ci,1

encoded in |B′
ph,1〉, ci,2 encoded in |B′

ph,2〉, and the entry
〈Qi|H |Pi〉 encoded in |V ′

tmp〉. Combining the results encoded in
these three ancilla registers, we can compute 〈F ′

i , Qi|H|F , Pi〉
according to Eq. (60). The result is encoded in the multiqubit
register |Relem〉 that is initialized in the |0〉 state. This can be
achieved, for example, by a sequence of CNOT gates (which
copy the bitwise data from |V ′

tmp〉 to |Relem〉, and extract the
phases from |B′

ph,1〉 and |B′
ph,2〉 to the most significant qubit of

|Relem〉 to be the overall sign).
With the above steps, we generate the two-body kernel

〈F ′
i , Qi|H|F , Pi〉 with the input |F〉, |Pi〉, |F ′

i 〉, and |Qi〉 con-
trolled on |yi(F , Pi, Qi )〉 = 0. After these operations, we need
to uncompute the ancillas by reversing the above operations.

This completes the construction of the OH oracle.

C. Complexity analysis of oracle implementation

We analyze the asymptotic gate cost of the oracles OF and
OH according to the steps outlined in Sec. V A and Sec. V B.
Our analysis of the gate count for each step of the OF and
OH is given in terms of the elementary one- and two-qubit
gates [5] and the controlled version of them as well.8 The
asymptotic qubit cost is also provided for each oracle.

1. Analysis of the OF oracle

The gate analysis of each step in the construction of the OF

oracle is as follows.
Step 1. It takes Nsp gates to achieve the set of pairwise

operations that are controlled by one set of Nsp qubits and act
on the other set of Nsp qubits.

Step 2. In this step, the upper bound of the gate count is
Õ(N4

sp).9 This scaling can be estimated by the possible number
of the pairs (Pi, Qi), i.e., D ∈ O(N4

sp). Indeed, there are at most
N2

sp choices for the active SP states (each tagged by Pi) in the
input many-nucleon (Fock) state and, likewise, N2

sp different

8Alternatively, one can also analyze the gate complexity in terms
of log-local operations as in Ref. [30], where such log-local opera-
tions can be compiled into primitive gates [65,66] that are hardware
specific.

9In the following context, we employ the notation of Õ to denote
the suppression of the logarithmic components in the corresponding
upper bound. For example, such logarithmic components can result
from compiling multicontrolled gates into corresponding local gates
in this work.

combinations of the active SP states (each tagged by Qi) in the
output Fock state. The uncomputation of the ancilla register
that encodes the index i via (Pi, Qi) is expected to take the
same asymptotic gate cost, i.e., Õ(N4

sp). Note, however, that
this gate scaling can be much less than Õ(N4

sp) for realistic
calculations due to the properties of the Hamiltonian such as
conservation of parity and total angular momentum projec-
tion.

Step 3. It takes Õ(1) gates to check the occupations and
then record the possible error message in the ancilla for the
pair of SP bases {ri, si} specified by Pi. We have O(N2

sp) such
Pi’s. Controlled by Qi, which can take O(N2

sp) different values,
it takes Õ(N4

sp) gates to accomplish this step for all the possible
cases with specific |F〉 and Pi.

Step 4. We need Õ(N4
sp) gates for this step. In particular,

there are O(N2
sp) combinations of the active pair of the SP

bases. For each combination {ri, si} specified by Pi, we need
Õ(1) gates to flip the qubits that correspond to rith and sith SP
states. While this operation is controlled by the tag Qi [which
can take O(N2

sp) different values], the total gate count for this
step are upper bounded by Õ(N4

sp).
Step 5 and Step 6. The operations these two steps are, in

essence, identical to those in Step 3 and Step 4, respectively.
By analogous analysis, we obtain the upper bound of the total
gate count for Step 5 and Step 6, which is Õ(N4

sp).
Step 7. In this step we compile the error message. This

takes O(1) gates for a specific choice of (Pi, Qi ). As there are
O(N4

sp) different pairs of tags (Pi, Qi ), the overall gate count
for this step scales as O(N4

sp).
In sum, it takes Õ(N4

sp) gates to complete the OF oracle,
where we have included the gate count to uncompute the
ancillas. It is worth noting that, this gate cost of OF directly
scales with the number of monomials of the ladder operators
in the Hamiltonian, as shown in Step 2 above. We also note
that, with the OF oracle, the quantum computer operates each
input specified by the many-nucleon state |F〉 and the index i
in parallel, which is referred to as the “quantum parallelism.”

We analyze the qubit cost for the OF oracle. In particular,
we need 2Nsp qubits to encode the input and output Fock
states via the direct encoding scheme. On the other hand,
we need to store the following identity in terms of binary
strings: (1) the index i of N4

sp possible values (which takes
4 log Nsp qubits); (2) the tag Pi of N2

sp possible values (which
takes 2 log Nsp qubits); and (3) the tag Qi of N2

sp possible
values (which takes 2 log Nsp qubits). In addition, we also need
three qubits to process and store the error messages. Overall,
the upper bound of the qubit count for the OF oracle are
O(2Nsp + 8 log Nsp + 3) = Õ(Nsp).

2. Analysis of the OH oracle

The asymptotic gate scaling of each step in the OH oracle
is as follows.

Step 1. For one single choice of Pi that tags the pair of SP
bases {ri, si}, we need Õ(Nsp) gates to count the occupation
for the relevant qubits that encode the ri + 1, ri + 2, . . . , si −
2, si − 1 SP bases. As there are O(N4

sp) different (Pi, Qi )’s, we
need at most Õ(N5

sp) gates for this step.
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Step 2. This step precedes with the same procedures as in
Step 1. By analogous analysis, we find that this step also takes
Õ(N5

sp) gates.
Step 3. We use the pairwise tags Pi and Qi to obtain the

entry 〈Qi|H |Pi〉 from the precomputed database. In practice,
the OH oracle provides this entry in some finite precision ξ ,
using O(log 1

ξ
) qubits for the output (we assume ξ � ε so

the imprecision of this entry does not affect the analysis as
in Ref. [22]). With the tags Pi and Qi, it takes Õ( log 1

ξ
) gates

to copy 〈Qi|H |Pi〉 from the database to the ancilla register Vtmp

in terms of binaries. Since there are D ∈ O(N4
sp) distinct pairs

of (Pi, Qi ), it takes Õ(N4
sp) gates to complete this step. Note

that here we have further suppressed the factor log 1
ξ

that is a
constant determined by the precision of the input database.

Step 4. To get the output two-body kernel 〈F ′
i , Qi|H|F , Pi〉,

it takes O(log 1
ξ

) gates to copy the bit strings from the ancilla
|V ′

tmp〉 to the |Relem〉, and O(1) gates to extract the correspond-
ing phases from |B′

ph,1〉 and |B′
ph,2〉 to |Relem〉. It is noted that

this part of the circuit is shared by all the other calculations
with different input to the OH oracle.

Including the asymptotic gate count to uncompute the an-
cillas (which doubles the asymptotic gate scaling for the above
steps), we obtain the asymptotic scaling of gate count to be
Õ(N5

sp) for the complete design of the OH oracle.
As for the asymptotic qubit cost, we notice that the Fock

states |F〉 and |F ′
i 〉, the tag states |Pi〉 and |Qi〉 are inherited

from the OF oracle, of which the qubit cost has been already
counted. While one can store the matrix elements up to the
precision ξ in the precomputed database with O(log 1

ξ
) qubits,

the additional qubit cost arises from the registers Relem, Vtmp,
Bph,1 and Bph,2. We note that it takes O(log 1

ξ
) qubits to store

the matrix element obtained from the database with precision
up to ξ , while Bph,1 and Bph,2 are both single-qubit registers.
Therefore, the number of ancilla qubits for the OH oracle
scales as O(log 1

ξ
), which is of the order O(1) for the input

matrix elements of finite precision.

VI. SUMMARY OF THE ASYMPTOTIC QUBIT
AND GATE COST

In Sec. V, we present the enumerator oracle OF and the
matrix-element oracle OH that operate with the Fock states
within the DE scheme. We present in Sec. IV C the construc-
tion of the isometry T via O(1) oracle queries to OF and
OH, and the input model to access the many-nucleon Hamilto-
nian via the block encoding scheme. High-level Hamiltonian
simulation algorithms, such as the quantum signal processing
[26,27] and the RDS [29] (reviewed in Sec. IV B), can func-
tion with the Fock-state-based input model. In this section, we
analyze the asymptotic gate and qubit cost for the simulation
algorithms with our Fock-state-based input model. We also
show the comparison between our framework (algorithm) for
simulating the time-independent Hamiltonian with previous
works that simulate the molecular Hamiltonian.

We start with the asymptotic scaling of the qubit cost for
the input model. Based on the discussions in Sec. V C, the OF

oracle dominates the qubit cost, of which the asymptotic scal-
ing is Õ(Nsp). We note that this qubit scaling is dominated by

the qubit resources necessary to encode the input and output
Fock states within the DE scheme. This scaling is independent
of the number of nucleons in the system; it only depends on
the size of the SP basis set S = {|β0〉, |β1〉, . . . , |βNsp−1〉} as
discussed in Sec. III.

As for the asymptotic scaling of the gate cost for the input
model, we find that the implementation of the OH oracle
dominates the gate cost, which scales as Õ(N5

sp). Therefore,
the asymptotic gate cost for executing O(1) oracles scales as
Õ(N5

sp) in constructing the isometry T [Eq. (45)].10

High-level simulation algorithms can be implemented with
our Fock-state-based input model to solve both the dynamics
and structure problems of many-nucleon systems. Based on
the discussion in Sec. IV C, if our input Hamiltonian is time-
independent, then the algorithm of quantum signal processing
[26,27] can perform the Hamiltonian simulation with the scal-
ing of the oracle queries being Eq. (55). Multiplied by the
gate cost of the oracles, the overall asymptotic gate cost for
simulating the time-independent Hamiltonian is

Õ

[
N5

sp

(
D�mt + log

(
1
ε

)
log log

(
1
ε

))]. (61)

We further suppress the logarithmic component and rewrite
the above equation as

Õ
(
N5

spD�mt
)
. (62)

For simulating the time-dependent Hamiltonians, the RDS
algorithm [29] provides the query complexity [Eq. (56)] that is
optimal with respect to the simulation error and near optimal
with respect to the simulation time. We expect that the domi-
nant gate cost is from the OH oracle,11 and the total asymptotic
gate cost for evolving the time-dependent Hamiltonian from 0
to t via the RDS algorithm based on our input model is

Õ

[
N5

sp

(
τ̃ ′ log

(
τ̃ ′
ε

)
log log

(
τ̃ ′
ε

))], (63)

with τ̃ ′ = D
∫ t

0 �m(t ′) dt ′ defined in Eq. (57). We further sup-
press the logarithmic component and the overall asymptotic
gate cost for the simulation can be rewritten as

Õ

[
N5

spD
∫ t

0
�m(t ′) dt ′

]
. (64)

Similar to the analysis of simulating the time-independent
Hamiltonian with our input model [Eq. (61)], we can com-
pute the asymptotic gate cost for the structure calculation
[Sec. IV E] via the Rodeo algorithm to be

Õ

[
N5

sp

(
D�m� + log

(
1
ε

)
log log

(
1
ε

))], (65)

10We remark that, in constructing T , the oracles OF and OH operate
controlled on the ancilla qubit b being in the state |b〉 = |0〉 according
to the discussion in Sec. IV C 2 (or Appendix A 1). However, this
does not affect the asymptotic gate cost Õ(N5

sp) for the input model.
11We assume the other two oracles Ovar and Onorm can be imple-

mented efficiently as assumed in Ref. [29].
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where we have applied Eq. (59) and taken into account that
the dominant gate cost results from the OH oracle, which
scales as Õ(N5

sp). Recall also that � is some constant from
the discussion in Sec. IV E. With further suppression of the
logarithmic factors, this asymptotic gate cost can be rewritten
as

Õ
(
N5

spD�m�
)
. (66)

To sum, the asymptotic gate cost for the dynamics and
structure calculations based on our Fock-state-based input
model is

Õ
(
N9

spϒ
)
, (67)

where we take ϒ = �mt for simulating time-independent
Hamiltonian, ϒ = ∫ t

0 �m(t ′) dt ′ for simulating time-
dependent Hamiltonian, and ϒ = �m� for structure
calculations. In Eq. (67), we have also taken into account that
the total number of the monomials of the ladder operators D
scales as O(N4

sp) for the second-quantized Hamiltonian that
includes only two-body terms [Eqs. (4) and (14)].

We expect that this scaling is loose. In particular, D is
restricted by the properties of the Hamiltonians in practical
applications. This can be understood by the limited model
problems in Sec. VII below. One would expect D = (62)(62) =
900 for the simplified pairing Hamiltonian with six SP bases,
but there are indeed D = 9 monomials of the ladder operators
[Eq. (70)] that satisfy the properties of the Hamiltonian. As
for the other example of the four-neutron problem with 12 SP
bases, one also see the reduction in D due to the symmetries
of the Hamiltonian. On the other hand, one also expects that
the gate cost of the OF and OH reduces with D as they are
designed according to the momomials of the ladder operators
in the second-quantized Hamiltonian.

A. Comparison to previous works

We compare our algorithm with previous works of Hamil-
tonian simulations in quantum chemistry, which deals with
the second-quantized molecular Hamiltonian that includes at
most two-body terms, or the corresponding first-quantized
Hamiltonian that involves at most two-body operators. Note
that the two-body terms (operators) dominates the gate cost
over what results from the one-body terms in the Hamiltonian.

For this comparison, we first evaluate our asymptotic gate
cost for simulating the time-independent Hamiltonian based
on Eq. (67). We note that the absolute value of the Hamilto-
nian matrix element scales as �(Nsp).12 Therefore, we take
�m ∈ �(Nsp) and estimate the gate cost of our framework to
be Õ(N10

sp t ). We note that this gate cost is loose as we have
not included the restrictions of the properties of the target
Hamiltonians; a tighter bound for the calculations of complex
nuclei is suspected to be Õ(N8

spt ).

12With the 3DHO basis, the absolute value of the Hamiltonian
matrix element is dominated by the matrix element of the Trel,pqrs and
HCM,pqrs in Eq. (7), while VNN,pqrs diminishes with increasing radial
quantum number n of the 3DHO basis. Both Trel,pqrs and HCM,pqrs

scales as �(Nsp).

As in quantum chemistry, the tightest known bound of
the gate cost for simulating the second-quantized molecu-
lar Hamiltonian via arbitrarily high-order Trotter formula is
Õ(N8

spt/εo(1) ) [20,64,67]. With significantly more practical
Trotter decomposition, the best known gate cost scales as
Õ(N9

sp

√
t3/ε) [64,68]. The scaling of our gate complexity with

Nsp is close to that of the Trotter-based methods. While the
algorithm based on the arbitrarily high-order Trotter formula
also presents an optimal scaling with the simulation time
according to the no fast-forwarding theorem (Theorem 3 in
Ref. [20]), our algorithm exhibits an exponential improvement
in precision over these Trotter-based algorithms.

Meanwhile, Ref. [64] introduces a so-called “database” al-
gorithm. This algorithm represents the molecular Hamiltonian
as a weighted sum of O(N4

sp) local unitaries, and approximates
the time-evolution by the truncated Taylor series approach
[24]. It accesses the Hamiltonian matrix elements with a clas-
sically precomputed database of the molecular integrals. The
asymptotic gate count of the database algorithm [Eq. (46) in
Ref. [64]] scales as

O

[
N4

sp�̃t
log
(Nspt

ε

)
log log

(Nspt
ε

)] = Õ
(
N8

spt
)
, (68)

with the normalization factor �̃ ∈ O(N4
sp). Our asymptotic

gate cost is close to that of the database algorithm, with an
extra factor of N2

sp.
Reference [64] also introduces the “on-the-fly” algorithm.

This algorithm computes the two-electron integrals via the
“so-called” integrand oracle which is designed based on the
discretization of space in Riemann integration. Within the
framework of the truncated Taylor series [24], the on-the-fly
algorithm presents the gate cost to be Õ(N5

spt ). Meanwhile,
Ref. [30] introduces the algorithm for simulating second-
quantized Hamiltonians via the Fock-state-based input model
employing the CE scheme. The authors design their input
model based on the controlled arithmetic operations that can
be realized via log-local operations on quantum computers.
With the algorithms of Ref. [30], the complexity for simu-
lating A-electron quantum chemistry Hamiltonian (including
two-body terms at most) is reported to be Õ(A2N4

spt ) in terms
of log-local operations.13 Moreover, Ref. [44] reports an algo-
rithm that adopts a compressed configuration-interaction ma-
trix representation for simulating the first-quantized molecular
Hamiltonian based on the truncated Taylor series approach.
With the application of the configuration-interaction matrix
representation, the Slater-Condon rules [69,70] are explicitly
enforced for the Hamiltonian matrix elements that are com-
puted on the fly. The gate cost of this algorithm is Õ(A2N3

spt ).
Compared to these algorithms, the gate cost of our algorithm
has a worse scaling in the factor of Nsp. We remark that our
gate cost is loose due to the fact that the properties of the
target Hamiltonians are enforced implicitly to the input model
(which reduces D). We also comment that our algorithm is
designed on the basis of the elementary gate operations aiming

13Such log-local operations can be compiled into hardware-specific
primitive gates [65,66].
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TABLE I. The restricted SP basis set for a single-species three-
nucleon system.

SP basis (qubit) n l 2 j 2mj

0 0 0 1 −1
1 0 0 1 +1
2 1 0 1 −1
3 1 0 1 +1
4 2 0 1 −1
5 2 0 1 +1

for straightforward prototype applications on quantum com-
puter. The gate cost of our algorithm can be further improved
by incorporating the (controlled-) arithmetic operations and
the on-site evaluations of the two-body kernels that contribute
to the Hamiltonian matrix elements.

VII. MODEL PROBLEMS

For pedagogical purposes, we present the applications of
our method to solve the dynamics and structure problems
in nuclear physics with two model problems. In both prob-
lems, we retain only the two-body terms in the corresponding
second-quantized Hamiltonians and restrict our discussions to
truncated model spaces. Whereas the execution of the high-
level sparse-matrix simulations algorithms are extensively
discussed in Refs. [27,29,55–57], we will focus on explaining
the design of our input model. We remark that the discussions
of the simple model problems in this section can be general-
ized to more complex cases, e.g., those containing many-body
terms and larger model-space size, whereas the correspond-
ing analyses for such general calculations are summarized in
Sec. VI.

A. Pairing Hamiltonian

We start with a simple Hamiltonian for a many-nucleon
system, where we neglect the kinetic energy of the nucleons
and consider only the pairing interaction Vpairing between the
nucleons. The Hamiltonian of the many-nucleon system is
defined as

Hpair = Vpairing = g
∑

p

∑
r

a†
p,−a†

p,+ar,+ar,−, (69)

where the operator a†
p,± creates a SP state labeled by the

quantum numbers (np, lp, jp,±mj,p, τp), while the operator
ar,± annihilates a SP state labeled by the quantum numbers
(nr, lr, jr,±mj,r, τr ). g is the coupling constant of the inter-
action; we assume g to be real without loss of generality.
We assume that Hpair is independent of the isospin (i.e., the
species of the nucleons). Each single term a†

p,−a†
p,+ar,+ar,− in

Hpair operates on two pairs of SP bases, where each SP basis
within a pair differs from its partner only in the total angular
momentum projection. For the purpose of demonstration, we
consider a three-nucleon system (A = 3) with a single species
(either neutrons only or protons only) within a restricted set
of SP bases shown in Table I. In particular, we retain the
six SP bases with 1) the principle quantum number n � 2;
2) the orbital angular momentum l = 0; 3) the total angular

momentum j = 1
2 ; and 4) the projection of the total angular

momentum mj = ± 1
2 . We omit the quantum number of the

spin for each SP basis in Table I, which is understood to be
1
2 . We also omit the quantum numbers for the isospin as we
have assumed that Hpair is isospin independent. Each SP basis
is labeled and mapped to a distinct qubit in a quantum register
(index shown in the first column in Table I), whereas the state
of each qubit denotes the occupancy of the corresponding SP
basis (recall that the state |1〉 denotes occupied and |0〉 denotes
vacant). To get some more intuition, we can rewrite the pairing
Hamiltonian Hpair [Eq. (69)] within this restricted basis space
as

Hpair = g[a†
0a†

1a1a0︸ ︷︷ ︸
i=0

+ a†
2a†

3a1a0︸ ︷︷ ︸
i=1

+ a†
4a†

5a1a0︸ ︷︷ ︸
i=2

+ a†
0a†

1a3a2︸ ︷︷ ︸
i=3

+ a†
2a†

3a3a2︸ ︷︷ ︸
i=4

+ a†
4a†

5a3a2︸ ︷︷ ︸
i=5

+ a†
0a†

1a5a4︸ ︷︷ ︸
i=6

+ a†
2a†

3a5a4︸ ︷︷ ︸
i=7

+ a†
4a†

5a5a4︸ ︷︷ ︸
i=8

], (70)

where we employ instead a subscript to denote the index of
the SP basis (Table I) that each ladder operator applies on.

For this three-nucleon system in the restricted SP basis
set (Table I), we have

(6
3

) = 20 three-nucleon states in total.
In particular, there are 1) 9 states with MJ = − 1

2 ; 2) 9 states
with MJ = + 1

2 ; 3) 1 state with MJ = − 3
2 ; and 4) 1 state with

MJ = + 3
2 . We sort these three-nucleon states in Table II.

We can also solve for the matrix elements of the pairing
Hamiltonian within the set many-nucleon bases shown in
Table II. For example, in terms of the three-nucleon states
{|0, 1, 3〉, |0, 1, 5〉, |0, 3, 5〉, |1, 2, 3〉, |1, 2, 5〉, |1, 3, 4〉, |1, 4,

5〉, |2, 3, 5〉, |3, 4, 5〉}, we can write the matrix of the pairing
Hamiltonian in the MJ = + 1

2 subspace as

Hpair

(
MJ =+1

2

)
=g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(71)

whereas the three-nucleon states with different MJ ’s do not
connect to each other via the action of the pairing Hamiltonian
(i.e., vanishing Hamiltonian matrix element), as the pairing
Hamiltonian preserves the quantum number MJ .

To facilitate the oracle design, we rewrite Eq. (70) accord-
ing to Eq. (12) as

Hpair =
8∑

i=0

Hpair (Qi, Pi )b
†
Qi

bPi ⊗ |Qi〉〈Pi|, (72)

with Hpair (Qi, Pi ) = 〈piqi|Hpair|risi〉. The index i (i =
0, 1, . . . , 8) labels different combinations of the ladder
operators. The tag Pi �→ {ri, si} with ri < si (Qi �→ {pi, qi}
with pi < qi) denotes the pair of SP states labeled by ri and si
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TABLE II. The three-nucleon states sorted according to MJ . Only the indices of the occupied SP states are recorded, where the quantum
numbers of each SP state are in Table I. For example, the three-nucleon state |0, 1, 3〉 is equivalent to |110100〉 in notations.

MJ Three-nucleon state

+3/2 |1, 3, 5〉 – – – – – – – –
+1/2 |0, 1, 3〉 |0, 1, 5〉 |0, 3, 5〉 |1, 2, 3〉 |1, 2, 5〉 |1, 3, 4〉 |1, 4, 5〉 |2, 3, 5〉 |3, 4, 5〉
−1/2 |0, 1, 2〉 |0, 1, 4〉 |0, 2, 3〉 |0, 2, 5〉 |0, 3, 4〉 |0, 4, 5〉 |1, 2, 4〉 |2, 3, 4〉 |2, 4, 5〉
−3/2 |0, 2, 4〉 – – – – – – – –

(pi and qi) on which the annihilation (creation) operators act.
We recall that b†

Qi
bPi = a†

pi
a†

qi
asi ari . With i = 2, for example,

we have b†
Q2

bP2 = a†
4a†

5a1a0. In Table III we enumerate all the
combinations of the tags Pi and Qi. In addition, it is noted that
Hpair (Qi, Pi ) = g for all the cases in Eq. (72).

We show the work flow of the OF oracle [Eq. (43)] with an
example. Without loss of generality, we start with the input
state |F〉 = |0, 1, 3〉 = |110100〉 and the index i = 2. It is
understood that the OF operates on all the choices of the |F〉
and i simultaneously. According to the discussion in Sec. V A,
the OF oracle executes as

(1) Copy the input state |F〉 = |0, 1, 3〉. In the following,
we operate on the copy of |F〉.

(2) Compute the tags P2 �→ {0, 1} and Q2 �→ {4, 5} based
on i = 2 by the iterations with the classically precomputed
look-up table (Table III).

(3) Check the occupations of the 0th and 1st SP bases in
|F〉 by checking the states of the corresponding (0th and 1st)
qubits (recall that |0〉 denotes that the SP state is “vacant,”
while |1〉 denotes that the SP state being “occupied”). In
this case, we find that both the 0th and 1st are occupied in
|F〉. Therefore, we do not flip the corresponding ancilla qubit
|BP〉 = |0〉, and we end up having |B′

P〉 = |0〉.
(4) Annihilate the occupations on the 0th and 1st SP states

by flipping the corresponding qubits from |1〉 (occupied) to
|0〉 (vacant) controlled by the tags P2 and Q2. The copy of
|F〉 = |0, 1, 3〉 becomes |FP2〉 = |3〉 = |000100〉.

TABLE III. Distinct combinations of the tags Pi �→ {ri, si}
(ri < si) and Qi �→ {pi, qi} (pi < qi) for the three-nucleon problem
described by the pairing Hamiltonian Hpair [Eq. (72)] in the restricted
SP bases set (Table I). ri and si denote the indices of the SP bases
operated by the corresponding annihilation operators, while pi and
qi denote the indices of SP bases operated by the corresponding
creation operators.

i Pi �→ {ri, si} Qi �→ {pi, qi}
0 P0 �→ {0, 1} Q0 �→ {0, 1}
1 P1 �→ {0, 1} Q1 �→ {2, 3}
2 P2 �→ {0, 1} Q2 �→ {4, 5}
3 P3 �→ {2, 3} Q3 �→ {0, 1}
4 P4 �→ {2, 3} Q4 �→ {2, 3}
5 P5 �→ {2, 3} Q5 �→ {4, 5}
6 P6 �→ {4, 5} Q6 �→ {0, 1}
7 P7 �→ {4, 5} Q7 �→ {2, 3}
8 P8 �→ {4, 5} Q8 �→ {4, 5}

(5) Check the occupancies of the 4th and 5th SP states in
|FP2〉. This is done by checking the states of the corresponding
qubits. In this case, both of the SP states are not occupied (the
corresponding qubits are in the |0〉 states) and we do not flip
the ancilla qubit |BQ〉 = |0〉. After this procedure, the ancilla
is denoted as |B′

Q〉 = |0〉.
(6) Create the occupations on the 4th and 5th SP states

in |FP2〉 by flipping the corresponding qubits from |0〉 to |1〉
controlled by the tags P2 and Q2. This produces the output
state |F ′

2〉 = |3, 4, 5〉 = |000111〉.
(7) Compile the error message in the ancillas controlled

by (Pi, Qi ). As both |B′
P〉 and |B′

Q〉 are in the state |0〉, we
have |a2〉 = |0〉. This means that |F ′

2〉 = |3, 4, 5〉 = |000111〉
is a desired three-nucleon state that shall, in principle,
produce nonvanishing contribution to the matrix element
〈F ′

2, Q2|Hpair|F , P2〉.
Overall, we have the input to the OF oracle to be |F〉 =

|0, 1, 3〉 and i = 2, and we get the output to be |F〉 = |0, 1, 3〉,
i = 2, |P2〉, |F ′

2〉 = |3, 4, 5〉, |Q2〉, and |a2〉 = |0〉.
Next, we discuss the implementation of the OH oracle for

this case. Controlled on |a2〉 = |0〉, the OH functions with the
input |F〉 = |0, 1, 3〉, |P2〉, |F ′

2〉 = |3, 4, 5〉, |Q2〉; it produces
the matrix element 〈F ′

2, Q2|Hpair|F , P2〉. In this simple model,
we have

〈F ′
2, Q2|Hpair|F , P2〉 = g, (73)

without involving the calculations of phases. The reason for
the “phase-independent” matrix element is that each pair of
the fermionic creation (annihilation) operators acts on adja-
cent SP states; in essence, this makes the pair of operators
behave as if they are the ladder operators for bosons. That is,
the product of the phase factors in Eq. (60) ci,1ci,2 = +1 for
this case (and also for the other cases where the OH operates).

Having illustrated the work flow of the OF and OH, we
present concrete examples to show how the isometry T is
constructed (Appendix A 1) and how T †ST is related to the
Hamiltonian [Eqs. (A10) and (A24)].

According to the formalism in Appendix A, we can set
�m � |g| and take D = 9. We perform more calculations with
the input |F〉 = |0, 1, 3〉 for the rest index i’s following the
same approach as presented above. In particular, with the
input |F〉 = |0, 1, 3〉 and i = 0, the output of the OF oracle
are (1) |F〉 = |0, 1, 3〉; (2) i = 0; (3) P0 �→ {0, 1}; (4) |F ′

0〉 =
|0, 1, 3〉; (5) Q0 �→ {0, 1}; and (6) |a0〉 = |0〉. Controlled on
|a0〉 = |0〉, the OH oracle functions, which results the matrix
element 〈F ′

0, Q0|Hpair|F , P0〉 = g. On the other hand, for the
rest cases with i = 1, 3, 4, 5, 6, 7, 8, we end up with |yi〉 =
|1〉, which flags the error message. In these cases, the OH

oracle is not activated.
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Having enumerated all the possible cases with |F〉 = |0, 1, 3〉 and i = 0, 1, . . . , 8, we have for Eq. (46) that

T |0, 1, 3〉|0〉 =
√

1

D�m
[
√

g|0, 1, 3〉|0〉|0〉|P0〉|0, 1, 3〉|Q0〉|0〉|0〉|0〉 + √
g|0, 1, 3〉|0〉|0〉|P2〉|3, 4, 5〉|Q2〉|0〉|0〉|0〉] + | ⊥|0,1,3〉〉,

(74)

where |⊥{0,1,3}〉 denotes the terms that are orthogonal to the first two terms in the above equation. We note that |⊥{0,1,3}〉 includes,
in part, those terms that are from the cases with |yi〉 = |1〉 (i = 1, 3, 4, 5, 6, 7, 8). Meanwhile, we also have the complementary
equation Eq. (47)

T |0, 1, 3〉|1〉 =|0, 1, 3〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (75)

We repeat the calculations with the cases with the input being |G〉 = |2, 3, 5〉 and i = 0, 1, . . . , 8 and obtain

T |2, 3, 5〉|0〉 =
√

1

D�m
[
√

g|2, 3, 5〉|0〉|0〉|P3〉|0, 1, 5〉|Q3〉|0〉|0〉|0〉 + √
g|2, 3, 5〉|0〉|0〉|P4〉|2, 3, 5〉|Q4〉|0〉|0〉|0〉] + |⊥|2,3,5〉〉,

(76)

where only the cases with i = 3 and i = 4 (see in Table III) yield |a3〉 = |0〉 and |a4〉 = |0〉, respectively. Again, | ⊥|2,3,5〉〉
denotes the terms that are orthogonal to the first two terms in the above equation. The complementary equation holds according
to Eq. (47) as

T |2, 3, 5〉|1〉 =|2, 3, 5〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (77)

For the case with the input being |G〉 = |3, 4, 5〉 and i = 0, 1, . . . , 8, we have

T |3, 4, 5〉|0〉 =
√

1

D�m
[
√

g|3, 4, 5〉|0〉|0〉|P6〉|0, 1, 3〉|Q6〉|0〉|0〉|0〉 + √
g|3, 4, 5〉|0〉|0〉|P8〉|3, 4, 5〉|Q8〉|0〉|0〉|0〉] + | ⊥|3,4,5〉〉,

(78)

where only the cases with i = 6 and i = 8 yield |a6〉 = |0〉 and |a8〉 = |0〉. The complementary equation holds

T |3, 4, 5〉|1〉 =|3, 4, 5〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (79)

As for the case with the input being |G〉 = |0, 1, 5〉 and i = 0, 1, . . . , 8, we have

T |0, 1, 5〉|0〉 =
√

1

D�m
[
√

g|0, 1, 5〉|0〉|0〉|P0〉|0, 1, 5〉|Q0〉|0〉|0〉|0〉 + √
g|0, 1, 5〉|0〉|0〉|P1〉|2, 3, 5〉|Q1〉|0〉|0〉|0〉] + |⊥|0,1,5〉〉,

(80)

where only the cases with i = 0 and i = 1 yield |a0〉 = |0〉 and |a1〉 = |0〉. According to Eq. (47), we also have the complementary
equation

T |0, 1, 5〉|1〉 =|0, 1, 5〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (81)

We can readily check [see detailed calculations in Eq. (A18)], for example,

〈0, 1, 3|〈0|T †ST |0, 1, 3〉|0〉 = 〈0, 1, 3|Hpair|0, 1, 3〉 = g′, 〈3, 4, 5|〈0|T †ST |0, 1, 3〉|0〉 = 〈3, 4, 5|Hpair|0, 1, 3〉 = g′, (82)

〈2, 3, 5|〈0|T †ST |0, 1, 5〉|0〉 = 〈2, 3, 5|Hpair|0, 1, 5〉 = g′, 〈2, 3, 5|〈0|T †ST |2, 3, 5〉|0〉 = 〈2, 3, 5|Hpair|2, 3, 5〉 = g′, (83)

〈0, 1, 3|〈0|T †ST |2, 3, 5〉|0〉 = 〈0, 1, 3|Hpair|2, 3, 5〉 = 0, 〈2, 3, 5|〈0|T †ST |0, 1, 3〉|0〉 = 〈2, 3, 5|Hpair|0, 1, 3〉 = 0, (84)

with g′ := 1
D�m

g. The definition of the swap operator S is
shown in Eq. (A16). In computing the above quantities, it is
understood from the mapping shown in Table III that

〈Pi|Qj〉 =

⎧⎪⎨⎪⎩
1, for i = 0, 1, 2, and j = 0, 3, 6,

1, for i = 3, 4, 5, and j = 1, 4, 7,

1, for i = 6, 7, 8, and j = 2, 5, 8,

(85)

where Pi and Qj take the same value if and only if they are
mapped to the same pairs of SP bases. On the other hand, we

have 〈Pi|Qj〉 = 0 for the other combinations of i and j, where
Pi and Qj tag different pairs of SP bases.

We can also compute the matrix elements

〈F |〈b|T †ST |G〉|b′〉 = 〈G|〈b′|T †ST |F〉|b〉 = 0, (86)

with (b, b′) = (0, 1), (1, 0) and (1,1) for |F〉, |G〉 �= |0〉.
The above procedures can also be adopted to com-

puted the other pairing Hamiltonian matrix elements
for the many-nucleon basis set {|0, 1, 3〉, |0, 1, 5〉, |0, 3, 5〉,
|1, 2, 3〉, |0, 1, 5〉, |1, 3, 4〉, |1, 4, 5〉, |2, 3, 5〉, |3, 4, 5〉}. It is
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TABLE IV. The SP bases in the 1s1/20d3/20d5/2 valance space
with 2n + l � 2. The quantum numbers of each SP basis are
presented, whereas the spin and isospin quantum numbers are under-
stood to be 1

2 . Each SP basis is indexed and mapped to a distinct qubit
(second column). The occupation of each SP basis is represented by
the state of the qubit: the |0〉 (|1〉) state of the qubit denotes that the
corresponding SP bases is vacant (occupied).

SP basis (qubit) n l 2 j 2mj 2τ

1s1/2 0 1 0 1 −1 −1
1 1 0 1 +1 −1

0d3/2 2 0 2 3 −3 −1
3 0 2 3 −1 −1
4 0 2 3 +1 −1
5 0 2 3 +3 −1

0d5/2 6 0 2 5 −5 −1
7 0 2 5 −3 −1
8 0 2 5 −1 −1
9 0 2 5 +1 −1

10 0 2 5 +3 −1
11 0 2 5 +5 −1

straightforward to show that Hpair (MJ = + 1
2 ) [Eq. (71)] can

be reproduced based on the isometry T and the block-
encoding scheme [Eqs. (53) and (54)]. The construction of the
full-configuration-interaction Hamiltonian with the complete
set of the three-nucleon states (Table I) follows suit.

B. Four-neutron system

We now switch to consider a more complex problem: the
input model to access the Hamiltonian of a four-neutron sys-
tem (A = 4). Again, we retain only the two-body terms in the
Hamiltonian, and restrict our discussion within a limited SP
basis set that consists of the SP bases in the 1s1/20d3/20d5/2

valence space with 2n + l � 2. This restricted basis set is
enumerated in Table IV. While the procedures are analogous
to those presented above, we elucidate the work flow of the
OH oracle via the four-neutron example, as the OH oracle
functions in a less trivial manner than that in the pairing model
example. On the other hand, this problem provides a prototype
of the input model for realistic many-nucleon Hamiltonians
[15–17].

With the SP bases set shown in Table IV, there are
(12

4

) =
495 four-neutron states in total, where 81 of them are of MJ =
0, 72 of them are of MJ = +2 (−2), 60 of them are of MJ =
+4 (−4), 39 of them are of MJ = +6 (−6), 24 of them are of
MJ = +8 (−8), 9 of them are of MJ = +10 (−10), and 3 of
them are of MJ = +12 (−12). As the Hamiltonian preserves
the total MJ , the Hamiltonian does not connect four-neutron
states with different MJ ’s.

Next, we consider the possible combinations of the ladder
operators a†

pa†
qasar in Eq. (4). The total number of such com-

binations is
(12

2

)(12
2

) = 4356. However, most of them result in
vanishing matrix elements as such combinations violate the
symmetries of the Hamiltonian (recall that we require the pro-
jection of the total angular momentum MJ to be preserved as
the baryon number, parity, and total isospin projection are triv-

TABLE V. Distinct combinations of the tags Pi �→ {ri, si}
(ri < si) and Qi �→ {pi, qi} (pi < qi) for the four-neutron problem
described by the Hamiltonian H4n [Eq. (87)] in the restricted SP
bases set shown in Table IV. ri and si (pi and qi) denote the indices
of the SP bases operated by the corresponding annihilation (creation)
operators.

i Pi �→ {ri, si} Qi �→ {pi, qi}
0 P0 �→ {0, 1} Q0 �→ {0, 1}
1 P1 �→ {0, 2} Q1 �→ {0, 2}
2 P2 �→ {0, 5} Q2 �→ {0, 5}
3 P3 �→ {1, 2} Q3 �→ {1, 2}
4 P4 �→ {1, 5} Q4 �→ {1, 5}
5 P5 �→ {2, 5} Q5 �→ {2, 5}
6 P6 �→ {0, 1} Q6 �→ {3, 4}
...

...
...

639 P639 �→ {10, 11} Q639 �→ {10, 11}

ially preserved in this example). Indeed, the total number of
the symmetry preserving combination of the ladder operators
is 640 in this model problem. We can then sort the symmetry
preserving combinations of a†

pa†
qasar = b†

QbP, and generate a
lookup table (Table V) that lists these combinations.

According to these symmetry preserving combinations of
the ladder operators, we can rewrite the Hamiltonian accord-
ing to Eq. (14) as

H4n =
639∑
i=0

H4n(Qi, Pi )b
†
Qi

bPi ⊗ |Qi〉〈Pi|, (87)

where H4n is the Hamiltonian of the four-neutron system and
H4n(Qi, Pi ) = 〈piqi|H4n|risi〉. For this case, we take D = 640
and �m � |H4n(Qi, Pi )| for i = 0, 1, . . . ,D − 1.

Provided the four-neutron state to be |F〉 = |0, 1, 2, 5〉, we
construct the isometry T |F〉|0〉 of the form Eq. (A7) follow-
ing the similar procedures shown in Sec. VII A. For example,
we can take i = 2 with P2 �→ {0, 5} and Q2 �→ {0, 5} together
|F〉 as the input to the OF oracle. The corresponding output of
the OF oracle are: |0, 1, 2, 5〉, 0, |P2〉, |F ′

2〉 = |0, 1, 2, 5〉, |Q2〉,
|a2〉 = |0〉.

The OH oracle [Eq. (44)] functions controlled |a2〉 = |0〉 to
compute the matrix element

〈F ′
i , Qi|H4n|F , Pi〉 = ci,1ci,2H4n(Qi, Pi ), (88)

with i = 2. With the procedures shown in Sec. V B, OH oracle
executes as

(1) Provided the input |F〉 = |0, 1, 2, 5〉 =
|1110010000000〉, P2 �→ {0, 5}, and Q2 �→ {0, 5}, create
a sequence of CNOT gates, each of which is controlled by
the 1st, 2nd, 3rd, and 4th qubits (these qubits correspond
to the occupations of the 1st, 2nd, 3rd, and 4th SP bases,
respectively) and acts on the ancilla Bph,1 that is initialized
as |0〉. As the 1st and 2nd qubits are in the state |1〉 and the
3rd, and 4th qubits are in the state |0〉, the ancilla remains in
the |0〉 state, i.e., |B′

ph,1〉 = |0〉. Therefore, the desired phase
is c2,1 = +1 for the action of bP2 |F〉.

(2) Similarly, provided |F ′
2〉 = |0, 1, 2, 5〉 =

|1110010000000〉, P2 �→ {0, 5}, and Q2 �→ {0, 5} and the
ancilla Bph,2 initialized in the |0〉 state, we have |B′

ph,2〉 = |0〉
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after the operations of a sequence of CNOT gates. This means
that c2,2 = +1 for the action of bQ2 |F ′

2〉.
(3) Provided the tags P2 �→ {0, 5} and Q2 �→ {0, 5}, we

pick the matrix element H4n(Q2, P2) via the iteration with
a classically precomputed database. This matrix element is
recorded in the ancilla register as |V ′

tmp〉.
(4) The matrix element is computed based on the ancilla

states |B′
ph,1〉, |B′

ph,2〉 and |V ′
tmp〉, according to Eq. (88) as

〈F ′
2, Q2|H4n|F , P2〉 = (+1)(+1)H4n(Q2, P2). The matrix el-

ement is encoded in the Relem register and it is the output of
the OH oracle.

In an analogous manner, we can calculate all the other
cases with |F〉 = |0, 1, 2, 5〉 and i = 0, 1, 3, . . . , 639. These
results can be used to check the validity of the isometry T and
our input model with a minimal example. In particular, we can
write Eq. (46) with these results as

T |F〉|0〉 =
√

1

D�m

5∑
k=0

[
√

〈F ′
k, Qk|H4n|F , Pk〉|F〉

× |0〉|0〉|Pk〉|F ′
k〉|Qk〉|ak〉|0〉|0〉] + |·〉 (89)

where |·〉 denotes the other terms in Eq. (46). Based on
Eq. (89), we can compute the diagonal Hamiltonian matrix
element

〈F |〈0|T †ST |F〉|0〉 = 1

D�m
〈F |H4n|F〉, (90)

according to Eq. (A24). It is also straightforward to check

〈F |〈b|T †ST |F〉|b′〉 = 0, (91)

for (b, b′) = (1, 0), (0, 1) and (1,1). The above two equa-
tions combine to

〈F |〈b|(T †ST )|F〉|b′〉 = 1

D�m
〈F |H4n|F〉δb,0δb′,0. (92)

With analogous calculations, we can show that the input
model can access the full-configuration-interaction Hamilto-
nian matrix within the basis representation constructed by the
SP basis set shown in Table IV.

VIII. SUMMARY AND OUTLOOK

In this work, we propose a framework to solve the many-
nucleon structure and dynamics on quantum computers. We
work with the second-quantized Hamiltonian and develop the
oracle-based Hamiltonian input model that treats directly the
Fock states. We can implement high-level sparse Hamiltonian
simulation algorithms, such as the quantum signal processing
and the rescaled Dyson series algorithm with our Fock-state-
based input model to simulate the dynamics of many-nucleon
systems. The method for dynamics simulation can also be
implemented to solve the many-nucleon structure problems.

We first discuss the elements of the many-nucleon cal-
culations. We start with the second-quantized many-nucleon
Hamiltonian that retains only two-nucleon terms and intro-
duce a convenient notation of the second-quantized Hamilto-
nian for quantum computing. We also discuss the our choice
of the single-particle (SP) basis, which consists of the spatial,
spin, and isospin degrees of freedom. The SP bases are used
to construct the many-nucleon states.

Next, we discuss the encoding scheme that maps the many-
nucleon state to the state of the quantum register. In particular,
we employ the direct encoding scheme in this work. The
direct encoding scheme records every SP basis employed to
construct the many-nucleon states, whether they are occupied
or not. In this way, the direct encoding scheme encodes each
many-nucleon state in terms of a binary string. Though the
qubit count is not optimal in the direct encoding scheme
(compared to that of the compact encoding scheme), the cor-
responding circuit design of the Hamiltonian input model is
more straightforward.

Then we discuss our input model for the second-quantized
many-nucleon Hamiltonian. While the well-known sparse
matrix input models access the nonzero Hamiltonian ma-
trix elements based on their row and column indices, our
Hamiltonian input model functions with the many-nucleon
(Fock) states. In particular, we define the enumerator oracle
that computes the output Fock state based on the input Fock
state, while we also track all the pairs of the SP bases that
contribute to the matrix element in the input and output Fock
states, respectively. We define the matrix element OH oracle
that computes the nonvanishing elements with the input and
output Fock states and the pairs of SP states computed by OF.
We then show the definition of the isometry T that can be
constructed using O(1) oracles queries of these two oracles
and the connection between the isometry and the Hamiltonian.

Based on our input model, we propose a framework for
solving the dynamics and structure problems of the second-
quantized many-nucleon Hamiltonian. In particular, our input
model serves as the basic input unit for those well-known
high-level algorithms, i.e., the quantum signal processing
[27] and the rescaled Dyson series [29], to obtain optimal
query complexities (with respect to the simulation time and
error) for simulating time-independent and time-dependent
Hamiltonians. In both cases, we provide the asymptotic query
complexities for the simulations. On the other hand, we can
directly implement the framework of dynamics simulation to
solve structure problems as they share the same component
of the time-evolution unitary. In particular, we propose to
implement the framework together with the Rodeo algorithm
[55–57] to solve for spectrum and other observables, where
we also provided the corresponding query complexity.

We introduce our oracle constructions for the second-
quantized Hamiltonian that are based on the direct encoding
scheme. In particular, we discuss the details of our design of
the OF and OH oracles. We also analyze the asymptotic qubit
cost and gate count for two oracles. Jointly, the asymptotic
qubit cost of the OF and OH oracles is Õ(Nsp), while their
asymptotic gate cost is Õ(N5

sp).
Based on the gate cost of the oracles, we can evalu-

ate the asymptotic gate cost for dynamics simulation and
structure calculation within our framework. This gate cost is
Õ(N5

spDϒ), with D ∈ O(N4
sp) being the number of monomials

of the ladder operators in the second-quantized Hamilto-
nian that includes at most two-body terms. For simulating
a time-dependent Hamiltonian, we take ϒ = ∫ t

0 �m(t ′) dt ′
with �m(t ) � maxi |〈piqi|H (t )|risi〉| and i ∈ [0,D − 1]. We
take ϒ = �mt for the simulation of a time-independent
Hamiltonian and ϒ = �m� for structure calculations, with
�m � maxi |〈piqi|H |risi〉|.
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Our asymptotic gate cost for simulating a general time-
independent many-nucleon Hamiltonian that retains only the
two-nucleon terms is Õ(N10

sp t ). This can be compared with
previous works of simulating a molecular Hamiltonian in
quantum chemistry, where the objective Hamiltonian is time-
independent and retains up to two-electron terms, where one
notes that the two-electron terms result in the major gate cost.
We find that the scaling of our gate cost in Nsp is close to that
of the Trotter-based methods [20,67,68]. However, our algo-
rithm is exponentially more precise than these Trotter-based
algorithms.

Our asymptotic gate cost is close to that of the database
algorithm introduced in Ref. [64], which scales as Õ(N8

spt ).
Our gate cost scales worse than the on-the-fly algorithm in
Ref. [64], the algorithm in Ref. [30] based on compact encod-
ing, and the algorithm in Ref. [44] that adopts a compressed
configuration-interaction matrix representation. These algo-
rithms report better scalings of the asymptotic gate cost in Nsp

than ours.
We comment that our estimation of the asymptotic gate

cost is conservative as the restrictions of the Hamiltonian
properties are not taken into account in the evaluation. As for
the applications of complex nuclei, a tighter upper bound of
the gate cost is suspected to be Õ(N7

spt ). Our gate cost can be
further improved by incorporating the (controlled-) arithmetic
operations and the on-the-fly evaluations of the two-body
kernels as in Refs. [30,44,64]. As for this work, we design
our algorithm based on the elementary gate operations aiming
for straightforward prototype nuclear structure and dynamics
calculations on quantum computers.

For pedagogical purposes, we apply our method to two
model problems in nuclear physics within restricted basis
spaces, where only the two-body terms are retained in respec-
tive Hamiltonians. We illustrate the design of our oracle-based
input model that is based on Fock states. Implementing
our Fock-state-based input model with the high-level sparse
matrix simulation algorithms, we can perform prototype struc-
ture and dynamics calculations for these model problems on
near-term noisy intermediate scale quantum devices. Gener-
alization to complex and realistic many-nucleon problems is
straightforward.

Going forward, we plan to explore the applications of our
framework to perform dynamics simulations and structure
calculations of simple systems such as the simplified pairing
models described in this work. These calculations serve as
benchmark tests for more complicated applications, such as
the four-nucleon calculations in a restricted model space. We
also plan to improve the performance of our input model.
While better options of basis set may reduce the counts of
the terms in the second-quantized Hamiltonian [71], the incor-
poration of simple arithmetic operations [65,66] would also
be promising. In addition, we will further develop the current
framework to treat more general second-quantized Hamilto-
nians for systems including both bosons and fermions with
particle creations and annihilations.
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APPENDIX: HAMILTONIAN INPUT MODEL

1. Isometry construction

For completeness and self-consistency, we present the con-
struction of the isometry T that performs the mapping defined
in Eq. (50).

Lemma 1. For an input state |F〉|b〉, where |F〉 denotes the
many-nucleon state and b ∈ {0, 1}, the isometry T defined in
Eq. (45) can be implemented with O(1) queries to OF and OH

defined in Eqs. (43) and (44). (This Lemma follows Lemma 1
in Ref. [30] and Lemma 4 in Ref. [22].)

Proof. The isometry T maps the state |F〉|b〉 to
|F〉|b〉|φF ,b〉 as shown in Eq. (50). We give the proof by
showing the construction of T as follows.

Provided the many-nucleon state |F〉, we initialize the
input state to be

|�in〉 = |F〉|b〉|0〉|0〉|0〉|0〉|0〉|0〉|0〉, (A1)

where we write down the state of each quantum register ex-
plicitly.

Case 1: If |b〉 = |1〉, we flip the last qubit register from |0〉
to |1〉 controlled on the ancilla qubit |b〉 = |1〉. In this way, we
prepare the output state as

|�out〉 = |F〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (A2)

Case 2: If |b〉 = |0〉, we start with the input |�in〉 =
|F〉|0〉|0〉|0〉|0〉|0〉|0〉|0〉|0〉 and operate the registers as fol-
lows.

(1) Prepare a uniform superposition of the indices
i = 0, 1, 2, . . . ,D − 1 on the third register. The overall state
of the quantum register |�in〉 becomes

|�1〉 = 1√
D

D−1∑
i=0

|F〉|0〉|i〉|0〉|0〉|0〉|0〉|0〉|0〉. (A3)

(2) For a specific index i and |F〉, we apply the OF oracle
[Eq. (43)] on the first (leftmost), third, fourth, fifth, sixth, and
seventh registers to obtain

|�2〉 = 1√
D

D−1∑
i=0

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉. (A4)

(3) Controlled on |yi〉 = |0〉, we apply the OH oracle
[Eq. (44)] to the first, fourth, fifth, and sixth registers. The
kernel 〈F ′

i , Qi|H ′|F , Pi〉 is computed in an ancilla register that
is initiated as |0〉. Controlled on the value 〈F ′

i , Qi|H ′|F , Pi〉,
we rotate the last (rightmost) single qubit (initialized as |0〉)
in |�2〉 as

|0〉 �→
√

〈F ′
i , Qi|H|F , Pi〉

�m
|0〉 +

√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|1〉,
(A5)

where the operation of the square root is defined be-
low [Eq. (A21)]. We choose �m to be larger than the
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largest absolute value of the two-body kernel: �m � |〈F ′
i , Qi|H|F , Pi〉| = |〈piqi|H |risi〉| for any i ∈ [0,D − 1], such that 0 �

|〈F ′
i ,Qi|H|F ,Pi〉|

�m
� 1 is satisfied. Then uncompute the ancilla register that computes 〈F ′

i , Qi|H|F , Pi〉 by another controlled query
to OH after the above single-qubit rotation [Eq. (A5)] is completed.

In the case of |yi〉 = |1〉, we anticipate that |F ′
i 〉 does not connect to |F〉 via the many-nucleon Hamiltonian, and

〈F ′
i , Qi|H|F , Pi〉 = 0 (due to the violation of, e.g., the symmetry, the Pauli principle, etc.). In this case, we flip the last qubit

from |0〉 to |1〉 controlled on |yi〉 = |1〉.
After this step, without loss of generality, the full state of the quantum registers becomes

|�out〉 = 1√
D

D−1∑
i=0

[√
〈F ′

i , Qi|H|F , Pi〉
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]

+ 1√
D

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|1〉

]
. (A6)

It is understood that the necessary condition for the first term of the above equation to exist is |yi〉 = |0〉. When |yi〉 = |1〉, we
should take 〈F ′

i , Qi|H|F , Pi〉 = 0 and flip the last qubit register from |0〉 to |1〉. In our construction, we make use an additional,
redundant qubit, the second last qubit which is initialized as |0〉, to guarantee the orthogonalization between the terms with
|yi〉 = |0〉 and those with |yi〉 = |1〉 [see discussion of the swap operator [Eq. (A16)] below].

In viewing the fact that only nonvanishing kernels 〈F ′
i , Qi|H|F , Pi〉 contribute to the summation in the first term of |�out〉.

Therefore, we can simplify Eq. (A6) as

|�out〉 = 1√
D
∑

i∈I(F )

[√
〈F ′

i , Qi|H|F , Pi〉
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]

+ 1√
D

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|1〉

]
, (A7)

where I (F ) denotes the set of indices i with 〈F ′
i , Qi|H|F , Pi〉 �= 0. Equation (A7) can also be rewritten as

|�out〉 =
√

1

D�m

∑
i∈I(F )

[√
〈F ′

i , Qi|H|F , Pi〉|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]
+
√

1 − σF
D�m

|F〉|0〉|ζF 〉|1〉, (A8)

where we define

|ζF 〉 =
√

1

1 − σF
D�m

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉

]
, (A9)

with σF =∑D−1
i=0 |〈F ′

i , Qi|H|F , Pi〉|. Note that σF serves as a parameter to normalize |�out〉 in Eq. (A8). This can be checked
based on the orthogonality relation between any term in the summand of the first term and the second term in Eq. (A7).

To summarize, we have present the construction of T that operates as Eq. (50) based on one query of OF [Eq. (43)] and two
queries of OH [Eq. (44)].

2. Block-encoding scheme

With the isometry T [Eq. (45)], we can access the Hamiltonian via the block-encoding scheme following the approach in
Refs. [21,22]. Indeed, it is straightforward to show that

T †ST = 1

D�m
H ⊗ |0〉〈0| + |0〉〈0| ⊗ |1〉〈1|, (A10)

where |0〉〈0| and |1〉〈1| (following the symbols “⊗”) project the subspace that corresponds to the state |b〉 (in either |0〉 or |1〉
state) in Eq. (45). H is the many-nucleon Hamiltonian defined in Eq. (4) that acts on the many-nucleon state, as does the operator
|0〉 ⊗ 〈0| in the second term above. S is the swap operator defined in Eq. (A16) below.

To prove the identity [Eq. (A10)], we compute 〈F |〈b|(T †ST )|G〉|b′〉 with b, b′ = 0 or 1. Based on the construction of the
isometry T [Eq. (A6)], we have

T |F〉|b = 0〉 = 1√
D

D−1∑
i=0

[√
〈F ′

i , Qi|H|F , Pi〉
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]

+ 1√
D

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|1〉

]
, (A11)

T |F〉|b = 1〉 =|F〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (A12)
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Similarly, we also have

T |G〉|b′ = 0〉 = 1√
D

D−1∑
j=0

[√ 〈G ′
j, Qj |H|G, Pj〉

�m
|G〉|0〉|0〉|Pj〉|G ′

j〉|Qj〉|y j〉|0〉|0〉
]

+ 1√
D

D−1∑
j=0

[√
1 − |〈G ′

j, Qj |H|G, Pj〉|
�m

|G〉|0〉|0〉|Pj〉|G ′
j〉|Qj〉|y j〉|0〉|1〉

]
, (A13)

T |G〉|b′ = 1〉 =|G〉|1〉|0〉|0〉|0〉|0〉|0〉|0〉|1〉. (A14)

Case 1. We first compute the case with b = b′ = 0. We have

〈F |〈0|(T †ST )|G〉|0〉 =
{

1√
D

D−1∑
i=0

[√
〈F ′

i , Qi|H|F , Pi〉
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]

+ 1√
D

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|1〉

]}†

× S

{
1√
D

D−1∑
j=0

[√ 〈G ′
j, Qj |H|G, Pj〉

�m
|G〉|0〉|0〉|Pj〉|G ′

j〉|Qj〉|y j〉|0〉|0〉
]

+ 1√
D

D−1∑
j=0

[√
1 − |〈G ′

j, Qj |H|G, Pj〉|
�m

|G〉|0〉|0〉|Pj〉|G ′
j〉|Qj〉|y j〉|0〉|1〉

]}
. (A15)

We define the swap operator S as

S|r0〉|r1〉|r2〉|r3〉|r4〉|r5〉|r6〉|r7〉|r8〉 = |r4〉|r8〉|r2〉|r5〉|r0〉|r3〉|r7〉|r6〉|r1〉, (A16)

where we swap states stored in the registers as |r0〉 ↔ |r4〉, |r1〉 ↔ |r8〉, |r3〉 ↔ |r5〉, and |r6〉 ↔ |r7〉. With the swap operations,
we obtain

〈F |〈0|(T †ST )|G〉|0〉 =
{

1√
D

D−1∑
i=0

[√
〈F ′

i , Qi|H|F , Pi〉
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|0〉

]

+ 1√
D

D−1∑
i=0

[√
1 − |〈F ′

i , Qi|H|F , Pi〉|
�m

|F〉|0〉|0〉|Pi〉|F ′
i 〉|Qi〉|yi〉|0〉|1〉

]}†

×
{

1√
D

D−1∑
j=0

[√ 〈G ′
j, Qj |H|G, Pj〉

�m
|G ′

j〉|0〉|0〉|Qj〉|G〉|Pj〉|0〉|y j〉|0〉
]

+ 1√
D

D−1∑
j=0

[√
1 − |〈G ′

j, Qj |H|G, Pj〉|
�m

|G ′
j〉|1〉|0〉|Qj〉|G〉|Pj〉|0〉|y j〉|0〉

]}
. (A17)

Implementing the orthonormality condition, the above equation can be simplified as

〈F |〈0|(T †ST )|G〉|0〉 = 1

D�m

D−1∑
i=0

D−1∑
j=0

(
√

〈F ′
i , Qi|H|F , Pi〉)∗

√
〈G ′

j, Qj |H|G, Pj〉δF ,G ′
j
δPi,Qj δF ′

i ,GδQi,Pj δyi,0δy j ,0. (A18)

We note that the swap |r6〉 ↔ |r7〉 guarantees that only
those terms with |yi〉 = |y j〉 = |0〉 contribute; this swap op-
eration eliminates the contributions from terms with other
possible combinations of |yi〉 and |y j〉. The summation
indices i and j enumerates the monomials in the second-
quantized Hamiltonian [Eq. (14)]. By observation, the above
equation enumerates the contributions from two types of
monomials [see notations in Eq. (15)]:

(1) b†
Qi

bPi , which corresponds to the kernel 〈F ′
i |b†

Qi
bPi |F〉

with Pi �→ {ri, si} (ri < si) and Qi �→ {pi, qi} (pi < qi).
(2) b†

Qj
bPj , which corresponds to the kernel 〈G ′

j |b†
Qj

bPj |G〉
with Pj �→ {r j, s j} (r j < s j) and Qj �→ {p j, q j} (p j < q j).

The delta functions in Eq. (A18) (resulted from the or-
thonormality relations of the register states) enforce the
conditions that |F〉 = |G ′

j〉, |F ′
i 〉 = |G〉, and retain monomials

that are conjugate transpose to each other, i.e., (b†
Qi

bPi )
† =
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b†
Qj

bPj with Pi = Qj and Qi = Pj . Note that we define the
mapping Pi �→ {ri, si} (ri < si) and Qj �→ {p j, q j} (p j < q j)
such that Pi = Qj if and only if ri = p j and si = q j .

For the trivial case with 〈F |H |G〉 = 0, then Eq. (A18)
produces 0 in the right-hand side, which is as expected. As for
the nontrivial case with 〈F |H |G〉 �= 0, there exists at least one
choice of i ∈ IF such that the right-hand side of Eq. (A18) is
nonvanishing. In this case, we can rewrite Eq. (A18) as

〈F |〈0|(T †ST )|G〉|0〉 = 1

D�m

D−1∑
i=0

(
√

〈G, Qi|H|F , Pi〉)∗

×
√

〈F , Pi|H|G, Qi〉. (A19)
It is also noteworthy that we need to choose an appropriate

convention for the square-root operation, especially for the
cases where 〈F , Pi|H|G, Qi〉 has negative or complex values.
In this case, we define

〈F , Pi|H|G, Qi〉 = |〈F , Pi|H|G, Qi〉| exp[iθF ,Pi;G,Qi ], (A20)

with θF ,Pi ;G,Qi = arg[〈F , Pi|H|G, Qi〉] ∈ (−π, π ]. Then the
quantity

√〈F , Pi|H|G, Qi〉 can be uniquely defined as√
〈F , Pi|H|G, Qi〉 =

√
|〈F , Pi|H|G, Qi〉| exp[iθF ,Pi;G,Qi/2],

(A21)

With the standard operation of Hermitian matrix elements

(
√

〈G, Qi|H|F , Pi〉)∗ =
√

〈F , Pi|H|G, Qi〉, (A22)

we have

(
√

〈G, Qi|H|F , Pi〉)∗
√

〈F , Pi|H|G, Qi〉
= |〈F , Pi|H|G, Qi〉| exp

[
iθF ,Pi;G,Qi

]
. (A23)

With the definition of the square-root operation [Eq. (A21)],
Eq. (A19) becomes

〈F |〈0|(T †ST )|G〉|0〉 = 1

D�m

D−1∑
i=0

〈F , Pi|H|G, Qi〉

= 1

D�m
〈F |H |G〉, (A24)

where we have used the relation in Eq. (16). The summation in
the above equation enumerates all the nonvanishing matrix el-
ements 〈F , Pi|H ′|G, Qi〉 which contribute to the Hamiltonian
matrix element 〈F |H |G〉.

Case 2. For the cases with (b, b′) = (0, 1) and (1,0), anal-
ogous calculation yields

〈F |〈b|(T †ST
)|G〉|b′〉 = 0. (A25)

Case 3. For the case with (b, b′) = (1, 1), we can also
calculate

〈F |〈1|(T †ST )|G〉|1〉 = δF ,0δG,0, (A26)

with the application of Eq. (A12) and Eq. (A16).
Combining Case 1, Case 2, and Case 3, we verify

Eq. (A10).
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