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With the advent of quantum processors exceeding 100 qubits and the high engineering complexities involved,
there is a need for holistically benchmarking the processor to have quality assurance. Linear cross-entropy
benchmarking (XEB) has been used extensively for systems with 50 or more qubits but is fundamentally limited
in scale due to the exponentially large computational resources required for classical simulation. In this work
we propose conducting linear XEB with random Clifford circuits of constant to logarithmic depth, a scheme we
call Clifford XEB. Since Clifford circuits can be simulated in polynomial time, Clifford XEB can be scaled to
much larger systems. To validate this claim, we run numerical simulations for the classes of Clifford circuits we
propose with noise and observe exponential decays. When noise levels are low, the decay rates are well correlated
with the noise of each cycle assuming a multiplicative error accumulation, i.e., where the fidelities of individual
gates multiply. We perform simulations of systems up to 1225 qubits, where the classical processing task can be
easily dealt with by a workstation. Furthermore, using the theoretical guarantees in Chen et al. [PRX Quantum 3,
030320 (2022)], we prove that Clifford XEB with our proposed Clifford circuits must yield exponential decays
under a general error model for sufficiently low errors. Our theoretical results explain some of the phenomena
observed in the simulations and shed light on the behavior of general linear XEB experiments.
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I. INTRODUCTION

Quantum computers are no longer theoretical constructs or
even small-scale, proof-of-concept devices. There are already
multiple processors with over 50 qubits [1,2], and recently
a processor with more than 100 qubits has been built [3,4].
With this number of qubits comes a litany of engineering and
operating challenges, including the overwhelming number of
control lines and pulse generators required to perform gates
and measurements. There are also challenges in processor
design, including significant crosstalk between qubits and
poor two-qubit gate connectivity. Given all these challenges,
there is a demand for benchmarking these processors to have
assurance that the algorithms we run will give accurate results.
In addition, the figure of merit provided by such a bench-
marking scheme can serve as an essential guide for hardware
iteration to build ever higher-quality processors. Although
common methods such as single- and two-qubit randomized
benchmarking (RB) can provide useful information [5–18],
these methods are not sensitive to aggregate effects such as
the difference between calibrating qubits on a processor indi-
vidually or simultaneously [13]. To capture such system-level
effects, holistic benchmarks which should involve all or a
large number of qubits on the processor are needed. Such
benchmarks can also provide information about whether there
are correlated errors in the system by comparing the results
to the multiplicative error accumulation (MEA) model, where

the fidelity of each circuit component multiplies.1 This is
crucial for realizing fault-tolerant quantum computation.

To holistically benchmark modern quantum processors
with tens of qubits, various schemes have been devel-
oped, most notably linear cross-entropy benchmarking (linear
XEB). Linear XEB was originally proposed for the “quantum
supremacy” experiment [1], where it was used to character-
ize increasingly larger quantum circuits so as to extrapolate
the error of the 20-cycle Sycamore circuit. To implement
linear XEB, we run quantum circuits with random layers of
gates and perform a computational basis measurement. We
next classically compute the probability of the bit string we
measure. We then repeat, taking an overall average. This aver-
age, up to constants, is the linear XEB measure. It has been
experimentally and numerically observed that this measure
exponentially decays with the number of cycles for a noisy
circuit, and this decay exponent is proposed as a measure of
gate quality [1,2,19]. Although originally conceived to sup-
port the “quantum supremacy” claim, linear XEB has become
a benchmarking scheme in its own right [1,2,20,21]. Linear
XEB has the advantage of requiring only a shallow circuit,
which is easy to implement on current processors. However,
if we want to benchmark larger devices, linear XEB has an
obvious Achilles’ heel. Namely, the random gate set is chosen
such that the classical processing needed for linear XEB, that
is, simulating the resulting random quantum circuits, scales
poorly with the number of qubits. Indeed, by the quantum

1This is referred to as the digital error model in [1].
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supremacy claim itself, linear XEB by design cannot bench-
mark a processor with more than a few tens of qubits [1].2

Therefore, if we want to take advantage of linear XEB’s low
overhead to benchmark devices but keep apace with current
hardware development, we need an alternative benchmarking
scheme that can scale to larger qubit numbers.

In this work, we propose a scalable benchmarking scheme
which replaces the random circuits in linear XEB with random
Clifford circuits of constant to logarithmic depth for which
we can also theoretically guarantee an exponential decay.
The scalability naturally follows from the fact that Clifford
gates can be efficiently classically simulated [22]. We call
our scheme Clifford XEB. Of course, by replacing general
gates with Clifford gates, we lose the direct benchmarking
of non-Clifford gates that linear XEB provides. However,
in most quantum computing platforms, gate errors do not
discriminate between Clifford and non-Clifford gates. As a
result, the benchmarking results on Clifford circuits should
in principle indicate the performance of non-Clifford gates
as well. Compared to Clifford RB [17,18,23] which requires
�(n/ log n) depth to compile an n-qubit Clifford gate [24],
Clifford XEB retains the convenience of general linear XEB
in requiring only shallow circuits. And due to the ease of
classical simulation, we can benchmark much larger devices.
Moreover, given the prevalence of Clifford RB and linear
XEB, it is a negligible overhead to adopt Clifford XEB as a
new benchmarking scheme.

To demonstrate the scalability of our scheme, in Sec. II we
perform numerical simulations of the random Clifford circuits
we propose on various topologies with depolarizing noise.
We simulate circuits with up to 225 qubits. For noise levels
comparable to what is possible in current hardware, we can
see clear exponential decays whose rates are consistent with
MEA. We also conduct simulations on the two-dimensional
(2D) grid topology with 1225 qubits, which is almost three
times the number of qubits of the largest device as of this writ-
ing [4], to further showcase the scalability of Clifford XEB.
On top of the promising numerical results, in Sec. III we also
prove that Clifford XEB for the classes of circuits we propose
yields an exponential decay under a general error model for
sufficiently low error. This is necessary since we a priori do
not know if we would even measure an exponential decay for
every experimental setting we encounter (although this can
be shown for special error models [19,21]). In addition to
providing this assurance, our proof also explains some of the
phenomena we observe in the simulations, such as the linear
XEB measure rapidly decaying for low cycle numbers before
entering a smooth exponential decay. Through our theoretical
results we provide concrete guidelines for how experiments,
both Clifford XEB and conventional linear XEB, should be
interpreted so as to correctly extract information about gate
errors. In Sec. IV, we conclude with a discussion.

2Readers who are familiar with the “quantum supremacy” paper
may point out that the paper’s method of using patch circuits or
elided circuits can push the qubit number further. However, using
patch circuits is effectively benchmarking two separate processors.
As for elided circuits, the complexity of classical simulation still
scales poorly.

II. THE CLIFFORD XEB SCHEME

In this section we give an explicit description of the
Clifford XEB scheme and perform numerical simulations
showing its viability for benchmarking quantum processors
with more than a thousand qubits.

A. Description of the scheme

Although we focus on Clifford XEB, our experimental pro-
tocols and performance guarantees equally apply to general
linear XEB. Here we first briefly introduce linear XEB before
investigating Clifford XEB in more detail. Consider a quan-
tum computer with n qubits. Let S ⊂ SU(2n) be a subset of the
special unitary group and let μ be a probability distribution
on S. The implementation map φ : S → C(2n), where C(2n)
is the set of quantum channels on n qubits, defines the noisy
implementation of gates on the system. This in particular
means that the noise for each element is independent of the
previous elements, that is, the noise is Markovian. Assume
the initial state is ρ0 and final measurement positive operator-
valued measure (POVM) is M = {Mx}x∈{0,1}n , which are noisy
realizations of some desired initial state and measurement.
Then, a linear XEB experiment is defined as follows.

Definition 1 (Linear XEB). A linear XEB scheme with
parameters (S, μ, φ, M, ρ0) is given by the following proce-
dure:

(1) For a given number of cycles m, sample m i.i.d. quan-
tum gates g1, . . . , gm from S according to the distribution μ.

(2) Initialize the system to ρ0 and apply φ(g1), φ(g2), . . . ,
φ(gm) to the system.

(3) Measure the system under a POVM {Mx}x∈{0,1}n and
get a binary string x. Calculate the probability of getting x for
the ideal circuit: px(m) = |〈x|gm . . . g2g1|0n〉|2.

(4) Repeat steps 2 to 3 multiple times for this sampled
circuit and calculate the average of px(m) over sampled
strings x.

(5) Repeat steps 1 to 4 multiple times and let p̂(m) be
the average of Ex[px(m)] over different circuits. Let q̂(m) =
−1 + 2n p̂(m).

(6) Repeat steps 1 to 5 for number of cycles m1, . . . , mk .
The returned results are q̂(m1), . . . , q̂(mk ).

We can see that q̂(m) is an unbiased estimator of the fol-
lowing quantity:

qR(m) = − 1 + 2nEg1,...,gm∼μ

×
[ ∑

x∈{0,1}m

|〈x|gm . . . g2g1|0n〉|2 p̃(x)

]
, (1)

where p̃(x) is the probability of measuring the binary string x
in the noisy circuit:

p̃(x) = tr[Mxφ(gm) ◦ · · · ◦ φ(g2) ◦ φ(g1)(ρ0)]. (2)

We next define Clifford XEB, a special case, illustrated in
Fig. 1.

Definition 2 (Clifford XEB). A Clifford XEB scheme with
parameters (S, μ, φ, M, ρ0) is a linear XEB scheme, where
S ⊆ Cl(2n) is a subset of the Clifford group.

That is, this Clifford XEB only differs from conventional
linear XEB in that we require S to be Clifford. Again, we
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FIG. 1. Illustration of one iteration of a Clifford XEB experiment. We start with an initial state, apply m cycles of noisy implementations
of Clifford elements, and finally perform a measurement. The measured bit string’s noiseless probability is then classically computed. This
value is averaged over multiple measurements and random circuits.

do this since the noiseless distributions resulted by Clifford
circuits can be efficiently computed classically [22]. Also note
that our definition of cycles is slightly different from that of
[1]. There they allow heterogeneous circuit geometries for
every cycle, while we require that the gates in each cycle is
sampled from the same distribution.

B. Numerical simulations

We numerically study the behavior of Clifford XEB
for various connectivity topologies to demonstrate its wide
applicability. The topologies we consider include a one-
dimensional (1D) chain, a 2D grid, and a star topology, i.e.,
there is a center qubit that is connected to all the other qubits,
to implement the construction in [25], which we will refer to
as the Clifford approximate twirl. We describe the particular
distribution over Cliffords for each topology, illustrated in
Fig. 2.

(1) For the 1D chain, each cycle consists of two layers
of two-qubit gates each preceded by a layer of single-qubit
gates, in a brickwork manner. The single-qubit gate layer in-
volves independent and identically distributed (i.i.d.) random
single-qubit Clifford gates on each qubit. The two-qubit layers
are controlled NOT (CNOT) gates: the first connecting qubits
(0, 1), (2, 3), . . . , (2k, 2k + 1), . . . and the second connect-
ing (1, 2), (3, 4), . . . , (2k + 1, 2k + 2), . . . .

(2) For the 2D grid, we take motivation from the random
circuits on the Sycamore processor in [1]. Each cycle consists
of a single-qubit gate layer consisting of i.i.d. single-qubit
Cliffords on every qubit, followed by a two-qubit gate layer
consisting of CNOT gates. The structure of the CNOT’s is
chosen from the configurations A, B, C, and D in [[1], Fig. 3]
with equal probability.3

(3) We implement a specific family of random Clifford
circuits called Clifford approximate twirls [25] on a star
topology. Each cycle in this construction consists of two re-
peated circuits, each circuit involving three layers of two-qubit
gates, interleaved by four layers of single-qubit gates. See
Appendix A for the detailed construction.

The numerical experiments are run using the stabilizer-
based Clifford circuit simulator Stim [26] on a 40-core Intel
Xeon Platinum machine with 96 GB memory, with source

3In the Sycamore random circuit sampling experiments, the two-
qubit gates in different cycles follow a fixed pattern ABCDCDAB.
We do not do this because we require every cycle to have the same
distribution.

code slightly modified4 to accelerate the calculation of the
noiseless probability distribution. For each topology, we run
experiments with different qubit numbers and noise levels.
We pick qubit numbers 25, 100, and 225, which are respec-
tively 5 × 5, 10 × 10, and 15 × 15 on the 2D grid. As for
noise levels, we assume depolarizing noise for single- and
two-qubit gates of magnitudes (10−5, 10−4), (10−4, 10−3),
and (10−3, 10−2), respectively. These error rates are similar
to what is achievable in current hardware. We also simulate
the noiseless circuit. Each experiment is run for 2 to 50
cycles, where for each cycle number 3000 random circuits
are generated, each sampled 1 × 106 times. The results are
plotted in Fig. 3. For illustration purposes, we additionally
run experiments on a 4 × 4 2D grid, for single- and two-
qubit gates with noise levels (10−3, 10−2), (5 × 10−4, 5 ×
10−3), (2 × 10−4, 2 × 10−3), (10−4, 10−3). A gate with noise
level p undergoes a depolarizing channel with probability p.
Each experiment is run for 1 to 100 cycles, where for each
cycle number 3 × 106 random circuits are generated, each
sampled 100 000 times. The result is plotted in Fig. 4. All
of the experiments added together only take a total of sev-
eral hours on the aforementioned workstation. In comparison,
conventional linear XEB is already infeasible for just tens of
qubits. Indeed, because of this ease of simulation, Clifford
XEB provides a rich playground for studying the behavior
of linear XEB in larger systems. Our findings can be used as
general guidelines for using linear XEB as a benchmarking
scheme, including scenarios in which a naïve exponential
curve fitting would fail to reflect the correct fidelity. We sum-
marize our findings with two main observations:

a. Convergence and two-phase behavior. We see a universal
behavior of linear XEB with increasing cycle number: the
noiseless value always converges to 1,5 while the noisy value
converges to 0.6 This is the same as the experimental findings
in [1]. Intuitively, for sufficiently many cycles, the random
Clifford circuit will converge to a uniform distribution over
the Clifford group [27], while a noisy implementation will
eventually lose all information of the input. This explains the
final convergence values. A more rigorous proof is given in
Appendixes B 1 and B 2.

4Explicitly, it gives a different canonical presentation of the stabi-
lizer groups.

5Technically, the noiseless linear XEB value converges to D−1
D+1 as

shown in Appendix B 1, D being the dimension of the quantum
system. In the rest of the paper we take the approximation D−1

D+1 ≈ 1
unless explicitly stated.

6This is not visually apparent in some of the plots due to the low
noise levels. However, the numerical data support this conclusion.
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FIG. 2. Illustration of different quantum device topologies we consider in our paper: (a) 1D chain, (b) 2D grid, and (c) star topology. In
(a) and (b), qubit connections with different colors indicate different layers of parallel two-qubit gates to be applied. The Clifford approximate
twirl can be naturally applied on a star topology depicted in (c)

The curves also exhibit a two-phase behavior: In the first
phase, which we call the scrambling phase in reference to the
connection between random circuits and quantum scrambling
[27–34], both the noiseless and noisy linear XEB values decay
quickly from being exponentially large to a constant value.
The second phase, which we call the decaying phase, the
noiseless linear XEB value converges to 1, while the noisy
values undergo single exponential decays (which would be
a linear decay on the semilog plot). We show in Fig. 4 that
exponential fits of data in the second phase agree well with the
experimental results. Intuitively, only the data in the second
phase are of relevance to benchmarking, as the first phase
is characterized by the scrambling of quantum information,
rather than the loss of it.

One way of interpreting the decay rate is to use it as a proxy
for the fidelity of a cycle, which in turn can be estimated by
assuming MEA, that is, the fidelity of the circuit is the product
of the fidelities of its constituent gates. To see if this applies
to the numerical experiments, we extract the decay rates by
linearly fitting the curve in the second phase, manually choos-
ing the range of the number of cycles. We then compare them
with the predicted fidelity according to MEA. We compare
the two values under different settings in Fig. 5, and we give
the detailed data processing procedure in Appendix C. We
see that the MEA model fidelity is well correlated to the
linear XEB decay rate when the noise level is low, but not
when the noise level is too high. This is because even in the
decaying phase, the distribution of the ideal circuit converges
to the uniform distribution on all Cliffords at a certain rate,
resulting in a mixing term. This mixing term is plotted as a
red dashed-dotted line in Fig. 4. As a result, when the gate
error exceeds a certain threshold, the decay of the linear XEB
value no longer represents the fidelity but is dominated by this
slower mixing of the ideal circuit.

To verify this intuition, for each circuit configuration
(topology and number of qubits) we sampled 300 000 random
circuits to better evaluate the convergence rate of the noiseless
linear XEB value towards 1, which we call the noiseless
scrambling rate (NSR). We do this because of the quick decay
of the noiseless value and the high variance of Clifford XEB
(see Appendix B 1). We fit the differences of linear XEB
values and 1 with an exponential fit to extract the NSRs,
and plot them as dashed lines in Fig. 5. It can be observed
that the MEA infidelity in general is not correlated with the
extracted linear XEB error rate when the former is greater
than the NSR. This indicates that the Clifford XEB, and in
general linear XEB, only provides useful information when
the noise level is sufficiently small. Our simulations suggest we

can even roughly quantify what that noise level is. As a rule of
thumb, we can estimate the convergence rate of the noiseless
linear XEB values prior to running linear XEB experiments
to ensure that the extracted decay rate from the experiments
reflects gate fidelities. To characterize large errors, we could
either change the twirling distribution μ for faster mixing (for
example, the one given in Appendix A gives a theoretically
provable NSR) or benchmark a subset of the qubits on the
device to lower the error of each cycle.

b. Fluctuations. Occasionally (e.g., in the middle plot of
Sec. II B), there are noticeable bumps in the curves. Moreover,
we observe that the red line, corresponding to a two-qubit gate
noise level of 10−2, fluctuates heavily when the linear XEB
value is small. We attribute such instabilities to three main
causes:

(i) During the scrambling phase, both the expectation and
the variance of the noiseless and noisy linear XEB value are
large, resulting in significant fluctuations for the noiseless and
noisy curves. The middle plot in Sec. II B has such a bump at
m = 20.

(ii) Unlike non-Clifford scrambling circuits that almost
surely result in a measurement distribution obeying Porter-
Thomas statistics, the measurement distribution of a Clifford
circuit is always uniform on the support. As a result, the noise-
less linear XEB value has constant variance with respect to
the random circuits chosen, even after the scrambling phase.
This is different from doing linear XEB with Haar random
gates because the Clifford group forms a unitary three-design
but not a four-design. We derive the variance in Appendix
B 1. Since the variance is constant, taking a large but constant
number of random circuits smooths out the fluctuation. It can
be observed in our plot that taking 3000 random circuits per
data points effectively resolves this issue.

(iii) The linear XEB values of the noisy curves converge
to 0 exponentially with respect to the cycle number. Given
a fixed number of samples per random circuit, the absolute
error of the linear XEB value is a constant, but the relative
error quickly grows as the expectation approaches 0. Similar
to [1], sufficiently many random samples need to be taken
from each random circuit to ensure an accurate evaluation of
the expectation value for linear XEB. This can be observed in
the rightmost figure in Sec. II B.

Understanding these sources of instability can help guide
Clifford XEB and general linear XEB experiments. The sec-
ond source only applies to Clifford XEB, but a constant
number of random circuits suffices to reduce the variance to
a small number. The third source applies for both Clifford
XEB and linear XEB, in fact, for any RB-based scheme. The
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FIG. 3. Linear XEB as a function of the number of cycles on (a) 1D chain, (b) 2D grid, and (c) Clifford approximate twirl (star topology)
(the x axis is twice the cycle number since we need to apply the circuit construction twice to get a γ -approximate twirl, see Sec. III for
details), with different qubit numbers and noise levels. Each row corresponds to the labeled topology. The number of qubits simulated
on each topology is, from left to right, 25, 100, and 225. The horizontal line is linear XEB = 1 for reference. The curves show some
deviations from an exponential decay. This can be attributed to rapidly decaying transients and statistical fluctuations. The former can be
addressed by a sufficient number of cycles, while the latter can be addressed by increasing the number of samples. See main text for further
details.

number of samples taken must be sufficiently large such that
the exponential decay curves can be confidently recovered.
However, note that in our simulations we can often already
isolate a clean single exponential decay at moderately small
linear XEB values for which we do not need as many samples.

To accurately extract decay rates, one needs to perform
Clifford XEB experiments in the decaying phase rather than
the scrambling phase. One natural question to ask is at what
depths a Clifford XEB scheme enters the decaying phase.
Using the results from Sec. III and Appendix B 2, we can

give a lower bound on the necessary number of cycles that
scales linearly with respect to number of qubits but we ob-
serve from our numerical experiments that this only applies to
the Clifford approximate twirl. Mixing happens much faster
for the 1D chain and 2D grid experiments and seems only
weakly dependent on the number of qubits. Although a finer
theoretical analysis of the mixing behavior of the noiseless
experiment is needed to fully explain this phenomenon, we
propose a general numerical approach to extracting accurate
decay rates:
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FIG. 4. Illustration of a typical linear XEB experiment on a 4 × 4
grid. Decay of the noisy Clifford XEB curves can be roughly divided
into a scrambling phase and a decaying phase with the threshold
being about m = 22. We perform a linear fitting for the noisy Clifford
XEB curves for m ∈ [40, 100] and plot the fit as dashed lines. The
red crosses illustrate the convergence of the noiseless linear XEB
towards 1. In the decaying phase, it can be seen that the noiseless
linear XEB value converges to 1 at a certain rate we call the noiseless
scrambling rate (NSR) which can computed from the red dashed-
dotted line on the bottom. More discussions of the NSR can been
found in Sec. II B.

(1) Classically simulate the noiseless experiment to deter-
mine both the scrambling phase length and the NSR in the
decaying phase. Note that we can perform this simulation
offline, prior to any physical experiment.

(2) Check that the linear XEB decay will not be dominated
by the mixing term. We can do this by estimating the total infi-
delity from one cycle of the circuit, for example, by assuming
MEA.

(3) Check that we have sufficiently many cycles in the
physical experiment to extract accurate decay rates. We can
do this by comparing with the scrambling phase length we
find in approach 1.

FIG. 6. Clifford XEB on a 2D grid of 35 × 35 = 1225 qubits.
Data points for curves with noise are evaluated over 3000 random
circuits with 100 000 samples each. Data points for the noiseless
curve are evaluated over 300 000 random circuits. Predictions assum-
ing MEA are plotted in dashed lines for comparison. The prediction
assuming MEA with noise level (10−4, 10−3) is beyond the range of
the plot. The red dashed-dotted line is used to illustrate the noiseless
scrambling rate (NSR). It again suffers from fluctuations with large
depths.

Finally, we present the results of Clifford XEB on the 2D
grid with 35 × 35 = 1225 qubits, the results shown in Fig. 6.
The experiments are run with two-qubit noise levels ranging
from 10−5 to 10−3 due to the larger number of qubits. We
plot linear XEB for cycle numbers from 20 to 100 because of
longer mixing time. We see that, while the 10−3 error decay
curve is dominated by the noiseless scrambling, Clifford XEB
is consistent with MEA when the noise level is below the
NSR. This shows that the Clifford XEB scheme can be readily
applied to quantum devices with more than 1000 qubits. On
the aforementioned workstation, all the noisy experiments
took approximately 12 hours to run, and two days and a half
to run the noiseless experiments in order to reliably extract the
NSR.

FIG. 5. Comparison between the extracted error per layer from the linear XEB experiments, the error per layer predicted by MEA, and the
NSR, under different topologies and number of qubits. The error per layer is defined as 1 − u, where u is the extracted decay rate for linear
XEB experiments, and the predicted fidelity assuming MEA. For each noise level, the crosses (×) are predictions given by MEA, and the dots
(•) are extracted from the numerical experiments. A few data points are missing due to failure of fitting. As we will discuss below, the MEA
infidelity matches the fitted error rate when they are below the NSR.

052613-6



LINEAR CROSS-ENTROPY BENCHMARKING WITH … PHYSICAL REVIEW A 108, 052613 (2023)

III. THEORY OF CLIFFORD XEB

In this section we mathematically prove that Clifford XEB
with the 1D chain distribution, 2D grid distribution, or the
Clifford approximate twirl yields a single exponential decay
under a general error model for sufficiently small errors.
For the Clifford approximate twirl, this decay is theoretically
guaranteed for a qubit number that scales inversely with the
infidelity. Our results also support our explanations of phe-
nomena observed in Sec. II B. These technical proofs can be
skipped with little effect on the reading of the rest of the paper.

In [35], a generalized framework for RB called universal
randomized benchmarking (URB) is proposed, where they
prove that for a particular class of schemes known as twirling
schemes, an experiment would yield a single exponential
decay. Here we show that Clifford XEB with our specific
distributions are twirling schemes.

For any g ∈ SU(2n), define ω(g) as the corresponding
quantum channel ω(g) : ρ → gρg†. We first define a γ -
approximate twirl, which is one possible definition of an
approximate unitary 2-design [25,35]:

Definition 3. Let μ be a measure on the unitary group and
C be a linear operator on the space of Hermitian matrices. The
twirling map

�(μ) : C �→
∫

g∼μ

dgω(g†) ◦ C ◦ ω(g) (3)

is a γ -approximate twirl if it satisfies

|||�(μ) − �(μH )|||� � γ , (4)

where μH is the Haar measure and ||| · |||� is the induced
diamond norm:

|||�|||� := max
C

‖�(C)‖�
‖C‖�

. (5)

Alternatively, �(μ) is a γ -approximate twirl in spectral norm
if it satisfies

|||�(μ) − �(μH )|||2 � γ , (6)

where ||| · |||2 is the spectral norm of the twirling map treated
as a linear operator on superoperators.

A. Clifford approximate twirl

1. Proof of exponential decay

For Clifford approximate twirls, we use the following the-
orem in [35]:

Theorem 1 (Theorem 8 from [35] and Appendix B 2). Let
(S, μ, φ, M, ρ0) be a linear XEB scheme on n qubits. Suppose
that the twirling map corresponding to μ is a γ -approximate
twirl and that the implementation map satisfies

Eg∼μ‖φ(g) − ω(g)‖� � δ. (7)

If δ � 1−γ

11 , then there exists A, B ∈ R and p ∈ [1 − 2δ, 1],
such that

|qR(m) − (A + Bpm)| � 16 × 2n(γ + 6δ)m. (8)

Further, when p < 1 we have A = 0 and B = O(1).
Note that we give here a general result for linear XEB,

that is, S need not be Clifford. The main difference from the

statement in [35] is the factor of 2n in Eq. (8). This arises from
the factor of 2n in the definition of the XEB quantity in Eq. (1)
which is used for normalization [1]. However, for large n this
is problematic since this would make the error term on the
right-hand side in Eq. (8) unacceptably large, considering that
B = O(1). To make the error term smaller than the exponen-
tial decay A + Bpm we want to extract, we need the number
of cycles m to scale linearly with n: m = �(n).7 Indeed, we
do observe that the mixing time (end of the scrambling phase)
is approximately a linear function of the number of qubits in
Sec. II B.

Now, we obtained the Clifford approximate twirl con-
struction from [25], where they proved that it constitutes a
γ -approximate twirl. Hence, we can directly apply Theorem
1 to Clifford XEB with the Clifford approximate twirl to theo-
retically guarantee an exponential decay. This guarantee holds
under a general error model (we only assume Markovianity),
giving much more confidence to what we can expect from
running benchmarking experiments. A priori, for schemes
where a particular error model is assumed or where there is
no theoretical guarantee whatsoever, we might run an exper-
iment and not even see an exponential decay, rendering the
scheme completely inapplicable for benchmarking the device
in question.

The Clifford approximate twirl is a theoretical construc-
tion with excellent circuit size and depth scaling, involv-
ing a probabilistic circuit of size O(n log 1/γ ) and depth
O(log n log 1/γ ). We prove in Appendix D that this is actually
optimal in n by showing any γ -approximate twirl requires
a circuit of size �[(1 − γ )n] and depth �[(1 − γ ) log n].
However, to achieve this scaling, we would need a complete
graph topology. Fortunately, we can easily adapt it to other
topologies that are more relevant to hardware at the cost of
suboptimal scaling. For a detailed analysis, see Appendix A 2.

2. Qubit scaling with error

Assuming a fixed gate error, any benchmarking scheme
has a limit on the number of qubits it can be applied to. One
reason for this simply follows from the size of the quantum
benchmarking circuit required. To obtain a meaningful result
from the circuit, the total error of the circuit should be less
than unity.

We consider the error of one cycle of a RB scheme. Now,
we are working under a general error model where gate errors
within a cycle can be arbitrarily correlated, so we need to con-
sider worst-case additive error accumulation (AEA),8 where
errors of individual gates add. Then, we must require

sε � 1, (9)

where s is the benchmarking circuit size and ε is the individual
gate error (assumed to be the same for all gates). Since s is a

7Note that Eq. (8) holds for arbitrarily large m. Intuitively, the
signal does not disappear at such large m because we assume the
noise between each cycle is Markovian, although error correlations
are allowed to exist within a cycle.

8If errors are uncorrelated, we expect a multiplicative accumulation
of error, i.e., MEA.
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function of n, this gives an upper bound on n. In particular,
for Clifford RB or any scheme where at least one uniformly
random n-qubit Clifford element needs to be generated, s =
�(n2), and so

n � 1√
ε
. (10)

This is somewhat unsatisfactory; for instance, we would have
to lower gate errors by a factor of 100 to be able to benchmark
10 times more qubits.

We show in this section that Clifford XEB with the Clif-
ford approximate twirl can do quadratically better: an inverse
linear scaling n ∼ ε−1. That is, by halving the gate error, we
can benchmark twice as many qubits. This is actually optimal
for twirling schemes which must implement γ -approximate
twirls given the circuit lower bound we prove in Appendix D.
In fact, as long as we have local gates (acts on a constant
number of qubits), any benchmarking circuit in which all of
the qubits are involved in a gate must have linear size. Thus,
assuming a worst-case AEA model, the best we can hope for
in such a scenario is inverse linear scaling.

We now show achievability. The Clifford approximate twirl
is able to form a γ -approximate twirl for γ ≈ 1

2 with a linear
size circuit [25], so the bound on n from that would be n �
ε−1. However, we have an additional constraint. In Theorem 1,
we require

δ � 1 − γ

11
. (11)

This is a similar requirement to that of the main result in
[17]. Intuitively, γ is the distance of our noiseless twirling
map from the Haar twirling map, which is known to give an
exponential decay [25]. Hence, the higher γ is, the lower the
tolerance the exponential decay has to the error δ, which is
effectively a perturbation on the noiseless twirling map. We
analyze what Eq. (11) implies about how the number of qubits
we can benchmark scales with gate error for our scheme.

Recall δ is the error of an entire γ -approximate twirl, not
just individual gate errors. We assume a simplified9 error
model where single-qubit gates are noiseless and two-qubit
gates have the same noise level. Under AEA, δ is of the form

δ = sε, (12)

where ε is the two-qubit gate error and s is the size of the
circuit. Now, for the Clifford approximate twirl, s = cnk,
where c is a constant that appears in the circuit construction,
and k = O[log(1/γ )] ∈ N is the number of times the circuit
is repeated to achieve a γ -approximate twirl [25]. Explicitly,
with k repetitions, we achieve a γ -approximate twirl with

γ = 1

2k−1

(
1 + 1

4n

)k

. (13)

Hence, Eq. (11) becomes

cnkε �
1 − 1

2k−1

(
1 + 1

4n

)k

11
. (14)

9This is for the sake of numerical convenience and not a limiting
assumption on what errors we allow.

We want to look at the asymptotic case where n is large, so
we make a simplifying approximation 1

4n ≈ 0. Then, Eq. (14)
becomes an upper bound on n:

n � 1 − 2−(k−1)

11ckε
. (15)

We see that for fixed ε, to maximize the upper bound, we set
k = 2 or 3 (they give the same answer) to obtain

n � 1

44cε
. (16)

Thus, the qubit number scales inversely with the infidelity.
To be extremely concrete, we can fill in some numbers.

State-of-the-art ion trap and superconducting circuit devices
can achieve a two-qubit gate infidelity of around 10−3 [36,37].
Tracking the constants in [25], c = 3 for a star topology
circuit. We therefore have a theoretical guarantee of an ex-
ponential decay for up to n = 7 qubits10 under a general error
model. Note that there was little attempt in [35] to optimize
the constant in Eq. (11) or in [25] to optimize the circuit size
constants, so the largest n for which we have a theoretical
guarantee may be substantially higher. We leave this for future
work.

We compare our theoretical predictions with the findings
in our numerical simulations. For the Clifford approximate
twirl simulations, we only have a theoretical guarantee for
the case with 25 qubits and two-qubit gate noise level 10−4

(yellow line in the leftmost plot in Sec. II B) if we fill in
all the numbers and the constants. Nevertheless, most of the
experiments give rise to single exponential decays that closely
reflect the overall noise level of the circuits, which indicates
that Clifford XEB is applicable to a wider variety of set-
tings than might be suggested by theory. One reason for this
disparity is that Theorem 1 applies to general error models
within each cycle, which can be highly correlated and, in the
worst case, even adversarial. In contrast, in our numerical
experiments we have gate-independent depolarizing errors.
Since our scheme is optimal in scaling for arbitrary errors,
it is unlikely that a theoretical guarantee for a general error
model can be extended to over 100 qubits given the two-qubit
noise levels on current devices. To extend Theorem 1 to larger
quantum devices, we either have to reduce gate errors or make
assumptions on the error models. For example, it is proven in
[38] that the number of qubits can scale with ε−2, provided
that the noise level is sufficiently weak and incoherent.11 In
general, we should seek a balance of theoretical guarantee
and applicability, i.e., make a minimal number of realistic
assumptions about errors to obtain a theoretical guarantee.

B. 1D chain and 2D grid

We would hope that the theoretical analysis for the Clifford
approximate twirl would extend to the other topologies we
consider. However, for the 1D chain and 2D grid schemes,
the depth of each circuit cycle is constant. As shown in

10That is, n = 7, k = 2, c = 3, ε = 10−3 satisfies Eq. (14).
11Note, however, they considered a setting different from our quest

for exponential decays.
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Appendix D, logarithmic depth is necessary to get an approx-
imate twirl with γ bounded away from 1 by a constant. For
these schemes, we instead argue that the measures on the uni-
tary group they induce are γ -approximate twirls with respect
to the ||| · |||2 norm. In this case we can use the following
theorem proved in [35]:

Theorem 2 (Corollary 16 of [35]). Let (S, μ, φ, M, ρ0) be
a linear XEB scheme on n qubits. Suppose that the twirling
map corresponding to μ is a γ -approximate twirl with respect
to the ||| · |||2 norm and that the implementation map satisfies

Eg∼μ‖φ(g) − ω(g)‖� � δ. (17)

Let δ′ := 2n/2δ. If δ′ � 1−γ

11 , then there exists A, B ∈ R and
p ∈ [1 − 2δ′, 1], such that

|qR(m) − (A + Bpm)| � 16 × 2
5
2 n(γ + 6δ′)m. (18)

Although the 2n factors can be very large, this still proves
that for sufficiently small errors, we can prove a single ex-
ponential decay under a general error model. In the case that
the error channels are mixtures of unitaries, we have another
version of Theorem 2 which relaxes the noise-level restriction
to essentially that of Theorem 1. We have the following.

Theorem 3. Let (S, μ, φ, M, ρ0) be a linear XEB scheme
on n qubits. Suppose that the twirling map corresponding to μ

is a γ -approximate twirl with respect to the ||| · |||2 norm, and
that φ maps to probabilistic mixtures of unitaries:

φ(g) =
∫

dνgu

for probabilistic measures νg on SU(d ). Additionally, suppose
that the implementation map satisfies

Eg∼μEu∼νg‖φ(g) − u‖� � δ. (19)

If δ � 1−γ

11 , then there exists A, B ∈ R and p ∈ [1 − 2δ, 1],
such that

|qR(m) − (A + Bpm)| � 16 × 2
5
2 n(γ + 6δ)m. (20)

Compared to Theorem 2, Theorem 3 lifts the exponential
prefactor 2n/2 on the noise-level tolerance, with a slightly
tighter restriction on the definition of the noise level itself.
However, the noise level δ can be well approximated in the
presence of error model that can be readily decomposed as
mixtures of unitaries. We present the proof of Theorem 3 in
Appendix E 1.

In general, it is much easier to prove a spectral gap than a
gap with respect to the induced diamond norm. We have the
following.

Definition 4. Let μ be a probabilistic measure on a finite
group G, and A := Supp(μ) ⊆ G be its support. We say that
μ is weakly mixing if either of following holds:

(i) 〈A−1A〉 = G or 〈AA−1〉 = G;
(ii) ∀ a ∈ G, 〈aA〉 = G, or ∀ a ∈ G, 〈Aa〉 = G.
Theorem 4. Assume that μ is weakly mixing over the n-

qubit Clifford group. Then,

|||�(μ) − �(μH )|||2 < 1, (21)

where μH is Haar measure on SU(2n).
The proof of Theorem 4 can be found in Appendix E 2.

That the 1D chain and 2D grid Clifford XEB schemes satisfy

Theorem 4 is straightforward and left as an exercise for the
reader.12

IV. DISCUSSION

In this work we propose Clifford XEB, a benchmark-
ing scheme for large-scale quantum devices using Clifford
circuits. Clifford XEB is both efficient in quantum circuit
size and necessary classical processing, and it has great
promise for benchmarking quantum devices much larger than
heretofore possible. We numerically show that this scheme
is feasible for more than 1000 qubits and theoretically prove
that the scheme yields a single exponential decay for Clifford
approximate twirls.

It is worthwhile to first take a step back and ask why we
would need to holistically benchmark a quantum processor
with tens or hundreds of qubits in the first place. One may
think that it is sufficient to only perform single- or two-qubit
benchmarking to characterize the native gate set. Even some
effects of crosstalk can be captured via simultaneous single-
or two-qubit RB [12]. The authors of [13] study this topic
in depth by performing Clifford RB on a three-qubit pro-
cessor. Interestingly, they find that the three-qubit RB result
varies depending on the calibration procedure in a way that is
not captured by simultaneous single- or two-qubit RB. This
suggests there is additional information to be gained from
running multiqubit benchmarks. This is especially relevant
as the number of qubits on processors continues to increase
and the calibration process becomes increasingly convoluted.
Furthermore, there are a variety of obstacles to overcome to be
able to scale quantum processors to achieve fault tolerance, in-
cluding the size of dilution fridges, and any workaround could
introduce errors that can only be detected by a multiqubit
benchmark. Lastly, using a multiqubit benchmark helps verify
that the quantum processor does not have large correlated
errors [1] which are detrimental to quantum error correction.

There have been other proposals for holistically bench-
marking quantum computers. The quantum volume experi-
ment [39] aims to compare different quantum computers in
terms of their computational capability rather than gate qual-
ity, but it is not scalable with respect to the effective number of
qubits. Many proposals for estimating the global Pauli errors
[40–43] provide more detailed characterizations of the error,
and are probably more suitable after a holistic, single-number
metric is extracted first. There have been variants of RB for
holistically benchmarking quantum computers in a scalable
way, such as match-gate benchmarking [44], direct random-
ized benchmarking [45], and mirror randomized benchmark-
ing [46]. Part of the reason why linear XEB has been used
in experiments such as [1,2] is due to its convenience of
hardware implementation. It just requires a certain random
gate sequence followed by a measurement. Our scheme boasts
the exact same convenience but is also manifestly scalable.
Another distinguishing feature is that for certain Clifford cir-
cuits such as the ones we considered, we can rigorously prove

12Technically, the proof for the 1D chain requires an additional
layer of random single-qubit gates at the end. This poses a very minor
modification to the random circuit generation.
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the scheme yields an exponential decay under a general error
model. Another possible alternative scheme is to use other
gate sets that are classically simulable. If we can construct
γ -approximate twirls using other gate sets, e.g., match gates
[47], then we can formulate XEB with such gate sets that
might be more relevant in other experimental settings.

Now, there is also work showing that we can realize
exact unitary 2-designs using almost linear-sized circuits
(up to logarithm factors) [48]. Specifically, they require
O(n log n log log n) size circuits. In contrast, the Clifford cir-
cuits we consider in our work are exactly linear size [25]. In
fact, these logarithm factors can still be quite large in practice
(for example, if n = 50, log2 n log2 log2 n ≈ 14, a nontrivial
overhead on the required noise levels). Finally, in [21], there
is a mention of conducting linear XEB with Clifford circuits.
However, they do not pursue this line of thought nor further
elaborate on its theory. Here we study Clifford XEB in depth
from both a numerical and theoretical standpoint.

Similar to mirror RB [46], instead of classical simulation,
we could alternatively sequentially reverse the Clifford layers
on the quantum circuit and observe the exponential decay of
the population of the initial state with respect to the number of
cycles. The proof of exponential decay in [35] can be readily
applied to this scheme as well. Compared to the Clifford XEB,
the mirror RB does not rely on the quantum information be
sufficiently scrambled in order to extract fidelity information.
Consequently, the mirror RB would probably need a smaller
number of cycles. However, each cycle now consists of twice
the number of gates compared to the Clifford XEB, hence, the
error tolerance of the protocol is halved compared to that of
the Clifford XEB. Furthermore, as it shares the same noiseless
twirling map as the Clifford XEB, it could also potentially
suffer from a small spectral gap of the twirling map, making
large gate error rates unable to be extracted. We leave a more
detailed comparison for future work.

We give some directions for future research. Numerical
experiments in Sec. II show that Clifford XEB can be used
to benchmark large quantum processors up to 1000 qubits.
However, there are currently only a few quantum processors
on the order of 100 qubits. On the other hand, it would still be
interesting to test Clifford XEB on real quantum devices with
tens of qubits. Given that the noise in experiments is not ad-
versarial and mostly Markovian, we expect that Clifford XEB
can probe the overall performance of a quantum processor in
a relatively short time.

One experimentally relevant question is to build upon
Clifford XEB and propose a comprehensive benchmarking
workflow. Since it benchmarks circuits of linear size, the
Clifford XEB can serve as an overall figure of merit of the
entire processor, and serve as a guideline for subsequent,
more detailed, benchmarking schemes. Possible candidates
of such subsequent experiments include cycle benchmarking
[40] or individual RB experiments. Moreover, one can apply
Clifford XEB to smaller regions on a quantum chip to extract
more local and detailed information regarding heterogeneous
performance over the quantum chip.

It would also be interesting to investigate, both from a theo-
retical and an experimental perspective, the NSR for a Clifford
random circuit. Estimating the NSR is an essential step in
experiment, as the NSR rate serves as an indicator whether

the decay rate extracted from linear XEB faithfully represents
the gate error rather than the mixing of the ideal circuit. For
the numerical simulation on the 35 × 35 grid, it took half a
day to gather the noisy linear XEB results, but two days and
a half to get the NSR. This is because the fluctuation of the
noiseless linear XEB value is purely from the randomness
of the circuits chosen and is numerically found to be much
larger than that of the noisy experiments. A faster algorithm
that can extract the decay exponent without having to sample
millions of random circuits would be the key to more efficient
Clifford XEB benchmarking. Towards this end, there have
been studies on the spectral gap from random Clifford circuits
from a Markov chain perspective [27,49–52], and we leave it
to future work to incorporate such methods to a better estima-
tion of the spectral gap on particular random Clifford circuit
ensembles. Of course, it would also be useful to improve the
constants in our number of qubits we can benchmark given
by Eq. (14). In particular, it would be interesting to realize a
γ -approximate twirl in a way that is relatively more natural
for topologies that are more relevant for hardware, such as
the 2D grid. We could also consider topologies tailored for
realizing quantum error correction, such as the honeycomb
lattice [53]. Furthermore, it would be interesting if we can
make minimal assumptions on the gate errors to obtain a
theoretical guarantee for a much higher number of qubits. For
instance, most gates in superconducting circuits are limited
by decoherence, which implies incoherent errors are dominant
[36].

Note added. Recently, another paper was posted on the
arXiv [54] which looks into a generalization of linear XEB
called filtered RB, giving general guarantees of exponential
decays as well as sufficient circuit depth and sample complex-
ity bounds.
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APPENDIX A: CLIFFORD APPROXIMATE TWIRL
CONSTRUCTION

For completeness, we describe explicitly the sequence of
gates to construct the Clifford approximate twirl given in
[[25], Fig. 1].

1. Description

We first define the following procedures. Suppose we have
n qubits in a star topology, where we denote the center qubit
as qubit 1.

(i) Perform a Pn twirl: Apply a random Pauli gate on each
qubit.

(ii) Perform a C1/P1 twirl: Apply a gate uniformly cho-
sen from the set {I, S, H, SH, (SH )2, SHS}, with S being the
single-qubit phase gate and H the Hadamard gate. Alterna-
tively, this could be implemented by applying (SH ) j with j
uniformly chosen from {0, 1, 2}, according to [25].

(iii) Conjugate qubit 1 by a random XOR: For each qubit
2, . . . , n, apply a CNOT gate between this qubit and qubit 1
with probability 3/4.
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We now describe how to implement the Clifford approxi-
mate twirl:

(1) Perform a Pn twirl.
(2) Perform C1/P1 twirl on all of the qubits.
(3) Conjugate qubit 1 by a random XOR.
(4) Apply H to qubit 1 and C1/P1 twirl the other qubits.
(5) Conjugate qubit 1 by a random XOR.
(6) Apply H to qubit 1 and C1/P1 twirl the other qubits.
(7) Apply S to the first qubit with probability 1/2.
(8) Conjugate qubit 1 by a random XOR.
(9) C1/P1 twirl the first qubit.
(10) To obtain a γ -approximate twirl, repeat steps 2 to 9

for O[log(1/γ )] times.

2. Different topologies

The only two-qubit gate operation involved in this con-
struction is conjugating qubit 1 by a random XOR. This
requires a star topology circuit. Furthermore, a direct imple-
mentation of this procedure requires a circuit depth of �(n).
It is possible to implement it in depth O(log n) on a fully
connected graph, as was shown in [[25], Fig. 3], but realistic
quantum processors have limited connectivity. To remedy this,
we describe how to implement the random XOR circuit on a
general connectivity graph. As a side result we also show that
we can achieve depth O(log n) on a binary tree connectivity
graph.

It is easy to see that in the computational basis, the conjuga-
tion by XOR operation effectively applies an X gate to qubit 1
conditioned on the XOR of the random set. We therefore give
a construction on a general graph by finding a spanning tree
and iteratively computing the XOR of the random set through
each level of the tree. Given the graph is connected, we can
choose an arbitrary qubit to be the root (qubit 1), and form
a spanning tree rooted from qubit 1. Each qubit v apart from
qubit 1 is then assigned a depth d (v) as its distance from qubit
1 on the spanning tree, and a degree δ(v). Moreover, denote
D = maxv d (v) and � = maxv δ(v) be the depth and degree
of the spanning tree. Now, for each of the qubits other than
qubit 1, add it to a set S with probability 3/4. We call a qubit
v active, if at least one of the qubits in the subtree rooted
at v (including v) is in S. We then perform the following
operations.

(1) Do the following sequentially for each l from D − 1 to
1:

(a) Do the following in parallel for each active qubit x
at depth l:

(i) If x is not in S, it must have an active child y.
Choose an arbitrary such y and apply a CNOT gate from
x to y.

(ii) Apply CNOT gates from each active child of x
to x sequentially.

(2) Apply CNOT gates from all active qubits at depth 1 to
the root sequentially.

(3) Apply the CNOT gates generated in step 1 again but in
reverse order.

To see why this circuit works, we first assume that every
qubit is in the computational basis before the circuit, and the
general case follows from linearity. For step 1, one can see
by induction that all qubits of depth l ′ will have a value that

equals to the XOR of qubits in its subtree that are contained in
S when the loop with l = l ′ finishes. Step 1(a)i ensures that if
x is not in S, its value will be canceled after step 1(a)ii. Step 2
ensures that qubit 1 gets the corresponding XOR values from
its children, and step 3 “uncomputes” the intermediate results
in other qubits.

The total depth of the circuit can be upper bounded by
2 − D�. To see this, observe that step 3 takes the same depth
as step 1, which takes (D − 1)� layers for sequentially ex-
ecuting D − 1 repetitions of step 1(a), each takes at most �

layers. Therefore, the depth of the circuit greatly depends on
the spanning tree, which in turn depends on the underlying
connectivity graph. When the spanning tree can be chosen
to be a perfect binary tree, the random XOR can be done in
�[log(n)] depth. For hardware relevant graphs such as the 1D
chain and the 2D grid, the circuit depth is upper bounded by
O(D) as the degree of the spanning tree is upper bounded by
the degree of the connectivity graph. In this case, the depth
of the spanning tree can be minimized to the radius of the
connectivity graph r(G) = minu maxv d (u, v) by rooting at
arg minu maxv d (u, v) and taking the spanning tree to consist
of the shortest paths from each node to the root. The radius
of the 1D chain and the 2D grid is �(n) and �(

√
n), respec-

tively, giving a circuit depth for the XOR circuit �(n) and
�(

√
n), respectively. One can see that this is asymptotically

tight as it takes �[r(G)] steps to propagate information from
an arbitrary qubit to a fixed one.

APPENDIX B: EXPECTATION AND VARIANCE
OF LINEAR XEB

It is observed in Sec. II that the Clifford XEB value con-
verges to 1 and 0 for the noiseless cases and the noisy cases,
respectively. Similar behavior has also been observed in linear
XEB experiments [1,2]. In this Appendix we analyze the
expectation and variance for noiseless and noisy Clifford XEB
values when the number of cycles is sufficiently large. We
assume that for Clifford XEB and linear XEB, the first four
moments of the distribution of the random gates converge to
those of the uniform distribution over the Clifford group and
the Haar measure over the unitary group, respectively.

1. Noiseless case

For any circuit C ∈ SU(2n), we define

βC = 2n
∑

x

|〈x|C|0n〉|4, (B1)

which is the noiseless linear XEB value plus 1. When C is
Haar random in SU(2n), C|0n〉 is a uniformly random unit
vector in C2n

. This vector can be parametrized as

(eiφ1 cos θ1, eφ2 sin θ1 cos θ2, . . . , eφD sin θ1 sin θ2 . . . sin θD−1)
(B2)

in the computational basis, where D = 2n is the dimension.
To compute the variance we claim we only need to consider
the dependence on θ1 and θ2. The metric of the integral will
contain two factors: the first factor is related to the spherical
coordinates θ and is proportional to sinD−2 θ1 sinD−3 θ2, and
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the second factor is related to the phase factors and is equal to

cos θ1 × sin θ1 cos θ2 × sin θ1 sin θ2 cos θ3

× · · · ∝ cos θ1 cos θ2 sinD−1 θ1 sinD−2 θ2. (B3)

Let t1 = cos2 θ1, t2 = sin2 θ1 cos2 θ2, and the distribution of t1
and t2 is given by

Pr[t1, t2] ∝
∫

dθ1dθ2δ(t1 − cos2 θ1)δ(t2 − sin2 θ1 cos2 θ2)

× sinD−2 θ1 sinD−3 θ2 cos θ1 cos θ2

× sinD−1 θ1 sinD−2 θ2 ∝ (1 − t1 − t2)D−3 (B4)

for 0 � t1, t2 � 1, t1 + t2 � 1. One can normalize the distri-
bution and have

Pr[t1, t2] = (D − 1)(D − 2)(1 − t1 − t2)D−3. (B5)

If we integrate over t2, the distribution of t1 is

Pr[t1] = (D − 1)(1 − t1)D−2. (B6)

By symmetry, for any x �= y the value of |〈x|C|0n〉|2 and
|〈y|C|0n〉|2 will satisfy this distribution by identifying them
with t1 and t2, respectively. Then one can calculate the mean
and variance of βC as follows:

ECβC = D
∑

x

|〈x|C|0n〉|4

= D2
∫ 1

0
dt1 Pr[t1]t2

1

= 2D

D + 1
, (B7)

ECβ2
C = D2EC

(∑
x

|〈x|C|0n〉|4
)2

= D2EC

∑
x �=y

|〈x|C|0n〉|4|〈y|C|0n〉|4

+ D2EC

∑
x

|〈x|C|0n〉|8

= D3(D − 1)
∫ 1

0
dt1

∫ 1−t1

0
dt2 Pr[t1, t2]t2

1 t2
2

+ D3
∫ 1

0
dt1 Pr[t1]t4

1

= 4D2(D + 5)

(D + 1)(D + 2)(D + 3)
(B8)

and so the variance is given by

ECβ2
C − (ECβC )2 = 4D2(D − 1)

(D + 1)2(D + 2)(D + 3)

= 4

D
+ O(D−2). (B9)

From (B7) one can see that the noiseless linear XEB value
converges to D−1

D+1 , which is close to 1 for large D. This also
applies to Clifford XEB since the uniform distribution on the
Clifford group forms a unitary 2-design.

When C is a uniformly random Clifford gate, C|0n〉 will be
a uniformly random stabilizer state. We introduce the concept
of k neighbor of a stabilizer state |ψ〉, which is the set of
stabilizer states |φ〉 such that |〈φ|ψ〉| = 2−k/2. It is known
that every n-qubit stabilizer state has the same number of k
neighbors [55], which is denoted by Ln(k). We know that
for any stabilizer state C|0n〉, the inner product |〈x|C|0n〉| is
2−k/2 for 2k choices of x, where k is an integer, and for the
remaining values of x the inner product is 0. It is easy to see
that βC = 2n−k in this case.

For each |x〉, there are Ln(k) k neighbors, and each such
state is in turn a k neighbor of 2k computational states. This
means that there are 2n−kLn(k) stabilizer states that lead to
βC = 2n−k . Let N (n) be the total number of n-qubit stabilizer
states. Then

ECβC =
∑

k

2n−k 2n−kLn(k)

N (n)
=

∑
t

4t Ln(n − t )

N (n)
, (B10)

Ecβ
2
C =

∑
k

4n−k 2n−kLn(k)

N (n)
=

∑
t

8t Ln(n − t )

N (n)
. (B11)

It is known [[55], Theorem 16] that in the large-n limit,

c12−t (t+5)/2 � Ln(n − t )

N (n)
� c22−t (t+3)/2 (B12)

for some constants c1 and c2. So EcβC and Ecβ
2
C are both

�(1). This means that the variance of βC is �(1) when C is a
uniformly random Clifford circuit.

We have discussed above the variance of XEB with respect
to the sampled circuit but, in practice, the sampling of bit
strings can introduce additional uncertainty. We consider the
general experiment where N1 circuits are sampled, and for
each circuit Ci, N2 bit strings are sampled. We denote these
bit strings by x j|i where 1 � i � N1, 1 � j � N2. We define

q(x1|i, x2|i, . . . , xN2|i|Ci ) = 1

N2

N2∑
j=1

|〈x j|i|Ci|0n〉|2. (B13)

Then the estimated XEB from this experiment would be

p̂ = D

N1

N1∑
i=1

q(x1|i, x2|i, . . . , xN2|i|Ci ) − 1. (B14)

p̂ is dependent on the circuits C1, . . . ,CN1 , and according to
the law of total variance,

var( p̂) =EC1,...,CN1
[var( p̂|C1, . . . ,CN1 )]

+ varC1,...,CN1
[E( p̂|C1, . . . ,CN1 )]. (B15)

Note that the samplings of the circuits are independent, we
have

E( p̂|C1, . . . ,CN1 ) = D

N1

N1∑
i=1

E[q(x1|i, x2|i, . . . , xN2|i|Ci )] − 1,

(B16)

var( p̂|C1, . . . ,CN1 ) = D2

N2
1

N1∑
i=1

var[q(x1|i, x2|i, . . . , xN2|i|Ci )],

(B17)
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and therefore

varC1,...,CN1
[E( p̂|C1, . . . ,CN1 )]

= D2

N2
1

N1∑
i=1

varCi{E[q(x1|i, x2|i, . . . , xN2|i|Ci )]}

= 1

N2
1

N1∑
i=1

varCi βCi

= 1

N1
[ECβ2

C − (ECβC )2] (B18)

×EC1,...,CN1
[var( p̂|C1, . . . ,CN1 )]

= D2

N2
1

N1∑
i=1

ECi{var[q(x1|i, x2|i, . . . , xN2|i|Ci )]}

= D2

N2
1

N1∑
i=1

ECi

⎧⎨
⎩ 1

N2
2

N2∑
j=1

varx j|i [〈x j|i||Ci|0n〉]
⎫⎬
⎭

= D2

N1N2
EC

⎡
⎣∑

x

|〈x|C|0n〉|6 −
(∑

x

|〈x|C|0n〉|4
)2

⎤
⎦

= 1

N1N2
EC

[
D2

∑
x

|〈x|C|0n〉|6 − β2
C

]
. (B19)

So we have

var( p̂) = 1

N1

[
1

N2

(
D2EC

∑
x

|〈x|C|0n〉|6 − ECβ2
C

)

+ ECβ2
C − (ECβC )2

]
. (B20)

The term |〈x|C|0n〉|6 involves the third moment of C and
should be the same for the uniform distribution over the
Clifford group and the Haar measure on SU(D). Using the
notation in Eq. (B6),

EC

∑
x

|〈x|C|0n〉|6 = D
∫ 1

0
t3
1 Pr[t1]dt1 = 6

(D + 1)(D + 2)
.

(B21)

Also note that for any distribution on the Clifford group, the
term involving N2 should vanish, as the measurement result
of a stabilizer state on the computational basis is a uniform
distribution over a set of bit strings, and the corresponding
variance is 0.

2. Noisy case

In this section, we investigate the single exponential decay
behavior in the noisy case. In particular, we give estimates for
the coefficients A and B in Theorem 1, showing that A = 0 and
B = O(1). Following the universal randomized benchmarking
(URB) framework [35], we can write the Clifford XEB exper-
iment results as

qR(m) = −1 + 2ntr
[|0n〉〈0n|(�m

R (DM )(ρ0)
)]

,

where the noisy twirling map �R is defined as a map on
quantum channels:

�R : C �→ Eg∼u[g† ◦ C ◦ φ(g)].

Now, using the notations in the proof of [[35], Theorem 8],
�R is regarded as a perturbed version of �∗

R and has a gapped
spectrum leading to the single exponential decay in an appro-
priate parameter range. Specifically, define

X1 = 〈·,D〉SO

〈D,D〉SO
D + 〈·, I − D〉SO

〈I − D, I − D〉SO
(I − D), X2 = I − X1.

One can verify that X 2
i = Xi for i = 1, 2 and

Xi�
∗
RXj = 0

when i �= j. The matrix perturbation result states that
when |||�∗

R − �Haar|||� < γ , |||�∗
R − �R|||� � δ, and δ <

1−γ

11 , there exists twirling maps L, R such that
(i) L = R−1, |||L|||� � 4, |||R|||� � 4;
(ii) XiR�RLXj = 0 when i �= j;
(iii) |||X2R�RLX2|||� � γ + 6δ;
(iv) |||X1R�RLX1 − X1|||� � 2δ.
Let A′

i = XiR�RLXi. It can be further proven that A′
1 has

one eigenvalue 1 and another real eigenvalue lying in [1 −
2δ, 1]. Then

�m
R = L(A′

1)mR + L(A′
2)mR

and

qR(m) = −1 + 2ntr
[|0n〉〈0n|(�m

R (DM )(ρ0)
)]

(B22)

= −1 + 2n[tr[|0n〉〈0n|(L(A′
1)mR(DM )(ρ0))]

+ tr[|0n〉〈0n|(L(A′
2)mR(DM )(ρ0))]]. (B23)

Since

|||A′
2|||� � γ + 6δ,

the second term vanishes quickly, and the single exponential
decay is given by the first term.

We assumed p < 1, so A is well defined and is the contribu-
tion corresponding to the eigenchannel of �R with eigenvalue
1. It is easy to see that this eigenchannel is the depolarization
channel D(ρ) = I

D :

�R(D)(ρ) =
∫

dμω†(g) ◦ D[φ(g)(ρ)]

=
∫

dμω†(g)

(
I

D

)
= I

D

since the inverting maps ω†(g) are all unital. We then have

A = 2ntr[|0〉〈0|⊗nD(ρ)] − 1 = 0.

We thereby obtain the first conclusion A = 0. Note that this
holds in general when �R only has only one eigenvalue with
modulus 1: this ensures that �m

R (DM ) → D when m → ∞.
This criterion does not pose any requirement on the state
preparation or the measurement.

Both �R and �∗
R are twirling maps; they map channels to

channels. Consequently, they map differences of channels to
differences of channels. It is thus more convenient to restrict
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them on the space spanned by the differences of channels. In
this case one can define X ′

1 to be

X ′
1 = 〈·, I − D〉SO

〈I − D, I − D〉SO
(I − D).

The perturbation result tells us that

|B| = |2ntr[|0〉〈0|⊗nLX ′
1R(DM )(ρ)]|

� 2n‖LX ′
1(R(DM ))‖�

� 2n

∥∥∥∥ 〈R(DM ), I − D〉SOL(I − D)

〈I − D, I − D〉SO

∥∥∥∥
�

= 2n

〈I − D, I − D〉SO
‖L(I − D)‖�|〈DM, R†(I − D)〉SO|.

For sake of simplicity we denote N := R†(I − D). We now
bound the quantity |〈DM,N 〉SO|.

Let P : ρ → ∑
i〈i|ρ|i〉|i〉〈i| be the dephasing channel. One

can check that it is self-adjoint with respect to the superoper-
ator inner product. Therefore,

〈DM,N 〉SO = 〈P ◦ DM,N 〉SO = 〈DM,P ◦ N 〉SO.

As ‖P ◦ N‖� � ‖N‖� due to data processing inequality, we
can assume without generality that N is a quantum-classical
superoperator: that is, there exists a set of operators {Ni}i such
that

N : ρ →
∑

i

tr[Niρ]|i〉〈i|.

Then

〈DM,N 〉SO =
∑

Pi∈P⊗n

tr[D(Pi )N (Pi )] (B24)

=
∑

Pi∈P⊗n

∑
j∈{0,1}n

tr[MjPi][NjPi] (B25)

= 2n
∑

j

tr[MjNj] (B26)

= 4n
∑

j

tr[Mj]

2n
tr[M̄ jNj], (B27)

where M̄i = Mi
tr[Mi]

. Since {Mi}i is a POVM, we have Mi � 0
and

∑
i Mi = I , and therefore M̄i is a quantum state. We argue

that |〈DM,N 〉SO| � 4n‖N‖�. Assume otherwise, then there
exists i such that

|tr[M̄iNi]| > ‖N‖�.

However, this is not possible as

‖N‖� � |N (M̄i )|tr =
∑

j

|tr[M̄iNj]| � |tr[M̄iNi]|.

We then calculate 〈I − D, I − D〉SO. By linearity we have

〈I − D, I − D〉SO (B28)

= 〈I, I〉SO − 2〈D, I〉SO + 〈D,D〉SO. (B29)

For any quantum channel C,

〈D, C〉SO =
∑

Pi∈P⊗n

tr[D(Pi )C(Pi )] (B30)

=
∑

Pi∈P⊗n

tr[2−nI tr[Pi]C(Pi)] (B31)

= tr[2−n2nC(I )] = 2n. (B32)

On the other hand,

〈I, I〉SO =
∑

Pi∈P⊗n

tr[I (Pi)I (Pi )] (B33)

=
∑

Pi∈P⊗n

tr[I] = 4n2n = 8n. (B34)

Therefore,

〈I − D, I − D〉SO = 8n − 2n.

Plugging everything in we have

B � ‖N‖�‖L(I − D)‖�
4n

4n − 1
.

Since N = R†(I − D), we have

|B| � |||L|||�|||R|||�‖I − D‖2
�

4n

4n − 1
� 16 × 4 × 2 � 128,

proving that B = O(1).

APPENDIX C: FITTED DECAY CURVES

In this Appendix we fit the exponential decays observed
in Fig. 3 by doing a linear fit to the logarithm plots. As the
linear XEB exhibits a two-phase behavior, we would like to
perform the linear fit only on the decaying phase. However,
the data for higher cycle numbers can become unstable due to
random fluctuation. We thus pick ranges of data that visually
appear to be a single exponential decay, and we list the chosen
ranges below. We compare the extracted decay exponents to
the fidelity we would expect if we assume MEA. The data for
the 1D chain, 2D grid, and Clifford approximate twirl schemes
are shown in Table I.

We see that the decay exponents and fidelities assuming
MEA agree within a few percentage points except for the
entries where the MEA fidelities are around 50% or less. For
the Clifford approximate twirl, an exponential decay is not
even identifiable for such cases. This is sensible since the
perturbation theory used in proving Theorem 1 has an upper
bound on the level of error that can be tolerated, and MEA
fidelities for 50% or less probably exceed that bound. Even for
the 1D chain and 2D grid schemes where we can always find
an exponential decay, there are fluctuations for higher cycle
numbers that may make the fit somewhat questionable.

APPENDIX D: CIRCUIT LOWER BOUNDS FOR
γ-APPROXIMATE TWIRL

In this Appendix we prove lower bounds on the circuit
required to implement γ -approximate twirls. We state our
result in the form of a theorem:
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TABLE I. Fitting data of the Clifford XEB experiments, corresponding to Figs. 3 and 5. Top part: Comparison between the fitted decay
exponents, the expected fidelity calculated from multiplicative error accumulation (MEA), and the fitted noiseless scrambling rate (NSR). The
exponential fits are performed with data selected from the cycle ranges below to eliminate data from the scrambling phase, and data where the
random fluctuation is too large to recover the signal. Bottom part: Cycle ranges used to do the exponential fits to extract the decay exponents
and the NSR. For Clifford approximate twirls, two cycles of the approximate twirl account to one cycle for the Clifford XEB experiment. N/A
in both parts indicates failure to obtain an exponential fit.

Gate noise NSR
(Decay exponent) [MEA] Qubit number (10−5, 10−4) (10−4, 10−3) (10−3, 10−2) Noiseless

1D chain 25 (99.36%) [99.73%] (96.67%) [97.29%] (75.10%) [75.86%] 83.32%

100 (98.01%) [98.91%] (85.51%) [89.58%] (74.33%) [33.12%] 81.65%

225 (95.23%) [97.56%] (79.21%) [78.07%] (73.76%) [8.32%] 82.76%

2D grid 25 (99.77%) [99.89%] (98.66%) [98.86%] (87.76%) [89.10%] 81.61%

100 (99.44%) [99.47%] (93.54%) [94.86%] (80.10%) [58.88%] 81.64%

225 (98.62%) [98.77%] (86.53%) [88.33%] (81.64%) [28.79%] 80.28%

2× Clifford approximate twirl 25 (98.77%) [98.63%] (88.41%) [87.15%] (N/A) [25.14%] 15.75%

100 (94.95%) [94.65%] (59.81%) [57.68%] (N/A) [0.40%] 15.95%

225 (89.50%) [88.36%] (N/A) [29.00%] (N/A) [0.0004%] 18.30%
Gate noise NSR

Cycle range Qubit number (10−5, 10−4) (10−4, 10−3) (10−3, 10−2) Noiseless

1D chain 25 [22,50] [22,50] [22,36] [20,30]

100 [30,50] [30,50] [22,36] [30,50]

225 [30, 50] [30,50] [22,36] [30,50]

2D grid 25 [30,50] [30,50] [30,50] [20,30]

100 [30,50] [18,50] [20,40] [24,34]

225 [30, 50] [24,50] [24,40] [24,34]

2× Clifford approximate twirl 25 [5,13] [16,50] N/A [2,6]

100 [10,50] [20,30] N/A [10,16]

225 [10, 50] N/A N/A [32,36]

Theorem 5. Suppose that the twirling map corresponding
to a measure μ on SU(2n) is a γ -approximate twirl. Suppose
we implement unitaries g ∈ SU(2n) sampled from μ by com-
piling them using single- and two-qubit gates, and let s(g) and
t (g) be the number of gates and the depth for the circuit that
implements g. Then

Eg∼μs(g) = �[(1 − γ )n],Eg∼μt (g) = �[(1 − γ ) log n].
(D1)

Proof. This proof is adapted from [48]. We set the channel
N so that N (ρ) = Z1ρZ1 where Z1 is the Pauli Z gate applied
to the first qubit. Then we know that the twirling map �Haar

maps N to the following channel:

�Haar (N ) : ρ �→ 1

4n − 1

∑
p∈{0,1,2,3}n,p�=0n

σpρσp = 4n

4n − 1

× I

2n
tr[ρ] − 1

4n − 1
ρ. (D2)

Let D be the completely depolarizing channel on n qubits

D(ρ) = I

2n
tr[ρ], (D3)

then one can see that

‖D − �Haar (N )‖� = O(4−n). (D4)

By definition

�μ(N ) : ρ → Eg∼μg†Z1gρg†Z1g. (D5)

Let f (g) be the size of the support of g†Z1g, i.e., the number
of qubits that g†Z1g acts nontrivially on. For any 1 � j � n,
define p j as the probability that qubit j is in the support of
g†Z1g for g sampled according to μ. Assuming pj � 1/2, we
have

γ �‖�μ(N ) − �Haar (N )‖�
�‖�μ(N ) − D‖� − O(4−n)

�‖[�μ(N ) − D](|0n〉〈0n|)‖1 − O(4−n)

�
∥∥tr j̄[(�μ(N ) − D)(|0n〉〈0n|)]∥∥

1
− O(4−n)

=
∥∥∥∥p jρ j + (1 − p j )|0〉〈0| − I

2

∥∥∥∥
1

− O(4−n) (D6)

�
∥∥∥∥p j |1〉〈1| + (1 − pj )|0〉〈0| − I

2

∥∥∥∥
1

− O(4−n)

= 1 − 2p j − O(4−n), (D7)

where tr j̄[·] means tracing over all qubits other than qubit j,
and in Eq. (D6) ρ j refers to the state of qubit j conditioned that
some unitary is applied to j in channel �μ(N ). This implies

p j �
1 − γ

2
− O(4−n). (D8)
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Obviously Eq. (D8) is also satisfied when p j > 1/2, so it
always holds. Then

Eg∼μ f (g) =
∑

j

p j �
1 − γ

2
n − O(n4−n). (D9)

Note that for any g,

s(g) � f (g) − 1, t (g) � log f (g) � f (g) − 1

n − 1
log n, (D10)

so we have

Eg∼μs(g) = �[(1 − γ )n], Eg∼μt (g) = �[(1 − γ ) log n].

(D11)

�

APPENDIX E: BOUNDS ON THE SPECTRAL NORMS

1. Proof of Theorem 3

In this Appendix we give a proof of Theorem 3. Specifi-
cally, following the proof of Theorem 16 in [35], it suffices to
prove the following.

Proposition 1. Let �∗ = ∫
dμω†(g) ◦ · ◦ ω(g) be the

noiseless twirling map associated to the probabilistic measure
μ, and � = ∫

dμω†(g) ◦ · ◦ φ(g) be its noisy implementa-
tion. Moreover, suppose that φ maps to mixtures of unitaries,
that is, for each g there exists a probabilistic measure νg on
SU(d ) such that

φ(g) =
∫

dνgu.

Then

|||�∗ − �|||2 � Eg∼μEu∼νg‖ω(g) − u‖�.

Proof. It can be verified that

|||�∗ − �|||2 �
∫

dμ‖ω(g) − φ(g)‖2

�
∫

dμ

∫
dνg‖ω(g) − u‖2.

It then suffices to prove that ‖ω(g) − u‖2 � ‖ω(g) − u‖tr
for unitary channels ω(g) and u since it is known that
‖ω(g) − u‖tr � ‖ω(g) − u‖�.

Assume without loss of generality that ω(g) = Id and u =
UU

†
. Assume further that U is diagonalized over the compu-

tational basis: U = ∑
j eiλ j | j〉〈 j|. Then the trace norm and the

2-norm can then be computed explicitly as

‖Id − u‖tr = ‖Id − u‖2 = 2 max
i, j

sin
λi − λ j

2
.

�

2. Spectrally gapped schemes

In this section we provide a proof to Theorem 4. Our main
tool is random walks on finite groups [56]. We first make the
following definition:

Definition 5. Let G be a finite group. We say a measure
μ over G is mixing over G if μ generates G, that is, every
element of G can expressed as a finite product of elements in

the support of μ, and μ is not contained in a coset of a proper
normal subgroup of G.

This is interesting because from [56], we can show that this
measure converges to the uniform distribution under iteration,
where iteration is defined as

(μ1 ∗ μ2)(g) :=
∫

g2∼μ2

dg2μ1
(
gg−1

2

)
μ2(g2). (E1)

We state this fact as a proposition:
Proposition 2 (Proposition 2.3 and Theorem 2.1 of

[56]). Let G be a finite group and let μ be a measure that is
mixing over G. Then, μ converges to the uniform distribution
μU over G under iteration.

We can now prove the following theorem.
Theorem 6. Let μ be an inverse symmetric measure [that

is, μ(g) = μ(g−1) for all g] that is mixing over the n-qubit
Clifford group C(n). Then,

|||�(μ) − �(μH )|||2 < 1, (E2)

where μH is Haar measure on SU(2n).
Proof. Treating the twirling maps as linear maps on real

superoperators, �(μH ) is a projector onto the space spanned
by the identity channel id and the completely depolarizing
channel dep. These two channels are also eigenvectors of
�(μ) with eigenvalue 1. Since the singular values of �(μ) are
at most 1, |||�(μ) − �(μH )|||2 is therefore the third largest
singular value of �(μ).

Now, by the argument in the proof of Theorem 8 in [35],
since μ is inverse symmetric, �(μ) is self-adjoint with respect
to the SO inner product on real superoperators. Hence, it is
diagonalizable by the spectral theorem. This implies the third
largest singular value of �(μ) is third largest element of the
elementwise absolute value of spec[�(μ)].

Next, it is easy to see that

�(μ∗k ) = �(μ)k . (E3)

Next, since �(μ) is diagonalizable, the eigenvalues of �(μ)k

are the kth powers of the eigenvalues of �(μ). Two eigenval-
ues of �(μ) are 1, and every other eigenvalue has to be of
magnitude at most 1.

Assume for contradiction that there is a third eigenvalue
of �(μ) with magnitude 1. Then, for any k, �(μ)k always
has at least three eigenvalues with magnitude 1. However, by
Proposition 2, for all g ∈ C(n),

lim
k→∞

μ∗k (g) − μU (g) = 0. (E4)

Thus, for arbitrarily large k, the difference is arbitrarily small.
Furthermore,

|||�(μ∗k ) − �(μU )|||2 � max
g∈C(n)

[μ∗k (g) − μU (g)]|C(n)|.
(E5)

Thus, for arbitrarily large k, the ||| · |||2 norm is also arbi-
trarily small. Now, since groups are closed under inverses,
μU is symmetric under inverse. Thus, �(μU ) is self-adjoint.
Furthermore, since �(μ) is self-adjoint, �(μ∗k ) = �(μ)k is
also self-adjoint. By Weyl’s inequality on matrix perturbation,
the eigenvalues of �(μ∗k ) and �(μU ) can be paired up with
a difference of at most |||�(μ∗k ) − �(μU )|||2. However, this
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can be arbitrarily small as k → ∞, and since C(n) is a unitary
2-design, two eigenvalues of �(μU ) = �(μH ) are 1 and the
rest are 0. This clearly contradicts �(μ)k having at least three
eigenvalues with magnitude 1. Hence, we conclude �(μ) has
only two eigenvalues with magnitude 1.

This means the third largest element of the elementwise
absolute value of spec[�(μ)] is strictly less than 1, which is
the desired conclusion. �

We can actually leverage this theorem to generic weakly
mixing measures μ that are not inverse symmetric. Define the
inverse measure

μ−1(g) := μ(g−1). (E6)

We first show the following.
Proposition 3. Let μ be a probabilistic measure on a finite

group G. Let A := Supp(μ). Then the following are equiva-
lent:

(1) A does not lie in any left coset of a proper subgroup of
G;

(2) 〈A−1A〉 = G;
(3) μ−1 ∗ μ is mixing over G.
Proof. We follow the directions 1 ⇔ 2 ⇔ 3.

(i) 1 ⇒ 2. Assume otherwise that 〈A−1A〉 = H < G. Then
for any a, b ∈ A, we have

a−1b ∈ H ⇒ b ∈ aH ⇒ A ⊆ aH,

contradicting with 1.
(ii) 2 ⇒ 1. Assume otherwise that A ⊆ aH for some a ∈

G, H < G. Then 〈A−1A〉 ⊆ H < G, contradicting with 2.
(iii) 2 ⇒ 3. It is easy to verify that Supp(μ−1 ∗ μ) =

A−1A. It suffices to prove that 〈A−1A〉 does not lie in any coset
of a normal subgroup aH of G. Assume otherwise then either
that 1 ∈ aH = H and 〈A−1A〉 ⊆ H < G contradicts with 2, or
that 1 /∈ aH contradicts with that 1 ∈ A−1A.

(iv) 3 ⇒ 2. Easy to prove. �
One can prove similarly a version with right coset, AA−1

and μ ∗ μ−1. We finally proceed to the proof of Theorem 4.
Proof of Theorem 4. Since μ is weakly gapped, then by

Proposition 3 we know that either μ−1 ∗ μ or μ ∗ μ−1 is
mixing. Hence, by Theorem 6,

|||�(μ−1 ∗ μ) − �(μH )|||2 < 1. (E7)

That is, the third largest magnitude of the spectrum
of �(μ−1 ∗ μ) is less than 1. Since �(μ−1 ∗ μ) =
�(μ)†�(μ), we conclude the third largest singular value
of �(μ) is less than 1, which is the desired conclu-
sion. �
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