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Stefan Ataman ,6 Cristian Kusko ,3 and Radu Ionicioiu 1

1Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Bucharest-Măgurele, Romania
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Quantum communications introduce a paradigm change in internet security by using quantum resources to
establish secure keys between parties. Present-day quantum communication networks are mainly point to point
and use trusted nodes and key management systems to relay the keys. Future quantum networks, including
the quantum internet, will have complex topologies in which groups of users are connected and communicate
with each other. Here we investigate several architectures for quantum communication networks. We show that
photonic orbital angular momentum (OAM) can be used to route quantum information between different nodes.
Starting from a simple point-to-point network, we will gradually develop more complex architectures: point-to-
multipoint, fully connected, and entanglement-distribution networks. As a particularly important result, we show
that an n-node fully connected network can be constructed with a single OAM sorter and n − 1 OAM values.
Our results pave the way to construct complex quantum communication networks with minimal resources.
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I. INTRODUCTION

Quantum computers pose a threat to present-day internet
security, due to their ability to efficiently break public-key
cryptography. One way to mitigate this quantum apocalypse
is to deploy large-scale quantum communication networks.
Current quantum communications are usually point to point,
using trusted nodes and key management systems to establish
secret keys between remote nodes.

Future quantum networks, including the quantum internet,
will require one to both handle complex network topologies
[1] and secure such networks [2]. These networks will need to
connect users situated in different locations and/or domains.
Consequently, in such networks it will be important to route a
quantum state |ψ〉q between different locations.

Most of the information we exchange every day is encoded
in photons and carried by optical fibers. The data capacity of
a single optical fiber depends on the spectral bandwidth over
which low-loss signal transmission can be achieved, on the
one hand, and on our ability to use this bandwidth through
suitable coding and decoding schemes, on the other.

Due to the constant increase of worldwide data traffic,
nonlinear effects [3] impose limits on the capacity of optical
fibers. To address this capacity crunch, space division mul-
tiplexing using multicore [4,5] and multimode [6] fibers has
been developed. In the quest for larger data capacity, another
solution is to use an extra degree of freedom, different from
wavelength [7,8].

A good candidate for the extra degree of freedom is the
orbital angular momentum (OAM) of the photon [9–11].

The phase front of an OAM beam is helical, with quantized
angular momentum l h̄, l ∈ Z. Photons carrying OAM have
been used for different applications, such as object identifi-
cation [12], enhanced phase sensitivity [13], imaging [14,15],
and metrology [16,17]. Classical and quantum communica-
tion with OAM states have both been demonstrated in fiber
[8,18,19], including experimental mode-division multiplexing
[20].

Long-distance, high-dimensional quantum key distribution
(QKD) using OAM in both optical fibers [8] and free-space
[21] have recently enjoyed a renewed interest. This is due
to several benefits introduced by high-dimensional systems:
reduced overall complexity of a quantum circuit via d-level
gates [22,23], increased raw-key rates [24,25], robustness to
noise [26–28], and hacking attacks [29]. Hybrid states of
OAM and polarization have also been used in QKD protocols,
in both fiber and free space [30–32]. Furthermore, recent
advances have lowered the resource requirements for point-to-
multipoint architectures [1] and have also enhanced quantum
digital signatures protocols [2]. Orbital angular momentum
multiplexing can offer an alternative to the development of
wireless communications [33], because unlike wavelength-
division multiplexing, it can generate orthogonal channels
[33] in a line-on-site channel environment.

Due to this increased interest in both classical and quantum
applications of OAM, dedicated optical fibers [34] and mul-
tiplexing and demultiplexing techniques [35–38] have been
maturing recently. Thus new methods to route information
encoded in OAM are needed. In contrast to wavelength, it is
relatively easy to change OAM using passive optical elements
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like spiral phase plates (SPPs) [39]. This makes OAM an
attractive degree of freedom for network routing.

In this paper we discuss several architectures for quantum
communication networks which use OAM for routing quan-
tum states |ψ〉q around the network. The paper is structured as
follows. In Sec. II we describe the quantum sorter [37], which
is the main element in OAM multiplexing (mux) and demulti-
plexing (demux). In Sec. III we show OAM implementations
of several topologies for quantum communications networks:
point-to-point, point-to-multipoint, fully connected, and fully
connected entanglement-distribution networks with a cen-
tral network provider. Finally, we summarize the article in
Sec. IV.

II. QUANTUM SORTER

A central element of all the networks discussed here is the
d-dimensional quantum sorter Ud and its inverse U †

d [37]. A
short description is provided in Appendix A; Ud (U †

d ) is a uni-
tary operator which acts as a demultiplexer (multiplexer). In
quantum information parlance, the sorter Ud is a controlled-Xd

gate between the observable to be sorted and the path degree
of freedom.

The sorter is universal, i.e., it can (de)multiplex any inter-
nal degree of freedom, i.e., wavelength, spin, radial angular
momentum, OAM, etc., and has a theoretical efficiency of
100% [37]. A definite advantage of the sorter is that it can
be implemented with linear optics. In Appendix A we provide
a physical intuition behind the sorter. Experimentally, sorting
photons according to their radial number has been realized in
Refs. [40,41]. The same sorting mechanism has been recently
applied to a novel method of mass spectrometry [42]. Stan-
dard telecom networks use wavelength as the extra degree of
freedom (DOF) for multiplexing and demultiplexing. In this
article we focus on the OAM degree of freedom as a tool for
mux and demux. The actions of the sorter Ud and its inverse
U †

d are

|l〉OAM|k〉path
Ud−→ |l〉OAM|k ⊕ l〉path (demux),

|l〉OAM|k〉path
U †

d−→ |l〉OAM|k � l〉path (mux), (1)

respectively, with ⊕ (�) addition (subtraction) mod d . Here
both OAM and path DOFs are qudits, i.e., d-dimensional
quantum systems. Thus, if photons with different OAM l are
incident on port 0 of the Ud gate (demux), they will exit on
output l , i.e., they will be sorted on different outputs according
to their OAM value. The U †

d gate (mux) works in reverse.
The addition and subtraction mod d result in a cyclic prop-

erty which can be better understood for l = ±d . In this case
|l〉OAM will be sorted on path |0〉path, like l = 0. This cyclic
property will play a crucial role in the design of various
network architectures for routing quantum states using OAM.

The cyclic property is also used in the construction of the
Xd gate [43]. The Xd gate is a basic building block for qudit
tomography [44,45] and for general qudit protocols. Another
application of the quantum sorter is in the generation of high-
dimensional entangled states between an observable and the
path DOF. Hybrid quantum gates are a hot topic under active
development [46–48]. Accessing a larger alphabet allows us to

FIG. 1. (a) Logical network for two pairs connected in a point-
to-point topology. (b) Two point-to-point pairs using a common
channel. Signals from each pair are multiplexed into the common
(long-range) channel and demultiplexed at the destination. The infor-
mation can be recovered and separated because each sender-receiver
pair has allocated a unique OAM value.

encode more information, resulting in higher channel capacity
and better robustness to noise.

III. OAM-ASSISTED QUANTUM COMMUNICATION
NETWORKS

In this section we start with a simple architecture and
then gradually build more complex networks. All networks
discussed here can be used for QKD, either in prepare-and-
measure (BB84) or in entanglement-based protocols (E91 and
BBM92). The only difference is in the equipment available
to users. The networks can also be used to route quantum
information as part of a larger protocol. What we denote by
“senders” and “receivers” can represent anything from sources
and detectors to other networks or protocols. The scale can
also vary from waveguides in computer chips to optical fibers
between cities or ground-to-satellite links.

For simplicity, in the following we use only positive OAM
values. One can substitute the OAM |lmax − n〉OAM �→ | − n −
1〉OAM, where lmax is the largest OAM used in the protocol,
and n ∈ {0, 1, . . . , � lmax

2 	}, thus halving the maximum OAM
values required.

A. Point-to-point architecture

Point-to-point networks are a simple case in which pairs
of users are connected by their own quantum channel. In
practice this results in a messy and convoluted network of
cables. To reduce the number of cables needed, especially for
long-distance communication, individual signals are in prac-
tice multiplexed into the same channel. For example, different
laboratories from two cities can share the same channel for
intercity transmission.

In Fig. 1 two pairs, i.e., Alice and Charlie, and Bob and
Diana, share a single long-range quantum channel (instead
of dedicated channels for each pair). Each pair has assigned
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a unique OAM value. The pairs are indexed by consecutive
numbers which represents their assigned OAM, input port
at the multiplexer, and output port at the demultiplexer. For
example, if Bob wants to send a quantum state |ψ〉q to Diana,
he uses input port |1〉path with OAM |1〉OAM. This state is input
into the multiplexer, which redirects it to port |0〉path of the
long-range channel:

|ψ〉q|1〉OAM|1〉path
mux−−→ |ψ〉q|1〉OAM|0〉path.

Diana recovers |ψ〉q on output port |1〉path of the demultiplexer
at her end:

|ψ〉q|1〉OAM|0〉path
demux−−−→ |ψ〉q|1〉OAM|1〉path.

The quantum state |ψ〉q can be any internal degree of free-
dom (different from OAM). Usually we use polarization to
encode the quantum state |ψ〉q = |ψ〉pol = α|H〉 + β|V 〉. In
Appendix B we discuss an example of an OAM-assisted BB84
protocol in polarization.

Since the multiplexer and demultiplexer are modeled by a
unitary operation, the protocol also works in reverse. We can
reverse the direction in Fig. 1 such that Charlie and Diana are
now the senders and everything works similarly. This is true
for all communication protocols discussed here.

B. Point-to-multipoint architecture

A point-to-multipoint architecture is a natural extension
from the point-to-point one. Instead of linking pairs of users,
a point-to-multipoint network links a group of users with one
or more other groups. However, members of the same group
cannot communicate with each other. The logical network is
a bipartite graph.

The simple setup with one multiplexer and one demulti-
plexer works in this case, but only if the numbers of senders
and receivers are coprime (see Appendix C for a proof). Ex-
panding on the previous example, different laboratories from
two cities can now not only share a transmission line, but also
choose to which laboratory from the other city to send data.

Figure 2 shows an example for two senders and three
receivers. Alice (Bob) can communicate with any receiver
(Charlie, Diana, or Eve) using an even (odd) OAM value.

For the general case, suppose we have a set of ds senders
and dr receivers, with ds and dr relatively coprime. In this
case any sender-receiver pair has an associated unique OAM;
thus the receiver can distinguish between different senders.
This value is determined by solving a system of congruence
relations

lsr ≡ s (mod ds),

lsr ≡ r (mod dr ),

where ds and dr are the dimensions of the multiplexer (sender)
and demultiplexer (receiver), respectively. In order for a
sender s ∈ {0, . . . , ds − 1} to communicate with a receiver
r ∈ {0, . . . , dr − 1}, they use the OAM value lsr given by

lsr = pds + s = qdr + r (2)

(see Appendix C). The total number of OAM values is dsdr .
Although in practice we can always choose the dimensions

of the multiplexer and demultiplexer to be coprime (e.g., by

FIG. 2. (a) Logical network for two groups connected in a point-
to-multipoint topology. (b) Two groups share a single long-range
channel to communicate with members of the other group. To ensure
that each pair has assigned a unique OAM value, the dimensions
of multiplexer and demultiplexer must be coprime; here ds = 2 and
dr = 3.

embedding them in a larger set), this can be an issue for
more complex networks. The coprimality constraint can be
eliminated by modifying the demultiplexer as in Fig. 3(b). We
call this a group demultiplexer since it splits an input channel
into dsdr outputs and then groups them back together into dr

channels.
In Fig. 3(c) we use the group demultiplexer to create a

more general network. Now any sender s can transmit to any
receiver r by an appropriate OAM value lsr :

lsr = s + rds. (3)

A step-by-step analysis of this protocol is given in Ap-
pendix D; here we only give the main result:

|ψ〉q|lsr〉OAM|s〉path
network−−−−→ |ψ〉q|lsr〉OAM|r〉path.

This ensures that quantum information, encoded in the state
|ψ〉q, is routed along the network from sender s to receiver r.

In the following schemes a group demultiplexer can be re-
placed by a simple demultiplexer provided that (i) the number
of senders and receivers are coprime and (ii) the OAM values
satisfy the congruence relations discussed above. Also, any
network can work in reverse, i.e., receivers become senders,
multiplexers become demultiplexers (and vice versa), and
group demultiplexers become group multiplexers.

In point-to-multipoint networks, a group communicates
with multiple other groups. A useful use-case scenario is a
network connecting multiple cities: Laboratories in one city
communicate with laboratories in multiple cities. However,
one network connects just one city with others. This creates a
physical star-network topology; the logical network topology
remains the same. Each sender forms a logical star-network
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ŞERBAN SUCIU et al. PHYSICAL REVIEW A 108, 052612 (2023)

FIG. 3. (a) Logical network for two groups connected in a point-
to-multipoint topology. (b) Schematic for a group demultiplexer.
(c) General point-to-multipoint protocol for an arbitrary number
of senders and receivers. On the receiver side, the demultiplexer
has been replaced by a group demultiplexer (dashed outline). With
this change we eliminate the coprimality condition and the OAM
assignment is simplified. (d) General point-to-multipoint for multiple
groups. Since the multiplexer is a unitary transformation, it has the
same number of input and output ports. By using the other available
outputs, one group can communicate with several other groups (situ-
ated at different locations).

topology with all receivers, yet as a group the point-to-
multipoint logic is unchanged.

In Fig. 3(d) we split the group demultiplexer at the re-
ceivers’ end into two. In large networks it will be useful
to put a group multiplexer at the senders and have simple
demultiplexers at the receivers. This helps to reduce the costs,
since using group multiplexers scales as dsdr .

TABLE I. OAM assignments for the fully connected network in
Fig. 4. Each row is obtained from the one above by a circular right
shift.

�������Sender
Receiver

A B C D

A |0〉 |1〉 |2〉 |3〉
B |3〉 |0〉 |1〉 |2〉
C |2〉 |3〉 |0〉 |1〉
D |1〉 |2〉 |3〉 |0〉

Compared to the previous protocol, we now use other out-
puts of the multiplexer to communicate with different groups.
Everything remains the same, except for an offset of the OAM
value, which depends on the receiver group,

lsgr = s + rds � g, (4)

where g is the group number (i.e., the output port of the
multiplexer).

Consider the example in Fig. 3(d), where Bob intends to
communicate to Eve; we have sender s = 1 transmitting to
receiver r = 0 from group g = 1, with a multiplexer of size
ds = 2. Thus their OAM value is 0. Notice that this OAM
value is no longer unique, since Alice uses the same OAM
to communicate to Charlie.

This architecture helps to reduce the OAM bandwidth, i.e.,
the number of OAM values required. Both schemes in Fig. 3
have ds = 2 senders and dr = 4 receivers. However, in the
case in Fig. 3(c) we need dsdr = 6 OAM values, whereas in
Fig. 3(d) we need only dr = 4 values. In both cases any sender
can communicate with any receiver.

A variation of this architecture is to use a group multiplexer
at the senders’ side and only demultiplexers at the receivers’
side. In this case the OAM value is

lsgr = r + sdr � gds. (5)

C. Fully connected networks

Finally, we generalize the previous schemes to a fully
connected network, in which any two users can communicate
with each other. In this case all nodes are both senders and
receivers. In the previous point-to-multipoint protocol, this
will work for a reasonable numbers of users, as the size of
the group demultiplexer scales as O(n2).

Surprisingly however, a single mux-demux device is
enough to create a fully connected network with n nodes (see
Fig. 4 as well as Table I). Here the senders can view the OAM
value as an indexing list: 0 for themselves, 1 for the next user
(mod d), 2 for the second over (mod d), and so on. Now each
node is both a sender and a receiver.

Thus a fully connected network with n users requires only a
single n-dimensional quantum sorter (acting as a mux-demux
device) and n OAM values. In fact, since the OAM value � =
0 is used to connect a node to itself, we need only n − 1 OAM
values.

At first sight it looks like each node needs two different
channels to connect to the network, one for sending and one
for receiving. However, using two circulators, one at the user
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FIG. 4. (a) Logical network for a fully connected network topol-
ogy. (b) Fully connected, n-node quantum network; each node is both
a sender and a receiver. A single n-dimensional (mux-demux) sorter
routes information between all the nodes. (c) Circulators on the (i)
node side and (ii) demux side allow each node to be both a transmitter
Tx and a receiver Rx. Each node is connected to the (central) demux
by a single fiber and thus to the rest of the network.

side and the other at the mux-demux side, a node can use a
single channel for both sending and receiving [see Fig. 4(c)].

This design is the most general possible, connecting all
network nodes. It can be used as a fully connected network
in prepare-and-measure QKD. The strength of this approach
can be seen in Table II, since the fully connected network has
the lowest resource requirements.

D. Entanglement-distribution networks

So far we have discussed networks for prepare-and-
measure QKD protocols, such as BB84. Another important
class of QKD protocols is entanglement-based ones, e.g., E91

TABLE II. Resource scaling for different network architectures.
The fully connected network requires one quantum sorter, whereas
all the other architectures require at least two.

Network architecture Resource scaling

point to point 1 × Uds ; 1 × Udr

point to multipoint (general) 1 × Ud ; ( d
2 + 1) × U2

point to multipoint (groups) 1 × Uds ; ds × Udr

fully connected 1 × Ud

entanglement distribution (active) 1 × Ud ; ( d
2 + 1) × U2

entanglement distribution (passive) 3 × Ud ; 2d × SPP(i)

FIG. 5. (a) Fully connected network for entanglement distribu-
tion using an active central provider. If in the general point-to-
multipoint network one group sends entangled pairs (or multipartite
entangled states) to the other, the receiving group becomes a fully
connected network for entanglement-based QKD. (b) Fully con-
nected network for entanglement distribution from a passive central
provider. In this scheme the senders are replaced by a source of
entangled photons which are then randomly assigned OAM numbers,
thus generating random pairs of users which share an entangled state.

or BBM92. Although entanglement-based protocols are more
secure than prepare-and-measure ones, they are also more
difficult to implement, as they require one to distribute en-
tanglement between nodes.

Multiuser entanglement-distribution networks have been
experimentally demonstrated for wavelength multiplexing
[49,50]. Similar passive-switching networks with a central
node can be designed for OAM.

Entanglement-distribution networks can be actively or pas-
sively switched. In an active network, the central node (the
source) generates pairs of polarization-entangled photons. An
active switch then assigns the correct OAM values r and
s to the two photons and then distributes the photons to
the corresponding nodes r and s. For example, the actively
switched entanglement distribution scheme in Ref. [49] can
be translated directly in the OAM domain with a general
point-to-multipoint network, as in Fig. 5(a). Here “Alice” and
“Bob” are two entangled photons that are distributed based on
their assigned OAM value.

Notice that even though the network is not fully connected
in the prepare-and-measure regime, it becomes so for entan-
glement distribution. It is fully connected, i.e., any two users
can share an entangled pair. A passive-switching network for
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entanglement distribution has been experimentally demon-
strated in Ref. [50].

A passively switched network works in a similar way to the
choice of measurement basis in BB84, where a beam splitter
randomly chooses the basis. In the case of a passive OAM
network, two Fourier gates Fd (which generalize the beam
splitter for d > 2) put the signal and idler photon into two
distinct multipath interferometers, one for the signal and one
for the idler [see Fig. 5(b)]. For the signal photon we have

Fd |0〉path = 1√
d

d−1∑
i=0

|i〉path.

Each path i of the interferometer has an ith-order spiral phase
plate and changes the OAM |0〉OAM→|i〉OAM:

SPPi|0〉OAM|i〉path = |i〉OAM|i〉path.

The paths (channels) are then multiplexed into a common exit
path. Subsequently, the two photons are input into path 0 (the
signal) and path 1 (the idler) of a final OAM demultiplexer,
respectively, which distributes the two photons to the final
users [Fig. 5(b)]. The final quantum state of the two photons
is (for simplicity we omit the polarization part)

1

d

d−1∑
i=0

d−1∑
j=0

|i, j � 1〉OAM|i, j〉path. (6)

In this case entanglement distribution between nodes is done
randomly, according to the OAM values of the signal and
idler (via postselection). Similar to other passively switched
networks [50], the pairs of nodes (randomly) receiving the
entangled pair are identified by coincidences in their detectors.

E. Nonideal case

So far we have discussed the ideal noiseless case. We now
briefly analyze the effect of noise. There are two types of
losses: (i) in the quantum channel (optical fibers, free space,
underwater, etc.) and (ii) in the quantum sorters. Losses in
the quantum channel depend on the specific losses in the
fibers (e.g., Raman absorption), atmospheric turbulence, water
turbidity, etc. Since these are common to all quantum commu-
nication protocols using the same type of channel, we will not
discuss them here.

Losses due to a nonideal mass sorter have been discussed
in Ref. [42], including a discussion about decoherence. The
OAM sorter and mass sorter have the same quantum network:
They are both equivalent to a controlled-Xd gate C(Xd ). Thus
the conclusion of the previous analysis also holds for the
OAM sorter. Specifically, for d = 3 the probability of sorting
correctly is greater than 96% even for phase errors as high as
2π/15, representing 20% of the relevant phase for the system
(see Fig. 6 of Ref. [42]).

IV. CONCLUSION

The development of quantum communication networks
and the advent of the future quantum internet are contingent
on the ability to route quantum information in networks with
complex topologies. In the scenario investigated here, a set of
users sends quantum states |ψ〉q, entangled or not, to another

set of receivers. Similar to the classical case, the scarcity
of certain resources, like long-distance optical cables, means
that signals between different nodes use a common com-
munication channel. This implies that we need to multiplex
and demultiplex quantum signals from and to different users
(nodes), respectively. In order to achieve this, here we use
OAM to route the quantum state |ψ〉q between different users.

In this article we have discussed several network architec-
tures for pairwise communication between multiple parties.
Starting from a simple one-to-one network, we then developed
one-to-many and fully connected networks for distributing
quantum states. We have shown that a fully connected network
with n nodes can be achieved with minimal resources: a single
quantum sorter acting as a mux-demux device, connected
to all n nodes. Moreover, this fully connected network re-
quires only n − 1 OAM values. Finally, we have developed an
entanglement-distribution protocol which has several advan-
tages compared to the current wavelength-based networks.

The central element of all the networks discussed here is
the quantum sorter which acts as a mux-demux device. The
quantum sorter has a cyclic property which was used exten-
sively in building a multitude of network architectures. These
networks can be used to distribute quantum states between
nodes, both in prepare-and-measure protocols (BB84) and in
entanglement-based ones (E91 and BBM92).

The protocols described here can be implemented either
in optical fibers or in free space. As future applications,
we envisage our protocols being used in a wide range of
communication tasks, such as terrestrial (intra- and intercity),
satellite-to-satellite, or satellite-to-ground networks.
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APPENDIX A: QUANTUM OAM SORTER

The OAM sorter Ud used here is an example of the more
general universal quantum sorter introduced in [37]. The
sorter is a Mach-Zehnder interferometer with d paths and with
different phase shifts in each arm. For path k, the phase shifts
are given by Dove prisms rotated with angles αk = kπ/d ,
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αk = kπ/d

F †
dFd

|j OAM|j path

|j OAM|0 path

|j

|d − 1

α1

.

.

.

αj

αd−1

α0

.

.

.

|1

FIG. 6. The OAM sorter Ud is a Mach-Zehnder interferometer
with d paths and with different phase shifts αk on each path. A photon
with OAM | j〉 enters on path 0 and exits through path | j〉 with unit
probability, i.e., is sorted according to its OAM value.

k = 0, . . . , d − 1 (see Fig. 6). The Fd and F †
d are discrete

Fourier gates acting only on the path degree of freedom; they
are equivalent to multimode couplers with appropriate phases

Fd |k〉path = 1√
d

d−1∑
j=0

ωk j | j〉path,

with ω = e2π i/d a root of unity of order d . We also have
F 4

d = I , F †
d = F 3

d , and F 2
d |k〉 = | − k〉 = |d − k〉.

Due to constructive interference, a particle with OAM | j〉
entering the interferometer on input 0 will exit with unit prob-
ability on path j: | j〉OAM|0〉path → | j〉OAM| j〉path. This might
seem quite abstract. We now give a physical intuition of how
the sorter works. Consider first the simplest case of sorting
two states, d = 2. In this case the sorter is a Mach-Zehnder
interferometer with a Dove prism in each arm; the prisms are
rotated relative to each other by π/2 [35]. Thus, an incoming
photon with � = 0 will get a relative phase shift (between the
two arms) δϕ = 0 and will exit, with unit probability, through
output port 0 (constructive interference). On the other hand,
an incoming photon with � = 1 will get a relative phase shift
δϕ = π/2 and will exit through output port 1, again with unit
probability (destructive interference).

The general case is similar. The sorter is now a Mach-
Zehnder interferometer with d paths and its role is to
induce state-dependent relative phases between the arms.
For example, a photon in the state � = 0 will have rela-
tive phases (0, 0, . . . , 0) and will exit with unit probability
through exit 0, a photon with � = 1 will have relative phases
(0, π/d, . . . , (d − 1)π/d ) and will exit with unit probability
through exit 1, and so on. Thus the relative phases experienced
by a photon depend on the OAM value � = k. In turn, the
relative phases determine, through constructive or destructive
interference, the output k through which the photon will exit.

APPENDIX B: THE BB84 PROTOCOL

The OAM-assisted BB84 protocol in polarization encoding
can be implemented with the network shown in Fig. 1. In
this case there are d senders and receivers. Sender i sends to
receiver i the qubit |ψi〉q := αi|H〉 + βi|V 〉, encoded in polar-
ization. Each pair (sender i and receiver i) has allocated an
OAM value i ∈ {0, . . . , d − 1}; thus the initial state at sender i

TABLE III. OAM correspondence chart for ds senders and dr

receivers.

�������Sender
Receiver

0 1 · · · dr − 1

0 |0〉 |ds〉 · · · |(dr − 1)ds〉
1 |1〉 |ds + 1〉 · · · |(dr −

1)ds + 1〉
· · · · · · · · · · · · · · ·
ds − 1 |ds − 1〉 |2ds − 1〉 · · · |drds − 1〉

is |ψi〉q|i〉OAM|i〉path. Since the polarization qubit is unchanged
by the mux-demux device, we will thus omit it for simplicity.
The action of the device is

|i〉OAM|i〉path
U †

d−→ |i〉OAM|0〉path
Ud−→ |i〉OAM|i〉path.

In order to measure the polarization state, each receiver has
the standard BB84 setup: a beam splitter, a half waveplate, two
polarizing beam splitters, and four single-photon detectors.

The protocol also works for the networks discussed in
Sec. III, if the sender chooses an appropriate OAM value. In
Fig. 3 the sender s chooses an OAM value equal to r in order
to send to receiver r (see Appendix D): |ψsr〉q|r〉OAM|s〉path.

In Fig. 2 the sender s communicates with receiver r:
|ψsr〉q|sqdr + r pds〉OAM|s〉path. Here p and q are the Bezout
coefficients of the identity pds + qdr = 1 and ds and dr

are the numbers of senders and receivers, respectively (see
Appendix C).

APPENDIX C: COPRIME CASE
For ds senders and dr receivers we can prove that any

sender s can transmit to any receiver r if they share an OAM
state |lsr〉OAM satisfying the conditions

lsr = pds + s,

lsr = qdr + r,

with s ∈ {0, . . . , ds − 1}, r ∈ {0, . . . , dr − 1}, and p and q
integers. This is equivalent to the congruence relations

lsr ≡ s (mod ds),

lsr ≡ r (mod dr ). (C1)

From the Chinese remainder theorem we know that ds and
dr need to be coprime and only one lsr ∈ {0, . . . , dsdr − 1}
satisfies these conditions for fixed s and r. This means that we
can design a network with only a ds-dimensional mux U †

ds
and

a dr-dimensional demux Udr (see Fig. 2).
Given a sender s and a receiver r, we can find their assigned

OAM state |lsr〉OAM by solving the congruence relations (C1).
This gives lsr = sqdr + r pds, where p and q are the Bezout co-
efficients of the identity pds + qdr = 1, which are calculated
using the extended Euclidean algorithm.

The protocol requires the number of senders and the num-
ber of receivers to be coprime. In practice we can always
satisfy the coprimality condition by embedding the number
of senders and/or receivers into larger sets with coprime
cardinality.
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TABLE IV. Reference chart for ds = 2, dr = 3, and the OAM
DOF spanning from |0〉 to |5〉.
�����������Sender

Receiver
0 1 2

0 |0〉 |2〉 |4〉
1 |1〉 |3〉 |5〉

APPENDIX D: GENERAL POINT-TO-MULTIPOINT
OAM NETWORK

Our goal is to establish a general pairwise communication
protocol between ds senders and dr receivers such that any
sender s can communicate with any receiver r. The protocol
must be free from the coprimality condition discussed in
Appendix C. In this case there are dsdr pairs (sender s and
receiver r), with s ∈ {0, . . . , ds − 1} and r ∈ {0, . . . , dr − 1}.

We group the OAM values as in Table III, where each row
shows the OAMs available to sender s and each column the
OAMs received by receiver r. Note that the element in row s,
column r is |s + rds〉; thus we can assign each pair (sender
s and receiver r) a unique OAM state |lsr〉OAM, with lsr =
s + rds, requiring dsdr OAM states in total.

Example. For two senders (ds = 2) and three receivers
(dr = 3), if sender 0 (s = 0) wants to communicate with
receiver 1 (r = 1), the appropriate OAM state is |lsr〉OAM =
|s + rds〉OAM = |0 + 1 × 2〉OAM = |2〉OAM (see Table IV).

Figure 3(c) shows the physical implementation of the gen-
eral point-to-multipoint network for two senders and four
receivers. In general, sender s starts with the OAM state
|s + rds〉OAM on path |s〉path. The state is then multiplexed into
a single transmission channel

|s + rds〉OAM|s〉path

U †
ds−→ |s + rds〉OAM|0〉path.

The demultiplexer at the receiver’s end is much larger, split-
ting the channel into dsdr paths, one for each OAM. These are
then grouped into dr groups of ds channels and multiplexed
back together by dr multiplexers U †

ds
. For simplicity, we can

take the demultiplexer and the dr multiplexers to be a sin-
gle device called a group demultiplexer G, represented by a
dashed outline in the figures (see Appendix E). We mark the
paths inside the device as local paths; therefore,

|s + rds〉OAM|0〉path
Udsdr−−→ |s + rds〉OAM|s + rds〉local,

|s + rds〉OAM|s + rds〉local

U †
ds−→ |s + rds〉OAM|rds〉local.

TABLE V. Outputs of a group demultiplexer.

�������Output
OAM

0 1 · · · ds − 1

0 |0〉 |1〉 · · · |ds − 1〉
1 |ds〉 |ds + 1〉 · · · |2ds − 1〉
· · · · · · · · · · · · · · ·
dr − 1 |(dr − 1)ds〉 |(dr − 1)ds + 1〉 · · · |drds − 1〉

There are gaps of ds between output ports on the local path.
We can map back to the global path by dividing the output
port by ds (|rds〉local �→ |r〉path). The full action of the group
demultiplexer Gdr

ds
(makes dr groups of dimension ds) is then

|s + rds〉OAM|0〉path

Gdr
ds−→ |s + rds〉OAM|r〉path.

Finally, the action of the protocol is

|s + rds〉OAM|s〉path

U †
ds

, Gdr
ds−−−−→ |s + rds〉OAM|r〉path.

If sender s wants, for example, to transmit a qubit to re-
ceiver r, they encode the information in the polarization DOF
αsr |H〉 + βsr |V 〉 with OAM |s + rds〉OAM on path |s〉path. The
receiver recovers the information encoded in the qubit via
polarization state detection on path |r〉path. This way we can
ensure the general pairwise quantum communication between
several parties through a single channel. Moreover, if the two
groups of senders and receivers are the same, the network
becomes effectively a fully connected network.

APPENDIX E: GROUP DEMULTIPLEXER

In Fig. 3(b) we introduced the group demultiplexer G.
Imputing consecutive OAM numbers on port |0〉path into a de-
multiplexer Ud , we see that it distributes them on consecutive
channels l mod d until it resets to output 0 when l reaches the
next multiple of d . A group demultiplexer Gdr

ds
in the same

situation outputs on the same channel � l
ds	 until it moves to

the next one when l reaches the next multiple of ds as in
Table V. Table V is just the transpose of Table III. Formally,
we have

|l〉OAM|k〉path

Gdr
ds−→ |l〉OAM

∣∣∣∣
⌊

k ⊕ l

ds

⌋〉
path
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