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Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels
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Photon-number-resolving detectors with hundreds of pixels are now readily available, while the characteriza-
tion of these detectors using detector tomography is computationally intensive. Here, we present a modified
detector tomography model that reduces the number of variables that need optimization. To evaluate the
effectiveness and accuracy of our model, we reconstruct the photon number distribution of optical coherent
and thermal states using the expectation-maximization-entropy algorithm. Our results indicate that the fidelity
of the reconstructed states remains above 99%, and the second- and third-order correlations agree well with the
theoretical values for a mean number of photons up to 100. We also investigate the computational resources
required for detector tomography and find out that our approach reduces the solving time by around half
compared to the standard detector tomography approach, and the required memory resources are the main
obstacle for detector tomography of a large number of pixels. Our results suggest that detector tomography
is viable on a supercomputer with 1 TB RAM for detectors with up to 340 pixels.
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I. INTRODUCTION

Photon-number-resolving (PNR) measurements are im-
portant in many classical optics applications, such as x-ray
astronomy [1] and lidar [2], as well as in quantum optics ap-
plications, including quantum random-number generation [3],
multiphoton interference [4], high-order correlation measure-
ment [5], linear optics quantum computation [6], Gaussian
boson sampling [7,8], generation of non-Gaussian quantum
states [9], quantum communication [10,11], and quantum
metrology [12–14]. There are two main approaches to realize
PNR detectors. One is based on the intrinsic PNR capability,
such as transition-edge sensors (TES) [15], superconduct-
ing nanowire single photon detectors (SNSPDs) [16,17], and
avalanche photodiodes [18]. However, these detectors can
only resolve a few photons. The other one is based on mul-
tiplexing, which can be further classified according to the
dimension into two categories, the one based on bulk op-
tics [19–21] and the one based on integration [22–24]. The
multiplexing scheme based on bulk optics suffers from low
efficiency, stability, and scaling problems due to their large
dimensions. It is critical to realize an on-chip integrated PNR
detector, which allows the cointegration of spatial or spectral
optical components, to scale up the pixels [25].

Among these approaches, SNSPDs hold great potential
for on-chip integrated PNR detectors due to their excellent
properties, such as high detection efficiency, low dark count
rate, high repetition rate, and low timing jitter [26–28]. Large-
scale SNSPD arrays have already been demonstrated [29,30].
Waveguide integrated PNR detectors based on SNSPDs,
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which are crucial for quantum photonics applications, were
reported a decade ago and are capable of resolving up
to four photons [31]. Recently, a waveguide integrated
space-multiplexed PNR detector based on a series of 100 su-
perconducting nanowires [32] as well as a PNR detector based
on multiplexing three TES detectors [33] have been reported,
which is a great breakthrough in the field of PNR detectors
and may boost a variety of quantum optics applications in the
mesoscopic regime.

Due to the nonideality of the practical optical circuits
for multiplexing and the imperfect single-pixel detector ele-
ments, one needs to perform quantum detector tomography
[34–37] to characterize PNR detectors. However, the com-
putational resources are demanding when the degrees of
freedom are large [38]. In this work, we propose a modified
detector tomography approach that reduces the number of
variables to be optimized, while ensuring comparable accu-
racy to the conventional method. To verify the effectiveness
and accuracy of our approach, we numerically reconstruct the
photon number distributions of the incident signals using the
expectation-maximization-entropy algorithm [21], and inves-
tigate the needed computational resources. The solving time
of our approach is reduced by about half compared to that of
standard detector tomography. The finite memory resource is
shown to be the main obstacle for both modified and standard
detector tomography approaches. Our results suggest that de-
tector tomography is still feasible for a detector with up to
340 pixels on a supercomputer with 1 TB RAM.

II. SYSTEM CONFIGURATION

A photonic-integrated circuit-based on-chip PNR detector
employing SNSPDs is schematically illustrated in Fig. 1(a).
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FIG. 1. The on-chip PNR detector and photon statistics extrac-
tion process. (a) Schematic of an on-chip PNR detector consisting
of waveguide beam splitters and N SNSPDs. (b) The workflow
to reconstruct the PND of an ensemble of input pulses from the
click statistics. A probe set {|α〉} of coherent states is first used
for detector tomography, and the POVM elements {πn} are ob-
tained. The PND f ∈ RM+1

+ of the input state, where R+ represents
nonnegative real numbers and M is the photon number at which
the Fock space is truncated, can be reconstructed by the EME al-
gorithm from the click statistics p ∈ RN+1

+ measured by the PNR
detector. PNR: photon-number resolving, SNSPD: superconducting
nanowire single-photon detector, PND: photon-number distribution,
POVM: positive operator-valued measurement, EME: expectation-
maximization entropy.

By a spatial-multiplexing photonic circuit, the input inten-
sity is nearly evenly distributed to N SNSPDs with similar
detection efficiency. An alternate approach (not shown) is to
integrate an array of SNSPDs on a single waveguide [31,32]
such that the absorption efficiency of each single pixel is
designed to absorb the input photons with nearly equal proba-
bility. Apart from the capability of resolving photon numbers
[39], SNSPDs are compatible with other photonic components
on photonic chips [40], thus allowing a variety of applications
ranging from single-photon spectrometers [41] and on-chip
Boson sampling [42] to hybrid quantum chips for quantum
information processing [43].

To evaluate the performances of detector tomography with
hundreds of pixels, we implement numerical Monte Carlo
simulations in the following, where the code can be found in
Ref. [44]. For unbalanced PNR detectors, we set the device
configuration with the coupling efficiency from the input to
the detector to be 99% to account for potential device insertion
loss. Considering the fabrication imperfections, the input in-
tensity is nearly evenly distributed to each pixel with a relative
uncertainty of 2%. The simulations assume no dark counts
and each detector pixel has a uniformly distributed intrinsic
detection efficiency (the probability of generating clicks when
a photon is absorbed by the pixel) between 90% and 95%
[45]. Note that the path-dependent propagation losses could
also be included in the absorption efficiency or intrinsic ef-
ficiency of individual pixels. The technical noise of the laser
used to generate the probe set {|α〉}, which is associated with

potential drift in the amplitude of the probe states, is also
considered by assuming that the mean number of photons of
each pulse is normally distributed as |β|2 ∼ N (μ = |α|2, σ =
0.0188|α|2), where β is the amplitude of each pulse; μ and
σ denotes the mean and standard derivation of |β|2, respec-
tively; and N represents normal distribution. We adopt the
experimental parameters in Ref. [34], hence σ = 0.0188|α|2.

III. DETECTOR TOMOGRAPHY

Due to the fabrication imperfections of photonic circuit
components and superconducting devices, PNR detectors
are usually unbalanced and there may be cross-talk be-
tween pixels. Quantum detector tomography [34–37] aims
to characterize PNR detectors by determining the positive
operator-valued measurement (POVM) elements. The PNR
detectors without phase dependence can be described by the
POVM diagonal in the Fock state basis as

πn =
M∑

k=0

θ
(n)
k |k〉〈k|, n = 0, 1, . . . , N, (1)

with element πn corresponding to the outcome of n clicks
of an N-pixel detector, and the Fock space is truncated at a
photon number of M. As schematically illustrated in Fig. 1(b),
the obtained detector POVM can be applied to reconstruct
the photon number distribution (PND) of the input state by
only providing the measured statistic of detector clicks. In
particular, the PND vector f ∈ RM+1

+ of the incident signal,
where R+ represents nonnegative real numbers, can be recon-
structed from the measured click statistics p ∈ RN+1

+ using the
expectation-maximization-entropy (EME) algorithm [21].

A. Standard detector tomography

A set of D coherent states {|α〉} with different mean num-
bers |α|2 of photons are used as probe states for detector
tomography, and the corresponding click statistics are ob-
tained to reconstruct the POVM elements by solving the
following convex optimization problem [34,35]:

min ‖P − FΠ‖Fro + γ̃
∑
n,k

(	k,n − 	k+1,n)2,

s.t. πn � 0,
∑

n

πn = I. (2)

Here, ‖A‖Fro = (
∑

i, j A2
i, j )

1/2 represents the Frobenius norm,

P ∈ RD×(N+1)
+ is a matrix containing the measured click

statistics of the probe states, and F ∈ RD×(M+1)
+ is a matrix

containing the probe states {|α〉}. Each row of P and F cor-
responds to the measured click statistics p and the true PND
f of a probe state, respectively. Π ∈ R(M+1)×(N+1)

+ is a ma-
trix containing the N + 1 POVM elements where Πkn = θ

(n)
k .

A regularization parameter γ̃ is introduced to suppress ill-
conditioning and noise.

To fully characterize the response of the detector with
respect to input states, the maximum mean number of photons
of the probe states, denoted as |α|2max, should be chosen such
that the probability that all the N pixels click simultaneously
saturates [35]. In our Monte Carlo simulation, we choose
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|α|2max such that the probability of measuring more than N
clicks by PNR detector is greater than 90% when the mean
input photon number 〈n〉 = |α|2max. The sample set of the
input probe states is selected as the coherent states with the
mean photon number 〈n〉 ranging from 1 to |α|2max in steps
of 1. We choose the truncation parameter M > |α|2max such
that the probability of the Poisson distribution at M satisfies
the condition (|α|2max)Me−|α|2max/M! � 10−5. For each probe
state, 105 sample pulses are used to obtain the measured click
statistics p.

B. Modified detector tomography

For an N-pixel detector with input state space truncated
at photon number M, (M > N ), the number of variables to
be optimized is (M + 1) × (N + 1), which is on the order of
104 for a 100-pixel detector. Due to the large degrees of free-
dom of the POVM elements, the resources needed to perform
detector tomography are demanding [38]. In this section, we
derive a modified form of detector tomography, which would
reduce the number of variables to be optimized.

To make the objective function in Eq. (2) differentiable, we
change the form of the convex problem to

min
1

2
‖P − FΠ‖2

Fro + γ

2

M−1∑
k=0

N∑
n=0

(Πk,n − Πk+1,n)2

s.t.Π1N+1 = 1M+1, Πk,n � 0,

k = 0, . . . , M; n = 0, . . . , N, (3)

where γ is the regularization parameter and 1N+1 is a (N + 1)-
dimensional vector with all components being one.

Denote uk ≡ ek − ek+1, where ek ∈ RM+1 is the kth basis
vector. Then the objective function can be written as

f (Π ) ≡ 1

2
‖P − FΠ‖2

Fro + γ

2

M−1∑
k=0

N∑
n=0

(Πk,n − Πk+1,n)2

= 1

2
tr[(P − FΠ )T(P − FΠ )] + γ

2

M−1∑
k=0

uT
k ΠΠTuk

= 1

2
tr[(P − FΠ )T(P − FΠ )] + γ

2
tr[UΠΠT], (4)

where

U =
M−1∑
k=0

ukuT
k . (5)

The gradient of the objective function is

∇ f (Π ) = −F T(P − FΠ ) + γUΠ

= −F TP + (F TF + γU )Π, (6)

and the corresponding solution to ∇ f (Π ) = 0 is

Π̃ = (F TF + γU )−1F TP. (7)

Since ∇ f (Π̃ ) = 0, we have ∇ f (Π̃ )1N+1 = 0, i.e.,

[−F TP + (F TF + γU )Π̃]1N+1 = 0. (8)

Based on the fact that P1N+1 = 1D, the last equation becomes

(F TF + γU )Π̃1N+1 = F T1D, (9)

which holds when

FΠ̃1N+1 = 1D,

γUΠ̃1N+1 = 0. (10)

Therefore, ∇ f (Π̃ ) = 0 leads to

Π̃1N+1 = 1M+1, (11)

which indicates that Π̃ satisfies the equality constraints in
Eq. (3). However, nearly half of the inequality constraints
in Eq. (3) do not hold for Π̃ in our simulation. To simplify
the solving process of detector tomography, intuitively we
introduce a treatment that sets Πk,n = 0 if Π̃k,n � 0. This
approximation reduces the number of variables by about
half, which leads to a decrease in solving time, as will be
demonstrated in Sec. V. Following this treatment, detector
tomography can be reformulated as

min
1

2
‖P − FΠ‖2

Fro + γ

2

M−1∑
k=0

N∑
n=0

(Πk,n − Πk+1,n)2

s.t. Π1N+1 = 1M+1, Πk,n = 0, if Π̃k,n � 0,

Πk,n � 0, if Π̃k,n > 0. (12)

We refer to Eq. (12) as modified detector tomography (MDT)
and Eq. (3) or (2) as standard detector tomography (SDT).

We solve Eqs. (12) and (3) using CVXPY [46,47] with a
commercial solver called MOSEK which supports multithread-
ing [48]. In order to compare the accuracies of these two
methods, we first consider a balanced 70-pixel detector with
efficiency of 90%, where the theoretical POVM elements are
given in Ref. [20],

θ
(n)
k =

(
N

n

) n∑
j=0

(−1) j

(
n

j

)[
(1 − η) + (n − j)η

N

]k

, (13)

where η represents the detector efficiency. The result is shown
in Fig. 2(a), where the theoretical POVM elements are plot-
ted as yellow bars, and the absolute differences between
the reconstructed POVM elements and the theoretical ones
are plotted as red bars for MDT and blue bars for SDT,
respectively. The mean normalized fidelity between the recon-
structed POVM sets and the theoretical ones is defined as

F (	rec,	theo) = 1

N + 1

N∑
n=0

tr
√√

π rec
n π theo

n
√

π rec
n√

tr
(
π rec

n

)
tr
(
π theo

n

) . (14)

It is 98.0% for MDT and 98.6% for SDT, which shows that
the accuracies of these two methods are comparable.

In realistic situations the detectors are usually unbalanced
due to fabrication imperfections, and the theoretical POVM
elements are hard to derive [49]. For an unbalanced 70-
pixel detector with the configuration described in Sec. II,
the reconstructed POVM elements using MDT and SDT are
shown in Fig. 2(b), where the Fock space is truncated at
M = 608 and the regularization parameter is chosen as γ =
10−4. The yellow bars show the results for MDT, while
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FIG. 2. An example of detector tomography. (a) The theoretical
POVM elements of a balanced 70-pixel detector with efficiency of
90% are shown as yellow bars. The absolute differences between the
reconstructed POVM elements and the theoretical ones are plotted
as red bars for MDT and blue bars for SDT, respectively. (b) The
reconstructed POVM elements of an unbalanced 70-pixel detec-
tor with regularization parameter γ = 10−4. The POVM elements
obtained from modified detector tomography are shown as yellow
bars. The red bars represent the absolute differences between POVM
elements from MDT and SDT. Only the first 15 POVM elements are
shown for clarity. (c) The dark-count probability extracted from the
reconstructed POVM elements of the unbalanced 70-pixel detector
with respect to the regularization parameter γ .

the red bars indicate the absolute difference of POVM el-
ements obtained by MDT and SDT. The mean normalized
fidelity between these two reconstructed POVM sets is 99.4%,
which again confirms that the MDT approximates SDT
quite well.

Note that the regularization parameter should be chosen
below a certain threshold such that the dark-count probability
extracted from the reconstructed POVM elements coincides
with that measured experimentally [50], as shown in
Fig. 2(c) for the unbalanced 70-pixel detector. The dark-count
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FIG. 3. The fidelity F of the reconstructed PNDs using the EME
algorithm with respect to the regularization parameter λ for input
coherent states with various mean photon numbers 〈n〉. The POVM
elements used to determine the PNDs are reconstructed using MDT.

probability defined as the single-click probability when no
photons are incident is pdark = Π0,1 = 4.4% for γ = 10−4.
For a larger γ , the dark-count probability deviates from the
assumption of no dark counts in the simulation, and for
smaller γ , errant spikes occur in the reconstructed POVM
elements in their distribution in photon numbers.

IV. VERIFICATION: RECONSTRUCTION OF PHOTON
NUMBER DISTRIBUTION

To verify the effectiveness and accuracy of the POVM ele-
ments obtained from the MDT model, we numerically tested
its performance for an unbalanced 70-pixel PNR detector,
with the procedure following the schematic in Fig. 1(b). We
reconstruct the PNDs of both coherent and thermal states us-
ing the EME algorithm [21]. The algorithm works by iterating
the following equations:

f (i+1)
k = R(i)

k f (i)
k − λ

(
ln f (i)

k + S(i)
)

f (i)
k , (15a)

R(i)
k =

N∑
n=0

pn∑M
k′=0 Πk′n f (i)

k′
Πkn, (15b)

S(i) = −
M∑

k=0

f (i)
k ln f (i)

k , (15c)

where the superscript (i) represents the ith iteration and λ is
the regularization parameter. The initial guess f (0) of the input
distribution is set to be uniform.

First, we choose a regularization parameter λ for the
EME algorithm. By using the probe states in the previous
section, the fidelity of reconstruction F = (

∑M
k=0

√
fk f true

k )2

is evaluated for different λ. As shown in Fig. 3, the fi-
delities achieve the highest value when λ = 0.02, so we
set λ = 0.02 in the following reconstruction processes. We
should note that since the maximum entropy regularization
has an effect of smoothing the distribution, it cannot be
used to reconstruct states that are not “smooth,” such as
squeezed vacuum states and Fock states. For such states,
prior information is necessary for accurate reconstruction
of PNDs.

Figure 4 shows typical results of the PND reconstruction
for the coherent and thermal input states with 〈n〉 = 50. In
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FIG. 4. (a and b) The measured statistics of clicks and reconstructed photon number distributions for coherent state input, with an input
mean photon number 〈n〉 = 50. (c and d) The measured statistics of clicks and reconstructed photon number distributions for thermal state
input, with an input mean photon number 〈n〉 = 50. The error bars are the standard deviations calculated by repeating the click statistics
and state reconstruction process 10 times. The blue bars in (b) and (d) represent the theoretical PNDs and the red dots represent the PNDs
reconstructed using the EME algorithm averaged over 10-times repetition of the process.

Figs. 4(a) and 4(c), the measured statistics of clicks for the
coherent and thermal states are plotted. The measured dis-
tributions have slight fluctuations that are different from the
smooth distributions, which are attributed to the finite sample
numbers. We also notice that the measured click statistics of
the thermal state in Fig. 4(c) deviate from a geometric distri-
bution as predicted for an ideal thermal state, which indicates
that the statistic of clicks could be significantly changed by
PNR detectors with a finite number of pixels of the detector
and a reliable reconstruction of PND is necessary.

The corresponding theoretical PNDs for the input states are
shown by blue bars in Figs. 4(b) and 4(d), where only the first
70 components are shown. With our method, we reconstructed
the PNDs from the measured click statistics and the optimized
POVM of the PNR detector, and the results are shown by
red dots in Figs. 4(b) and 4(d). The results are obtained by
numerically repeating the click statistics simulation and state
reconstruction process 10 times, and the corresponding stan-
dard deviations of the reconstructed PNDs are also shown as
error bars. The fidelity is above 99.9% and the total varia-
tion distance � = ∑M

k=0 | fk − f true
k |/2 is also calculated and

shown in the figure, which indicates the high accuracy of our
reconstruction method.

Figure 5 further evaluated the performance of our approach
by calculating the fidelity F and the high-order photon cor-
relation functions g(2) and g(3) for the reconstructed coherent
and thermal states for different 〈n〉. We find that our approach
can reconstruct both coherent and thermal states with high
fidelities F > 99% even when 〈n〉 approaches 100. For the
g(2) function, our results agree with the theoretical predic-
tions of 2 and 1 for thermal and coherent states, respectively.
Similarly, the reconstructed g(3) ≈ 6 and 1 agree with theory.
The fidelity drops and the correlation functions deviate from
the theoretical values as 〈n〉 increases above 100, because the
probability of more than one photon entering the same pixel

becomes nonnegligible when 〈n〉 > N . These results validate
the MDT model and imply the potential of our approach for
reconstructing PNDs of PNR detectors accurately even when
the mean photon number exceeds 100.
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FIG. 5. The fidelity F and correlation functions g(2) and g(3) of
the reconstructed PNDs of coherent states and thermal states with
mean photon number 〈n〉. The dashed lines for the correlation func-
tions are the corresponding theoretical values, i.e., g(2) = 1(2) and
g(3) = 1(6) for coherent (thermal) states.
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FIG. 6. The computational cost of detector tomography. The
solving time (in seconds) and memory consumption (in GB) with
respect to the different number of pixels for SDT (triangle) and MDT
(diamonds) were profiled using solver MOSEK with 16 threads. The
solid curves are the corresponding fittings.

V. PERFORMANCE EVALUATION

Although it is known that detector tomography is com-
putationally demanding when the number of pixels or the
truncated dimension of the Fock state space increases, the
limit of the detector pixels has not been explored. Here, we nu-
merically characterize the time and memory consumption for
detector tomography with respect to the number of pixels on
a server with two 3.2-GHz Xeon E5-2667 CPUs and 128 GB
RAM, as shown in Fig. 6. Convex optimization problems are
known to be solved efficiently in polynomial time [51], and
the time and memory consumption with respect to the number
of pixels are fitted with the weighted least square method by
using the model y = aNb. We obtain

tSDT = 4.51 × 10−4 × N2.80 s, (16a)

mSDT = 1.66 × 10−6 × N3.44 GB (16b)

for SDT, and

tMDT = 7.17 × 10−4 × N2.56 s, (17a)

mMDT = 0.85 × 10−6 × N3.58 GB (17b)

for MDT. Note that we only consider the time spent by the
solver and that the time spent by CVXPY for compiling the
problem is not taken into consideration. In our numerical sim-
ulations, the variables (degrees of freedom for optimization)
of MDT are reduced by about 40%, which leads to a decrease
in solving time by approximately half compared to that of
SDT, as shown in Fig. 6(a), while the memory consumptions
for MDT and SDT [Fig. 6(b)] are comparable. The reason may
be attributed to the number of constraints being the same for

both models, and it requires similar memory to compile these
two models in CVXPY.

These results indicate that the main obstacle of detector
tomography in practice is finite memory resources. Our re-
sults suggest that for detectors with similar efficiency and
dark-count probability as in our simulation, by employing
the currently feasible supercomputer with 1 TB RAM, the
modified detector tomography can handle PNR detectors with
up to 340 pixels.

VI. CONCLUSION

In conclusion, we propose a modified detector tomography
approach that reduces the degrees of freedom without sac-
rificing precision. The solution obtained using this method
coincides with that of standard detector tomography with
high fidelity. As a verification of the effectiveness and
accuracy of the MDT model, we reconstruct photon num-
ber distributions of coherent and thermal states using an
expectation-maximization-entropy algorithm for a 70-pixel
photon-number-resolving detector. The fidelity of the re-
constructed states remains above 99% and the second- and
third-order coherence g(2), g(3) agrees well with the theoretical
values for 〈n〉 up to 100. In addition, we also provide insights
into the computational constraints associated with multipixel
detector tomography. The solving time of our modified detec-
tor tomography is shown to be nearly two times shorter than
that of standard detector tomography, and the main obstacle
for detector tomography is the finite memory resource. For
detectors with comparable efficiency and dark-count proba-
bility to that in our simulation, we suggest that the number of
pixels of around 340 is manageable with available computer
resources (supercomputer with 1 TB RAM).
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