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Image resolution of quantum imaging with undetected photons is governed by the spatial correlations existing
between the photons of a photon pair that has been generated in a nonlinear process. These correlations allow
for obtaining an image of an object with light that never interacted with that object. Depending on the imaging
configuration, either position or momentum correlations are exploited. We hereby experimentally analyze how
the crystal length and pump waist affect the image resolution when using position correlations of photons that
have been generated via spontaneous parametric down conversion in a nonlinear interferometer. Our results
support existing theoretical models for the dependency of the resolution on the crystal length. In addition, we
probe the resolution of our quantum imaging scheme for varying pump waists over one order of magnitude.
This analysis reveals the intricate dependency of the resolution on the strength of the correlations within the
biphoton states for parameter combinations in which the crystal lengths are much larger than the involved photon
wavelengths. We extend the existing models in this parameter regime to properly take nontrivial effects of finite
pump waists into account and demonstrate that they match the experimental results.
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I. INTRODUCTION

In recent years, quantum imaging techniques have proven
to be a very useful tool to overcome classical limitations [1,2].
For instance, when imaging at wavelengths outside the vis-
ible range, detection technologies are limited, especially for
low-light-level applications, such as occurring in life sciences
[3]. Quantum imaging with undetected light (QIUL) [4] is a
technique that overcomes these detection limitations exploit-
ing the capabilities of nonlinear interferometers [5–7]. It is
based on the quantum interference effect of induced coherence
[8,9] and exploits the spatial correlations existing between two
photons, for example, generated via spontaneous parametric
down-conversion (SPDC), to create an image of an object
with light that did not illuminate it. This nonlinear process
can be engineered to generate one beam at the desired probe
wavelength for the sample, and the other beam, containing
correlated partner photons, at the visible range to ease the
detection. Therefore, the interest in understanding quantum
imaging systems has rapidly grown not only for imaging
applications [3,10,11], but also for holography [12,13], spec-
troscopy [14–16], and optical coherence tomography [17,18].

Image resolution is one of the main parameters that de-
scribes the quality of an imaging system, which for QIUL is
governed by the spatial correlations of the photons. Several
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works have experimentally exploited the momentum anticor-
relations of SPDC biphoton states, i.e., imaging at the far-field
plane (Fourier plane) of the nonlinear crystal [3,4,12,19–23].
Alternatively, one can also obtain the image of an object that
is placed at the near-field plane (image plane) of the nonlinear
crystal. When this is the case, the imaging system exploits
position correlations of the photons [24]. Note that the term
near-field is also used in the literature in a different context
to indicate that the object is sufficiently close to the SPDC
source such that near-field interactions in terms of evanescent
modes can have an influence on the resolution limit. In such
cases subdiffraction resolution imaging might be achieved
by exploiting evanescent modes existing within wavelength-
range distances [25]. Recently, QIUL has been implemented
with the near-field configuration for the first time and, thus,
demonstrating its experimental viability [26]. Exploiting po-
sition correlations is of particular interest due to the fact that
the degree of correlation between the two photons of an SPDC
pair does not depend on the pump beam spatial coherence
[27,28]. That relaxes the requirements on the pump source,
providing more flexibility to engineer a quantum imaging
system.

The role of the parameters of the two-photon source on
image resolution (pump waist, crystal length, and wavelengths
of the down-converted photons) has been analyzed for both
cases momentum [29] and position [30,31] correlations.

These works derived resolution limits for specific pa-
rameter regimes within different approximations that were
specifically designed for the precise parameter regime under
consideration. For instance, the crystal length can be neglected
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within a thin-crystal approximation [32] in the far-field con-
figuration [29]. By contrast, the impact of a finite pump
waist can usually be neglected for near-field configurations
but the crystal length plays the dominant role for image res-
olution. In particular, it has been shown that shorter crystal
lengths improve the resolution within the paraxial regime
[30]. However, this improvement reaches a lower bound given
by the diffraction limit. At this limit, the resolution is gov-
erned by the longer wavelength of the photon pair. For a
detailed analysis providing a general model for such effects
also beyond the commonly used paraxial regime, we refer
to [31].

While the theory predictions in the far field have been
experimentally demonstrated [29], this task remains missing
in the near field. In this work, we experimentally study the
resolution of QIUL for different parameter regimes based on
position correlations. We demonstrate that, in this configura-
tion, the main parameter governing the spatial resolution for
sufficiently large crystals is the crystal length, in agreement
with the theory [30,31]. Furthermore, we also vary the pump
waist to show that it does not influence the resolution over a
broad parameter range. In particular, if the wavelengths are
in the visible or near-infrared regime and the crystal length
is of the order of millimeters, the resolution stays almost
unaffected for pump waists �100 µm. However, we observe
slight deviations for strongly focused pump beams.

To properly account for these effects, the existing theo-
retical model for the system needs to be extended. Although
recently developed numerical techniques [31] could also ac-
count for such effects, we generalize the existing analytical
model for resolution limits in the near field [30] to derive an
analytical dependency of the image resolution on the pump
waist as well as the crystal length. This investigation also
allows us to directly connect the image resolution with the
strength of the quantum correlations encoded in the biphoton
states. Moreover, it reveals that different physical information
is stored in the visibility and the image function that might
be used to describe the imaging system. Resolution can be
determined via characteristic spreads quantifying the blurring
seen in an image of an object. Spreads extracted from both
functions almost coincide for sufficiently large pump waists in
the near-field configuration such that the resolution limit can
be obtained either from amplitude images (image function)
or from visibility images (visibility). However, they deviate
for decreasing pump waists showing that the correlation infor-
mation between the photons is only properly reflected in the
visibility. We show that these effects are corroborated in the
obtained experimental results. As a side product, our analysis
provides a new quantity to assess the quality of the imag-
ing setup without needing any information about involved
magnifications. In case the experimentally measured data stay
sufficiently close to the corresponding theory predictions, we
are able to introduce a tool to extract an estimator for the
magnification value of the imaging configuration without the
need to directly measure it.

II. EXPERIMENTAL SETUP

The experimental setup (Fig. 1) consists of an SU(1,1)
nonlinear interferometer where a 4f system of lenses ensures

that the object lies in the image plane of the crystal. We denote
this particular configuration as near field, i.e., image-plane
imaging. This plane is then imaged into the camera through
a different 4f lens system. In this way, position correlations
enable the formation of the image [24]. For more details on
the systems of lenses and the imaging configuration used, see
Fig. 6. in Appendix A 1.

A pump beam of 96 mW pump power and pump wave-
length λp = 405 nm is focused with lens Lp into a type-0
ppKTP crystal that generates a pair of correlated photons
through SPDC at 730 and 910 nm wavelengths either during
the forward propagation of a pump photon through the crystal
(path A) or when it passes through the crystal in the backward
direction (path D) after being reflected back by mirror M1. We
refer to the light with wavelength λu = 910 nm as undetected
(u) because it is never detected, although being the one illu-
minating the object. By contrast, the photons with wavelength
λd = 730 nm are directed towards the camera but never in-
teract with the object. Therefore we denote this beam as the
detected beam d. The camera used for detection is a Prime BSI
Scientific CMOS from Teledyne Photometrics with a pixel
size of 6.5 µm. Because of the sufficiently low pump power,
the down-conversion process occurs in the low-gain regime
and we can consider only one pair of down-converted photons
(either forward or backward generated) to be present at a time
in the interferometer. The probability amplitudes of the SPDC
emission generated in the first and second passage through
the nonlinear crystal are superposed and exhibit interference
when indistinguishable. The required indistinguishability is
achieved by careful alignment of the forward and backward
beams which erases the which-path information. The inter-
ference pattern observed from the detected photons contains
information of an object in the undetected beam path C due to
the induced coherence without induced emission effect [8,9].

Using this quantum phenomenon, the image formation for
QIUL works as follows: An undetected photon in path C
(Fig. 1) with transverse wave vector qu and transverse po-
sition ρu interacts with an object placed at the image plane
of the nonlinear crystal at the transverse position ρo = Muρu
where Mu is the total magnification obtained by photons of
the undetected arm. This spatial information is linked to a
photon with transverse position ρd in the detected beam due
to the correlations of the SPDC biphoton states originating
from the common creation event of the photon pair. This
photon is detected at the camera position ρc = Mdρd with Md

denoting the total magnification for light in the detected path
[6]. Therefore, a position on the object ρo is directly related to
a position on the camera ρc.

The optimal visibility of the interference generated in such
a scheme is achieved by accurate alignment of the optical
components for indistinguishability of the beams (and to ful-
fill the imaging conditions), as well as precisely matching
the interferometric arms to the same optical length. Image
resolution is affected by the precision of this alignment as
well.

The mirror M2 is mounted on top of a piezo stage to
allow for the scanning of different interferometric phases,
which allows us to apply the digital phase-shifting holography
(DPSH) technique to extract images with amplitude and phase
information of the object [12]. Amplitude images obtained
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FIG. 1. Near-field configuration setup. A pair of down-converted photons is generated at the ppKTP crystal in either the forward pass of
the pump (path A) through the crystal or in the backward pass (path D). The pump beam is focused at the crystal with Lp. We change the Lp

focal length and its distance to the crystal accordingly to generate different pump waists at the center of the crystal. The undetected beam is
reflected with DM1 towards the object while the detected and the pump beam are transmitted together. The DM2 reflects the detected beam
towards the camera. The interferometer phase is varied by changing the position of the mirror M2 with a piezo translation stage. The lenses L1
and L1u (with equal focal lengths, f1 = 125 mm) image the generated modes in the crystal onto the object plane, and back onto the crystal after
being reflected back by the mirror M2. This configuration allows us to exploit the position correlations of the photon pairs. Lens L1d also has
focal length f1. The lenses L2c ( f2 = 75 mm) and L3c ( f3 = 200 mm) image and magnify the object at the camera. Long pass and interference
filters guarantee that only the 910 nm wavelength is detected. The insets show the different magnification systems present: magnifications of
the undetected (detected) beam inside the interferometer [Mu,i (Md,i)], and the magnification of the detected beam before being detected on the
camera (Md,c).

from DPSH can be directly related to the value of the image
function G(ρc) at each camera pixel. The image function has
been introduced as the difference of the maximum (Imax) and
minimum intensity (Imin) at each position in the camera plane
[30],

G(ρc) = Imax(ρc) − Imin(ρc). (1)

Visibility, given by

V (ρc) = Imax(ρc) − Imin(ρc)

Imax(ρc) + Imin(ρc)
, (2)

at each pixel is also extracted as an image, which we call the
visibility image. The latter can be used to analyze the system
resolution and the strength of the position correlations.

The lenses inside the interferometer (L1, L1d, and L1u) in-
troduce no magnification (Mu,i = Md,i = 1) when the system
of lenses is perfectly positioned. Mu,i (Md,i) is the magni-
fication of the lens system in the interferometer undetected
(detected) beam path. The detected beam passes through
a second magnification system on its way to the camera
(Md,c) consisting of lenses L2c and L3c introducing a mag-
nification of 2.67. Magnifying the image allows us to have
more precision in the measurements due to the pixel size.

The total magnification seen by the detected beam is then
Md = Md,iMd,c. In practice, ensuring this precise magnifica-
tion value (Md = 2.67) is a challenging task and often difficult
to realize. In the following, we elaborate on how we account
for the impact of not ideally positioned lenses by extracting
the relevant magnification value, here Md, for each tested
configuration from a nonlinear fit of the intensity and visibility
profiles generated by a sharp edge on the camera. This newly
introduced routine allows for higher accuracy than our exper-
imental evaluation of the magnification, see Appendix A 2 for
more details.

The actual resolution of the implemented quantum imaging
scheme with undetected photons depends on various quanti-
ties coming either from the quantum nature of the underlying
SPDC process, i.e., the correlation strength of the biphoton
state, or the classical imaging system in terms of image forma-
tion and magnification. To isolate the impact of the underlying
quantum correlations depending on the crystal length L and
pump waist wp, we need to know the precise total magnifi-
cation from the lens system. This is important because the
spreads measured in the camera plane explicitly depend on
Md in a multiplicative fashion as the detected photons creating
the image precisely go through the corresponding lens system.
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Therefore, we can construct magnification-adjusted spreads
�V = �V,c

Md
and �G = �G,c/Md where �V,c and �G,c denote

the spreads measured in the camera plane. The subscripts
V and G refer to whether the spreads where obtained from
visibility or amplitude (image function) images, respectively.
To extract information in the object plane, we multiply the
magnification-adjusted visibility spread by the magnification
of the undetected arm, �o = Mu�V, i.e., the total magni-
fication of the system, relating camera and object planes,
is given by �V,c/�o = Md/Mu. The magnification-adjusted
spreads provide information about the imaging system that
root purely in the quantum nature of the implemented scheme
and factor out any impact induced by the classical part, e.g.,
optical aberrations, imaging system misalignments, or mag-
nifications. This is equivalent to realize a system where the
lens configuration does not imply any magnification at all.
As the main focus of our work will be on the impact of the
quantum correlations on the spatial resolution, we focus on
the magnification-adjusted spreads in the following.

Due to a low manufacturing precision of our target
object for the measurement of the magnification, the exper-
imental results obtained suffered from big error bars (see
Appendix A 2 for more details). To minimize the uncertainty

coming from the magnification measurement, we propose a
different strategy that allows us to construct an estimator for
the magnification present in the system. First, we introduce
a new parameter to quantify the quality of the experimental
results without the need of knowing the system magnification.
As the spreads measured in the camera, obtained either from
image function or visibility, depend only linearly on Md, we
study their ratio

�G,c

�V,c
= �G

�V
, (3)

which is a magnification-independent quantity by construc-
tion. Although this quantity cannot be related to the resolution
of the system, we can use it to estimate the quality of the
correlations and the overall alignment required to generate
induced coherence. The advantage of this ratio is given by
the fact that we are able to compare pure experimentally
obtained data [left-hand side of Eq. (3)] to values that can
be predicted by theory [right-hand side of Eq. (3)]. In case
the experimentally obtained ratio stays close to the theory
prediction, we can use the following functional dependency
as a fit for the experimentally obtained data for the image
function (cf. Sec. IV for a derivation):

GESF(xc) = exp

{
− 4π (λd + λu)

λ2
dL + 2πw2

p (λd + λu)

x2
c

M2
d

}⎡
⎢⎣1 − erf

⎧⎪⎨
⎪⎩

√
2[λdλuL − 2πwp(λd + λu)]√[

λ2
dL + 2πwp(λd + λu)

]
Lwp(λd + λu)

xc − Mux̃o

Md

⎫⎪⎬
⎪⎭

⎤
⎥⎦, (4)

and visibility

VESF(xc) = 1

2

⎡
⎢⎣1 − erf

⎧⎪⎨
⎪⎩

√
2[λdλuL − 2πwp(λd + λu)]√[

λ2
dL + 2πwp(λd + λu)

]
Lwp(λd + λu)

xc − Mux̃o

Md

⎫⎪⎬
⎪⎭

⎤
⎥⎦, (5)

to estimate the magnification of the detected photon beam,
Md. The subscript ESF denotes that we have evaluated the
image function and visibility for a sharp edge model. Here,
xc denotes the horizontal coordinate in the camera plane and
x̃o accounts for a potential displacement of the object from
the optimal position at the center of the undetected light
beam. The impact of the parameter combination Mux̃o on
the resolution in the camera plane can also be analyzed by
this fit routine, i.e., we are using a two parameter fit with fit
parameters Md and Mux̃o.

Strictly speaking, both fits (image function and visibility)
should give the same magnification value. However using
the fits, we implicitly assume that the underlying theoretical
model matches perfectly the experimental realization. Due to
experimental uncertainties, e.g., in the alignment or the deter-
mination of the other parameters of the system, there can be an
ambivalence in the extraction of the magnification parameter
Md. This can potentially result in a deviation of Md extracted
from Eq. (4) from Md obtained from Eq. (5). Nonetheless, as
long as the magnification-independent ratio �G,c/�V,c stays
close to the theory prediction �G/�V, which implies that
the theoretical model fits sufficiently well the experimental
realization, the magnification extracted from both functions

will be (almost) the same. Therefore, we use the average of
these two values as an estimator of Md if this is the case.
Note that this careful comparison is necessary. Using only one
fit as an estimator of Md could lead to wrong magnification
values as a change in Md can be compensated in a change of
other system parameters. Then, one would extract an incorrect
magnification value designed in such a way that the resulting
resolution imitates the theory prediction.

III. EXPERIMENTAL RESULTS

In this section, we present the results on image resolution
when exploiting position correlations in QIUL. To evaluate
the effect of the crystal thickness on the resolution, the mea-
surements were performed with three crystals of the same
characteristics but different lengths L (2, 5, and 10 mm).
Additionally, for each crystal, the resolution of the system
is evaluated for different pump waists wp (50, 142, 214, and
308 µm).

The resolution power of our system is obtained through
the analysis of the edge response of the system to a sharp
edge. The object is a blade of a knife edge placed at the
image plane of the crystal (near-field configuration), right in
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FIG. 2. Spread of an edge analysis. (a) Cut from the visibility
image taken to analyze the spread of an edge blocking the left side
of the beam. (b) The edge profile (blue, error-function shape) is
extracted from the image, and fit with an ESF (orange, error-function
shape, barely distinguishable by eye from the edge profile). From
the ESF, the LSF (green, Gaussian shape) and PSF (red, Gaussian
shape) are calculated. LSF and PSF overlap. Example extracted from
data taken with a 2-mm-long crystal and 214 µm pump waist.

front of the mirror on the signal arm (M2 in Fig. 1) such that
it is imaged parallel to the vertical yc axis in the camera plane
(see Fig. 2). Although we perform the experiment for a purely
transmissive object, we would like to emphasize that one of
the main advantages of the QIUL technique is given by the
fact that a similar treatment can be done for phase objects as
well [12].

The edge response is evaluated from both amplitude and
visibility images at the camera plane. To do this, we first an-
alyze the integrated intensities per pixel row to determine the
yc position with maximum intensity for each amplitude im-
age. By doing this, we determine the optimal position where
the detected beam has the strongest impact which minimizes
errors induced by our theoretical approximations. Then, we fit
the image and visibility functions evaluated for a sharp edge
model, i.e., the corresponding edge spread functions (ESFs),
to the experimentally obtained amplitude and visibility edge
profile for the pixel row with maximum intensity, respectively.
Many classical imaging schemes are linear and stationary or
isoplanatic such that the impulse response function depends
only on coordinate differences between the object and camera
planes. In this case, the derivative of the ESF is equivalent
to the line spread function (LSF) which, in turn, is directly
related to the point spread function (PSF) when considering a
Gaussian profile for the illumination [33] (see Fig. 2).

Exploiting position correlations for QIUL, these relations
are fulfilled for visibility within our approximation as well as
for the image function (amplitude) to a good approximation if
the pump waist is sufficiently large. However, we would like
to emphasize at this point that, for smaller pump waists, the

derivative of the ESF will not coincide with the LSF for the
image function because the system is no longer isoplanatic
which can be directly inferred from the joint probability dis-
tribution of detected and undetected photons, see Sec. IV. We
also observe that, for sufficiently large pump waists (�100 µm
in our configuration) the analysis of amplitude images to
extract the system resolution power gives similar results as
visibility images, but they strongly differ for smaller pump
waists. Only in the particular parameter regime where the con-
ditions w2

p � λ2
uL/(λd + λu) and w2

p � λ2
dL/(λd + λu) are

fulfilled, the image function might be used to determine the
image resolution to a good approximation. We will elaborate
on these points in detail in Sec. IV.

The resolution of an imaging system can be heuristically
defined in various ways. Here, we follow the practical con-
vention that we analyze the spread of the PSF at the point
where its intensity decays to 1/e in order to directly compare
our results with previous works [29,30]. This definition can
in most cases also be transferred to a 1/e-width of the LSF
or an 24/76-knife-edge width of the ESF being defined as
the distance between the points of the measured curve that
are 24% and 76% of the maximum value. While this analogy
holds for visibility images, it is not the case for amplitude
images (also see Sec. IV for a detailed discussion).

From the measured �G,c and �V,c, the magnification-
independent parameter introduced in Eq. (3) is calculated.
We find that the percentage the experimental data deviates
from the theory prediction is similar to the ratio between the
extracted fit parameters Md from Eq. (4) or (5). Therefore, we
can use this ratio indeed as a classifier to determine the quality
of the experimental implementation to match the underlying
theory assumptions used to model the system as described
at the end of Sec. II. Figure 3 compares the experimentally
measured and theoretically predicted ratios. The fact that they
are in good agreement allows us to extract an estimator for
the magnification of the detected interferometer arm for each
of these measurements. Therefore, we have access to the
magnification-adjusted spreads encoding the influence of the
quantum correlations on the resolution.

The results from the evaluation of the magnification-
adjusted spreads �V and �G as detailed in Sec. II are given
in Figs. 4 and 5, respectively. From the careful interpretation
of these results, it is concluded that the physical meaning of
what these two quantities encode is different. Visibility gives
a measure on the indistinguishability of the beams and the
correlation strength between the photons of an SPDC pair.
These two quantities directly correlate to how good a point
in the object is mapped onto the camera plane, i.e., they
determine the image quality (resolution and contrast). This
connection is also seen from the results in Fig. 4, which
show that the resolution of the system improves for short
crystals and stays constant when varying the pump waist as
predicted in the existing literature [30,31], if the pump waist
is sufficiently large. To be more precise, we are able to identify
this regime in the region of parameter space where w2

p �
λ2

uL/(λd + λu) and w2
p � λ2

dL/(λd + λu) hold. However, an
interesting behavior arises for smaller pump waists. While
decreasing the pump waist, the position correlations between
the photon pairs deteriorate (which directly worsens image
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FIG. 3. Magnification-independent quality parameter. Ratio be-
tween the spread of the ESF derivative obtained from amplitude
images (�GESF ) of a sharp edge and the corresponding spread
obtained from visibility images (�V). The solid lines show the the-
oretical predictions for each crystal length [2 mm in yellow (upper)
curve; 5 mm in green (middle) curve; 10 mm in blue (lower) curve]
when varying the pump waist. Experimental data are given in yellow
circles (2 mm), green triangles (5 mm), and blue squares (10 mm).
Since the experimental points fit the theory prediction, we conclude
that the underlying physics is well described by our theory model and
that the experimental uncertainties are kept within acceptable limits.
Because this ratio does not depend on the system magnification, it is
a useful quantity to describe the system performance purely induced
by the underlying quantum-mechanical principles of the imaging
scheme.

resolution as well) until they might be nonexisting, i.e.,
the SPDC biphoton state becomes separable. At that par-
ticular point, the resolution (or the visibility image PSF
spread) diverges since the photons reaching the camera
plane carry no spatial information on the object any-
more. To explain the behavior observed for smaller pump
waists (50 µm), it is necessary to extend the current ex-
isting models. This can be done either by following
the lines of Ref. [31] using numerical techniques or
by extending the existing analytical model as we do in
Sec. IV.

For amplitude images, the interpretation of results pre-
sented in Fig. 5 has to be done more carefully. In Fig. 5, we
depict the spreads obtained from amplitude images depending
on the pump waist. For large pump waists, one obtains similar
results for visibility and amplitude images when analyzing
image resolution. However, for smaller pump waists, when the
position correlations start to worsen (see corresponding points
in Fig. 4), relating the amplitude image spread to resolution
leads to misleading results. As the pump waist size approaches
the value where the state becomes separable, the Gaussian
contribution to the image function [see the exponential term
in Eq. (7)] induces the main xc dependence compared with the
contribution of the error function which approaches a constant
value. At the point where the spatial correlations are lost, the
image function carries no spatial information about the object.
Therefore, the spreads obtained from amplitude images for
small pump waists rather give a measure on the detected beam
size than image resolution.

FIG. 4. Magnification adjusted visibility spreads for images
taken through position correlations existing between SPDC photon
pairs for a sharp edge. Spread extracted from visibility images (reso-
lution) of a sharp edge for three crystals with different lengths when
varying the pump waist. Experimental data are given in yellow cir-
cles (2 mm), green triangles (5 mm), and blue squares (10 mm) and
compared with the theory prediction [2 mm in yellow (lower) solid
curve; 5 mm in green (middle) solid curve; 10 mm in blue (upper)
solid curve]. For comparison, we plot the limiting case of large
pump waists as predicted in the literature [30] with dashed lines.
For regimes where w2

p � λ2
dL/(λd + λu ) our extended theory model

(see Sec. IV) converges towards the simplified one, and resolution is
mainly dependent on the crystal length. However, for smaller pump
waists, the resolution worsens as the spatial correlations stored in
the SPDC state worsen such that the biphoton state even becomes
separable, i.e., the spatial correlations are lost for a specific parameter
configuration (marked with dotted vertical lines for each crystal
length).

IV. THEORY AND DISCUSSION

For the specific parameter constellations realized in the
experiments, we observe that, for large pump waists, the reso-
lution limits stay almost constant with varying pump waist.
These results verify the theoretical predictions done in the
literature so far that were operating in a regime where the
influence of finite pump waists can almost be ignored [30,31].
However, the experimental results also demonstrate that dis-
crepancies can arise if sufficiently small pump waists are
realized for fixed crystal lengths L and wavelengths λd and
λu. Even more interestingly, we observe that spreads obtained
from visibility images or amplitude images have a different
dependency on wp. While both spreads approach the same
limit for large pump waists, the definition of resolution in
terms of the induced spreads via the imaging system be-
comes ambiguous for small pump waists as the image function
spread �G decreases while the visibility spread �V increases.
To address these subtle points, we are filling the gap of deriv-
ing an analytical model in the paraxial regime that takes the
impact of the pump waist on the resolution limits into account.
With that, we have a formalism for image formation with
position correlations at our disposal such that we are able to
analyze the resolution capabilities for a wide range of different
source parameters based on the experimental setup sketched
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FIG. 5. Magnification adjusted spread �GESF from amplitude im-
ages. The solid blue upper line is the theoretical prediction for a
10 mm crystal while the solid green middle curve and the yellow
lower curve show the predictions for a 5 mm crystal and a 2 mm
crystal, respectively. In case the pump waist gets smaller, the infor-
mation on the object gets gradually erased between detected and
undetected beams. At the point where the SPDC state becomes
separable [marked with a yellow dotted line (left vertical line) for
a 2 mm crystal, in green (middle vertical line) for 5 mm, and in
blue (right vertical line) for 10 mm], the amplitude images only
carry information on the detected beam which does not contain any
spatial information about the object. The spread measured is then
related to the detected beam size. For larger pump waists [w2

p �
λ2

uL/(λd + λu )], the derivative of the amplitude ESF can be consid-
ered as a good approximation of the LSF which can be related to the
PSF. Moreover, the image and visibility functions are approaching
the same limiting function in the large pump waist regime. Therefore,
for this regime, the ESF derivative value converges towards the
resolution value given in Fig. 4 determined by the visibility images.

in Fig. 1 as well as to identify the physical interpretation of
�G and �V.

One of the main ingredients for QIUL are the spatial corre-
lations encoded in biphoton wave functions. Such correlated
photon pairs are usually generated via SPDC and are the result
of photons being born at approximately the same position
[34]. In first-order perturbation theory and for collinear phase
matching the photon pair state reads [32]

|ψ〉 = N
∫

dqd

∫
dqu P(qd + qu)

× sinc

(
Lλp

8πλdλu
(λdqd − λuqu)2

)
|qd〉|qu〉, (6)

where N is a normalization constant and qd (qu) denotes the
transverse wave vector of the detected (undetected) photon.
Furthermore, we have the wavelength of the pump photon
λp, the detected photon λd, and the undetected photon λu, the
crystal length L, as well as the profile of a spatially coherent
pump beam focused into the crystal. In our case, the latter

is given by a Gaussian shape P(qd + qu) = exp{−w2
p

4 (qd +
qu)2} with wp being the pump waist.

As we put the object at the image plane of the SPDC
source, we exploit position correlations that are encoded in the
joint probability density P (ρd, ρu). To analyze the properties

of our QIUL setup, we use the image function G(ρc) as well
as the visibility V (ρc), see Eqs. (1) and (2), respectively.
Following Ref. [30], the image function can be computed in
our specific case via

G(ρc) ∼
∫

dρo P
(

ρc

Md
,

ρo

Mu

)
|T (ρo)|. (7)

Analogously, we have for the visibility

V (ρc) ∼
∫

dρo P
( ρc

Md
,

ρo
Mu

)|T (ρo)|∫
dρo P

( ρc
Md

,
ρo
Mu

) . (8)

The impact of an object is encoded in the transmission
coefficient T (ρo). Simple models for an object are given by a
Dirac δ function, T ∼ δ(ρo), modeling a point or a Heaviside
function, T = �(xo), modeling the impact of an edge being
orthogonal to the xo direction in the object plane. We denote
the image function evaluated for the respective objects as GPSF

for a point and GESF for an edge. Similarly, we introduce the
notation VPSF (visibility PSF) and VESF (visibility ESF).

Due to the intricate momentum dependency of the SPDC
state (6), it is a nontrivial task to find a closed-form expression
for the joint probability density P (ρd, ρu) and thus for the
image function or visibility. To obtain a qualitative under-
standing, we approximate the sinc by a Gaussian structure,
sinc(x2) → e−x2

, following the standard strategy usually done
in the literature [30]. For this particular approximation, one
obtains

P (ρd, ρu) = 8

πw2
pL(λd + λu)

× exp

{
−2(λuρd + λdρu)2

w2
p (λd + λu)2 − 4π (ρd − ρu)2

L(λd + λu)

}

(9)

for the joint probability density. So far, the resolution limit
for the undetected photon scheme under investigation was
analyzed in the limit where the first term in the exponential
is merely slowly varying compared with the second term
in the sum. Formally, this is equivalent with a plane-wave
limit where wp → ∞. This is motivated by the fact that
typical parameters realized in an experiment allow us to ne-
glect the contributions from a finite pump waist. Indeed, our
experimental data clearly show that this is a well-justified
approximation over a large parameter range of the pump waist
for fixed λd, λu, L. Nonetheless, we also demonstrated that we
are able to probe regimes where the pump waist influences the
imaging system. Therefore, we extend the existing analyses by
including the impact of finite pump waists.

As a first example to describe the resolving power of the
optical system sketched in Fig. 1 in a qualitative fashion, we
analyze the PSF for the Gaussian approximation of the sinc
function and obtain

GPSF(ρc) = exp

{
−

[
2λ2

u

w2
p (λd + λu)2 + 4π

L(λd + λu)

]
ρ2

c

M2
d

}
,

(10)
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as well as

VPSF(ρc)

= exp

⎧⎨
⎩− 2

[
2πw2

p (λd + λu) − λdλuL
]2

2πw4
p (λd + λu)3L + w2

pλ
2
d(λd + λu)2L2

ρ2
c

M2
d

⎫⎬
⎭

(11)

for the image function PSF and visibility PSF, respectively.
Here, we have used the fact that the PSFs obey a radial
symmetry, thus, depending only on ρc = |ρc|. Furthermore,
we normalized the maximum to one.

Usually, the quality of a QIUL system is quantified by the
spreads of the image function or visibility. As aforementioned,
we are using a 1/e-width for the PSFs, GPSF(�GPSF,c) = 1/e
and VPSF(�V,c) = 1/e. Note, that we have introduced a sub-
script PSF for the spread of the image function to indicate
that this is a spread obtained from a PSF but dropped it for the
visibility spread. The reason for this will become clear once
we discuss the spreads of the ESFs. Eventually, we obtain
the magnification adjusted PSF spreads by dividing the PSF
spreads at the camera by the magnification of the detected
arm, �GPSF = �GPSF,c/Md and �V = �V,c/Md, which read

�GPSF =
√

L(λd + λu)

4π

√√√√ 1

1 + λ2
uL

2πw2
p (λd+λu )

, (12)

�V =
√

L(λd + λu)

4π

2πw2
p (λd + λu)

√
1 + λ2

dL
2πw2

p (λd+λu )

2πw2
p (λd + λu) − λdλuL

.

(13)

The first conclusion that we can draw from Eqs. (12) and
(13) is that the spreads obtained from the image function as
well as from the visibility coincide in the wp → ∞ limit.
In particular, �GPSF coincides with the result in Ref. [30]
in this limit where contributions of the pump waist on the
resolution were neglected. For the image function spread,
this is a good approximation as long as the inequality
λ2

uL/[2πw2
p (λd + λu)] � 1 is fulfilled. Interestingly, the two

spreads either obtained from the image function or from
visibility show different dependencies on wp. For instance,
�V is well approximated by the pump waist independent
limit

√
L(λd + λu)/4π for λ2

dL/[2πw2
p (λd + λu)] � 1 and

λdλuL/[2πw2
p (λd + λu)] � 1. Apart from the limiting case,

there are a couple of important differences stored in both
quantities that become manifest for finite pump waists. In case
the pump waist is decreasing (for fixed other parameters),
the values for �V increase until they reach a singularity at
w2

p,sing = λdλuL/[2π (λd + λu)], cf. Fig. 4. By contrast, �GPSF

is decreasing. Naively, one could conclude that the resolution
improves with smaller pump waists by investigating the im-
age function spread. However, the spread extracted from the
visibility gets broader for smaller pump waists until it hits a
singularity within our approximation. While this seems to be
a contradiction at first sight, it is important to notice that both
quantities store different information of the presented imaging
scheme.

The fact that �V diverges is not surprising if we carefully
study the properties of the SPDC biphoton state enabling

imaging with undetected photons. If the condition wp =
wp,sing is fulfilled, the biphoton state becomes separable within
the Gaussian approximation of the sinc function. Even more
important, all spatial correlations between the detected and
undetected photons are lost. This becomes transparent if one
studies the joint probability distribution given in Eq. (9) which
factorizes P (ρd, ρu) = Pd(ρd )Pu(ρu). As both photons of a
pair are uncorrelated, the spatial information cannot be trans-
mitted from the object to the camera. Therefore, the visibility
becomes constant, cf. Eq. (10) for wp = wp,sing, and �V di-
verges. Thus, �V can be interpreted as a measure of the
correlation strengths of the biphoton state. For large pump
waists, there exist a high degree of spatial correlations. Low-
ering the pump waist, the correlations get worse until they
vanish at the singularity. Technically speaking, the correlation
strengths begin to increase again for wp < wp,sing. However,
we might also approach a regime there were our assumptions,
e.g., the paraxial approximation, break down. Furthermore, it
is important to note that the singularity might be an artifact of
the Gaussian approximation. By taking the actual sinc phase
matching condition into account, we assume that the singular
structure might get softened, depending whether a parameter
combination exists such that the actual SPDC state given in
Eq. (6) gets separable.

The role of the image function spread �GPSF is different.
The image function encodes intensities at each camera pixel
position. Even though the biphoton state might become sep-
arable for a specific parameter constellation, there is always
the detected beam impinging onto the camera. In our cur-
rently analyzed case, it will have a Gaussian shape with a
spread determined by Md

√
Lλd/4π within our approxima-

tions. However, this spread is not a valid measure to quantify
the spatial resolution capabilities of the undetected photon
scheme. The detected photons in this case do not contain any
spatial information of the object at all as the image function
does not properly reflect the correlation strengths in an ade-
quate manner. Therefore for wide-field imaging, we are using
the spreads extracted from visibility information to quantify
resolution limits. The image function spread rather provides
information about the detected beam size. Only in the limit
wp → ∞, image function and visibility store the same in-
formation as in this case the SPDC state becomes perfectly
correlated.

Eventually, the (visibility) spread observed in the detection
plane divided by the total system magnification Md/Mu can
be related to the minimum resolvable distance of an object
via [30]

dmin,obj(NF )
≈ 0.7

√
2π

Mu

Md
�V,c

= 0.7Mu

√
L(λd + λu)

2

×
2πw2

p (λd + λu)

√
1 + λ2

dL
2πw2

p (λd+λu )

2πw2
p (λd + λu) − λdλuL

. (14)

One can deduce from these analytical solutions that the domi-
nating effects for the resolution are given by the crystal length
L and the magnification of the undetected arm Mu for a wide
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range of pump waists. Although, the terminology of a magnifi-
cation is used for the quantity Mu, we would like to emphasize
that it does not play the role of an usual magnification as in
a classical imaging scheme. The system of lenses inducing
Mu rather decreasing (Mu < 1) or increasing (Mu > 1) the
illumination spot of the undetected photon beam but do not
magnify any properties of the object. Therefore, the parameter
Mu influences the actual resolution while the parameter Md in-
deed plays the role of a magnification because it is magnifying
the spatial information in the detected light beam transmitted
via the correlations stored in the joint probability density from
the undetected photons interacting with the object.

In general, the resolution improves with shorter crystal
lengths being consistent with the fact that this implies stronger
position correlations as can be seen in Eq. (9). However,
this improvement of the resolution is limited by a threshold
determined by the longer wavelength of the SPDC generated
photon pairs. This effect is not present in the current model
because we perform momentum integrations over the entire
momentum space of detected and undetected photons. In
practice, the available propagating modes are constraint, thus,
modifying the integration boundaries. As long as L � λd +
λu these effects can be neglected but in case L ≈ λd + λu, the
localization of the PSF for decreasing L saturates, resulting
in a crystal-length-independent spread for thin crystals with
L < λd + λu. This effect was analyzed and corroborated by
detailed numerical studies [31].

While we have theoretically analyzed the resolution prop-
erties based on position correlations for the simple case of a
point as an object, we now extend the analysis to the situation
of a sharp edge to be able to compare with the experimental
results presented in Sec. III. Therefore, we evaluate Eqs. (7)
and (8) for T = �(xo − x̃o) leading to GESF and VESF given
in Eqs. (4) and (5), respectively. On a qualitative level, we
can draw the same conclusions from the ESFs as we did for

the PSFs. For the visibility this extends even to a quantitative
level. This can directly be inferred from the fact that, in our
case, the derivative of the visibility ESF with respect to the
position in the camera plane is mathematically equivalent to
our result of the visibility PSF ∂xcVESF = VPSF. Therefore, we
extract the same spreads according to our resolution criteria
specified in Sec. II. For the image function, the situation is
slightly different because ∂xc GESF 
= GPSF due to the fact that
the joint probability density is not only a function of the
coordinate differences. Due to the nontrivial xc dependency
of GESF there is no closed form expression for the image
function ESF spread �GESF . Nevertheless, we can extract this
information numerically, which is depicted as solid lines in
Fig. 5.

V. CONCLUSION

We have experimentally evaluated the effect of crystal
length and pump waist on image resolution in a quantum
imaging system exploiting position correlations of down-
converted photons. The results obtained confirm the theory
predictions published so far in the regime where nontrivial
effects from the pump waist can be neglected. Nevertheless,
the experimental results clearly demonstrated deviations from
the existing analytical predictions for decreasing pump waists
if the other parameters were kept fixed. We therefore derived
an analytical model to predict the resolution values as well as
the impact of the correlation strength over a larger parameter
range.

Moreover, we analyzed the physical meaning encoded
in visibility and amplitude image information. We found
that visibility is the property containing the resolution in-
formation while amplitude images give rather information
on the detected beam size. For the regime of small pump
waists, spatial resolution worsens as the correlations between

FIG. 6. Near-field configuration setup. Sketch of the setup used for this work with detailed information on the lenses used and distance
between them in order to exploit position correlations between the down-converted photons. Lenses are noted with L, dichroic mirrors with
DM, M1, and M2 are the mirrors of the detected and undetected interferometer arms, respectively. Detected and undetected paths magnification
value inside the interferometer are noted as Md,i and Mu,i, while Md,c refers to the magnification seen by the detected beam between the ppKTP
crystal and the camera. Distances between the lenses are shown with arrows and specified in terms of the focal length of the corresponding
lenses. Before the camera, we have an interference filter (IF) with 1.5 nm bandwidth (BW).
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FIG. 7. In-house made object used for the magnification measurements. The object is laser cut on a thin metal sheet. Therefore its
transmission is either zero or one for the probing light. It represents the Jena skyline, and the tower windows are used as slits for the
magnification measurements. The distance between the center of the windows (slit distance) is measured to be 133 ± 23 µm. Where the
uncertainty of the distance corresponds to the sum of the measuring device uncertainty and the manufacturing precision.

the photons of the biphoton state deteriorate. That results in
the fact that wide-field imaging being not a suitable approach
in case the spatial correlations between the photons are lost.
However, QIUL would still be possible in this regime by using
a scanning approach. In this case, the image resolution would
not depend on quantum properties but rather depend on the bit
depth of the camera, the scanning step size, and the undetected
beam size.

To summarize, an improvement on image resolution can
be mainly achieved by using shorter crystal lengths and by
decreasing the magnification at the undetected path (Mu) as
previously stated [30]. At the same time, it is important to
stress out that Mu does not act as a classical magnification
since it does not influence the detected dimensions on the
camera but just modifies the spot size that probes the ob-
ject. In addition, our results show that resolution gets worse
as soon as the pump waist leaves the regime where w2

p �
λdλuL/(λd + λu) and w2

p � λ2
dL/(λd + λu) are fulfilled.

Our work provides insights into the intricate relations be-
tween all source parameters and properties, providing us with
a tool to optimize image resolution for different imaging
applications.
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APPENDIX

1. Imaging configuration

Figure 6 gives detailed information on the imaging config-
uration used during the measurements presented.

2. Magnification measurement

An in-house made object (Fig. 7) was used to perform the
magnification measurements by calculating the ratio between
the object and its image dimensions. Due to the field of view
(FOV) at the object plane, only the “windows of the tower”
acting as parallel slits with a fixed distance are considered
as our object. The object dimensions were measured with a
Zygo- New View 7300 optical profiler. The roughness of the
frame between the windows is the main error source of the

FIG. 8. Object manufacturing precision measurement. The image of a window edge was analyzed by plotting the averaged intensity edge
profile along the x axis of the area marked in green. That profile is then fit with an error function and its spread evaluated at 1/e is taken as the
manufacturing precision of one window edge. Notice that this value must be doubled to account for the two edges.
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FIG. 9. Object-image dimensions analysis. Image of the tower windows taken with our setup but illuminating the object with the detected
wavelength to obtain a classical image. The windows are treated as slits and their intensity profile are fit by Gaussian functions. The distance
between two slits (windows) is then taken as the distance between the maxima of the Gaussian fits. This example is taken with a 5-mm-long
crystal and a pump waist of 214 µm.

object dimension measurements, and therefore, it was also
measured. The manufacturing precision of the object was
analyzed from a picture taken under a 20× magnification
objective with an Olympus DP71 sensor which is coupled
to an Olympus BX51TRF microscope with a U-TV0.63XC
adapter. The unsharpness of one edge of the window frame
is obtained by fitting an error function to its intensity profile
(Fig. 8). From these measurements, we obtain that the distance
between two window centers is 133 µm ± 23 µm.

To measure the distance between two windows on the im-
age obtained with the QIUL system, the windows of the tower
are treated as slits. For these measurements, the wavelength

that illuminates the object is the same as the detected, and
the possibility to create light from the second pass of the
pump through the crystal is avoided by blocking that path.
The intensity profile from each slit (window) was fit with a
Gaussian function, and the distance between slits (windows)
is then the distance between the Gaussian peaks given in pixel
units (Fig. 9). This distance is then converted to µm from the
camera sCMOS camera pixel size of 6.5 µm. By taking this
measurement right after the resolution measurements for each
crystal length and pump waist combination, and comparing it
to the object real dimensions, we calculated the experimental
magnification values for each configuration.
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