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Near-optimal quantum circuit construction via Cartan decomposition

Maximilian Balthasar Mansky,* Santiago Londoño Castillo , Victor Ramos Puigvert, and Claudia Linnhoff-Popien
Department of Informatics, LMU Munich, 80538 Munich, Germany

(Received 10 January 2023; revised 30 May 2023; accepted 2 August 2023; published 15 November 2023)

We show the applicability of the Cartan decomposition of Lie algebras to quantum circuits. This approach
can be used to synthesize circuits that can efficiently implement any desired unitary operation. Our method
finds explicit quantum circuit representations of the algebraic generators of the relevant Lie algebras allowing
the direct implementation of a Cartan decomposition on a quantum computer. The construction is recursive and
allows us to expand any circuit down to generators and rotation matrices on individual qubits, where through
our recursive algorithm we find that the generators themselves can be expressed with controlled-NOT (CNOT)
and SWAP gates explicitly. Our approach is independent of the standard CNOT implementation and can be easily
adapted to other cross-qubit circuit elements. In addition to its versatility, we also achieve near-optimal counts
when working with CNOT gates, achieving an asymptotic CNOT cost of 21

16 4n for n qubits.
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I. INTRODUCTION

Quantum computing relies on a quantum circuit to translate
an algorithm to work on a quantum computer. The circuit
expresses the physical actions that are necessary to create a
particular quantum-mechanical state and whose measurement
provides the output of the calculation. Every circuit is equiv-
alent to a unitary transformation in SU(2n), where n refers to
the number of qubits. The mapping is injective, in the sense
that two different circuits can perform the same calculation
and correspond to the same transformation U [1]. Conse-
quently, circuits of different lengths can perform the same
circuit. In most cases, the shorter circuit is preferable, since
it reduces the execution time, imprecision due to hardware
limitations, or, on noisy systems, reductions of noise due to
fewer actual operations. Various methods can be employed
to optimize circuits [2–4]; however, before optimization, the
circuit must first be constructed.

There are several ways to construct quantum circuits. One
can construct an algorithm along a schema—the well-known
algorithms of Shor [5] and Grover [6] work in this way and
can be scaled to the required system size by following the
schema. Finding new schematic algorithms and showing their
speed-up compared with classical methods is its own field
of research. So far, the number of discovered algorithms is
limited [7,8].

An alternative is to use a parametrized circuit and modify
the parameters until the circuit fits the desired output. The
approach is called quantum machine learning [9–11]. Similar
to classical machine learning, some quantum circuit ansatz
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is chosen, often with distinct layers of repeated subcircuits,
which is then trained with some classical feedback loop to
approximate a desired solution.

In our work, we provide a solution to a third approach,
decomposing a known unitary matrix into its corresponding
quantum circuit. We can build circuits for any arbitrary target,
not just the ones for which we have schemas, and also with
known performance, as we know the number of required CNOT

gates. Our approach provides a direct method for translating a
unitary operation U to an explicit quantum circuit.

The developed algorithm generalizes the unstructured cir-
cuit decomposition of a three-qubit unitary, done in [12], to
an n-qubit unitary by using a recursive method. The mathe-
matics upon which this recursive algorithm is constructed is
based on the work of Khaneja and Glaser [13]. Underlying
our construction is the Cartan decomposition of a unitary
U ∈ SU(2n) into four terms K1 exp(z1)K2 exp(y)K3 exp(z2)K4,
where all Ki are part of the next-lower dimension group Ki ∈
SU(2n−1) ⊗ U(1), and zi and y are algebra elements belonging
to certain Cartan subalgebras. We show that this argument is
recursive and allows us to decompose any unitary into compo-
nents that can be easily represented in a quantum circuit. This
is described in Sec. III A.

The orthogonal elements exp(zi) and exp(y) in the Cartan
decomposition are created through the generators of the Lie
subalgebras and will ultimately contain the only cross-qubit
elements in the circuit. To express them in terms of circuit
elements, we make use of a block-diagonal decomposition to
the elements of the algebra. This form is easily expressible in
terms of CNOTs and elementary rotations, described in detail
in Sec. IV.

We also assess the performance of our algorithm as ex-
pressed by the number of CNOTs that an arbitrary circuit
requires in the worst case. The number of gates can be de-
termined analytically; see Sec. VI. There we also compare
our CNOT count to other methods decomposing a unitary
[3,14–17], and we also provide an outlook of future work in
Sec. VII.
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II. RELATED WORK

We provide a general overview of some of the most
relevant algorithms for the synthesis of general multiqubit
gates: cosine-sine decomposition [16], optimized quantum
Shannon decomposition (QSD) [17], and Khaneja-Glaser de-
composition [13]. The theory behind the Khaneja-Glaser
decomposition is discussed in more detail, as our work relies
on the mathematical structure and extends their work to an
arbitrary number of qubits.

A. Cosine-sine decomposition

One way to realize a general SU(2n) matrix on a quantum
computer is via matrix factorization, where the initial matrix is
separated into a product of matrices which can be more easily
implemented as a quantum circuit. Such a factorization can be
recursively achieved by using the cosine-sine decomposition
(CSD) [18]. In general, the CSD of a SU(2n) matrix U can be
written as follows:

U = U 1
1 A1

1Ũ
1
2 =

(
u1

11 0

0 u1
12

)(
c1

11 s1
11

−s1
11 c1

11

)(
ũ1

21 0

0 ũ1
22

)
.

(1)

This decomposition can be applied recursively to the subma-
trices U i

j until a 2 × 2 block-diagonal form is obtained.
In [18], it is shown that the matrices resulting from the

above decomposition can be attained as a product of uni-
formly controlled rotations. After canceling some of the
occurring CNOT gates using reflection symmetries of the
circuit, and using a method for implementing uniformly con-
trolled gates described in the paper, the authors show that a
general CSD of a SU(2n) matrix, as shown in Eq. (1), can
be implemented using 4n − 2n+1 CNOT gates and 4n one-qubit
gates.

B. Optimized quantum Shannon decomposition

Another way to decompose a generic unitary matrix is
by generalizing the concepts of Boolean algebra and logic
conditionals to quantum circuits. By interpreting the qubits
as the predicates and requiring the action of clauses to be
unitary, operations in a quantum circuit can then be inter-
preted as quantum conditionals. In [17], the authors introduce
quantum multiplexors as quantum circuit blocks implement-
ing quantum conditionals, e.g., the CNOT gate is the simplest
two-qubit multiplexor. To perform the decomposition of a
unitary matrix, the authors provide a generalization to quan-
tum circuits of the classical Shannon decomposition theorem,
which allows any Boolean function F to be factorized as F =
xFx + x̄Fx̄, where x is a variable and x̄ is its complement. The
proposed quantum Shannon decomposition (QSD) theorem
states that an arbitrary n-qubit operator can be implemented
by a circuit containing three multiplexed rotations and four
generic (n − 1)-qubit operators. This provides a method to re-
cursively decompose a generic SU(2n) operator. Applying this
theorem to the previously discussed CSD, see Sec. II A, and
by providing a method to implement multiplexed-Ry rotations
using Controlled-Z gates, the authors showed that the number
of CNOT gates required to decompose an SU(2n) matrix can be

TABLE I. Comparison of different methods for the number
of CNOT gates necessary for synthesizing an n-qubit unitary. The
Khaneja-Glaser decomposition of a unitary is a factor of 5 from the
lower theoretical bound.

Algorithm CNOT gate count

Original decomp. [14] O(n34n)
Asymptotic decomp. [3] O(n4n)
Gray codes [15] O(4n)
Cosine-Sine decomp. [16] 4n − 2n+1

Optimized QSD [17] 23
48 4n − 3

2 2n + 4
3

KG Cartan decomposition 21
16 4n − 3(n2n−2 + 2n)

Theoretical lower bound [24] � 1
4 (4n − 3n − 1)�

reduced to 23
48 4n − 3

2 2n + 4
3 , a significant improvement from

the previously discussed CSD.
Both approaches use post-circuit creation optimization to

improve their count of operations. We compare the achieved
CNOT counts with our own in Table I.

III. CARTAN DECOMPOSITION

The Cartan decomposition method is a powerful tool in the
realm of Lie group decomposition. It allows us to break down
a given Lie group into smaller, simpler subgroups, which
can be much easier to work with. This method has found
numerous applications in a variety of fields, including physics,
engineering, and computer science. Building upon the work
of Khaneja and Glaser, we have extended their method, which
uses the Cartan decomposition of a Lie group, to be applicable
to an arbitrary system size.

A. Khaneja-Glaser decomposition

The underlying mathematics here relies on the work of
Cartan [19,20] in French and is by now part of the stan-
dard knowledge of physics and mathematics. For an English
language introduction to Lie groups and algebras, see, e.g.,
[21]. Throughout this paper, let G be a compact semisimple
Lie group with identity e, and let g denote its Lie algebra.
Moreover, let K denote a compact closed subgroup of G. Note
that, given that g is a semisimple algebra there exists, due to
Cartan’s criterion, a nondegenerate Killing form inducing a
bi-invariant metric 〈·, ·〉G on G, which allows the sum decom-
position of g into subalgebras.

Throughout this paper, capital letters identify groups. Cap-
ital letters with subscripts identify elements of the group.
The algebras are denoted by lowercase fraktur letters, and
elements thereof by lowercase letters. Pauli matrices are refer-
enced by their standard σi. We also make use of the following
notation for generalized Pauli matrices:

xk ≡ 1 ⊗ · · · ⊗ 1 ⊗ σx ⊗ 1 ⊗ · · · ⊗ 1,

where the Pauli matrix σx acts on the kth qubit. Matrices for
the rotations around σy and σz are constructed similarly and
denoted yk and zk , respectively.

Definition III.1 (Cartan decomposition of g). Let g and l be
the two real semisimple Lie algebras of G and K , respectively.
Then, (g, l) is called an orthogonal symmetric Lie algebra pair
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if the decomposition g = m ⊕ l, where m = l⊥, satisfies the
following commutation relations:

(i) [l, l] ⊂ l.
(ii) [m, l] = m.
(iii) [m,m] ⊂ l.
The direct sum decomposition g = m ⊕ l is then called a

Cartan decomposition of the Lie algebra g.
Definition III.2 (Cartan subalgebra). Let (g, l) be an or-

thogonal symmetric Lie algebra pair of the groups G and K .
A maximal subalgebra h of m is called a Cartan subalgebra
of (g, l).

In [13] it is shown that the Lie algebra su(2n) defined by

su(2n) = span{a ⊗ σx, b ⊗ σy, c ⊗ σz, d ⊗ 1,

ixn, iyn, izn|a, b, c, d ∈ su(2n−1)}
has a Cartan decomposition su(2n) = sum(2n) ⊕ sul(2n),
where

sum(2n) = span{a ⊗ σx, b ⊗ σy, ixn, iyn|a, b ∈ su(2n−1)}
sul(2

n) = span{c ⊗ σz, d ⊗ 1, izn|c, d ∈ su(2n−1)}.
Theorem III.1 (Cartan decomposition of G). Let g be a

semisimple Lie algebra of the group G and let g = m ⊕ l be its
Cartan decomposition. Moreover, let h be a Cartan subalgebra
of (g, l) and let K be a compact closed subgroup of G. Then,

G = K exp(h)K, (2)

where exp (h) ⊂ G. This decomposition is then called the
Cartan decomposition of the Lie group G.

The decomposition of the Lie group G into two groups
K linked by a determinable element of the algebra is the heart
of our algorithm. In terms of the actual elements of the group,
we obtain a structure as below.

Corollary III.1. Let U ∈ SU(2n) be an n-qubit unitary op-
erator. Then it has a decomposition

U = K1 exp(y)K2 (3)

where Ki ∈ exp (sul(2n)) and for some y ∈ h, where h is a
Cartan subalgebra of (su(2n), sul(2n)).

In [13] it is proven that Ki ∈ exp (sul(2n)) ∼= SU(2n−1) ⊗
SU(2n−1) ⊗ U(1) so that the unitaries Ki have again a Cartan
decomposition. This provides a recursive algorithm for deter-
mining a unitary U ∈ SU(2n) by successive decompositions.

Theorem III.2. The direct sum decomposition

sul(2
n) = sul0(2n) ⊕ sul1(2n), (4)

where

sul0(2n) = span{c ⊗ σz|c ∈ su(2n−1)},
sul1(2n) = span{d ⊗ 1, izn|d ∈ su(2n−1)}

is a Cartan decomposition of the Lie algebra sul(2n).
The proof of this theorem can also be found in [13].
Corollary III.2. Let V ∈ exp (sul (2n)) be an n-qubit opera-

tor. Then it has a unique decomposition

V = K1 exp(z)K2, (5)

where Ki ∈ SU(2n−1) ⊗ U(1) and for some z ∈ f, where f is a
Cartan subalgebra of (sul(2n), sul0(2n)).

Corollary III.3. Let U ∈ SU(2n) be an n-qubit unitary op-
erator. Then it has a decomposition

U = K1 exp(z1)K2 exp(y)K3 exp(z2)K4, (6)

where Ki ≡ Ai ⊗ Bi ∈ SU(2n−1) ⊗ U(1), y ∈ h, and zi ∈ f,
where h is a Cartan subalgebra of (su(2n), sul (2n)) and f is
a Cartan subalgebra of (sul (2n), sul0(2n)).

To define a Cartan subalgebra in the product operator ba-
sis for the pairs (su(2n), sul (2n)) and (sul (2n), sul0(2n)), we
proceed analogously as in [13]. The elements of the Cartan

z1 ∈ f y ∈ h z2 ∈ f

U
A1

B1

A2

B2

A3

B3

A4

B4

N1 M N2

...
...

...
...

FIG. 1. Graphical representation of our work. We establish a structure from an arbitrary unitary U into circuit elements of lower dimension
[Ki = Ai ⊗ Bi, Ai ∈ SU(2n−1), Bi ∈ U(1)] and n-qubit elements that generate from the algebras f and h. The algorithm is recursive for all Ai

and detailed in Sec. III A. Between the recursive elements are the (n − k)-qubit elements, where k refers to the number of recursions. The
elements can be expressed explicitly as CNOT and SWAP elements through the block-diagonal decomposition explained in Sec. IV.
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P∓(a, b) =⇒

Ry(2a) Ry(∓2b)

FIG. 2. Quantum circuit decomposing the unitary block-form
P∓(a, b) up to phase. The block-diagonal matrices P∓(a, b) can al-
ways be decomposed up to a global phase by a dimensionally adapted
quantum circuit, where the one-qubit gates and the target qubits have
to be adjusted accordingly.

subalgebra can be generated recursively by the following
equations:

a(2) = i{x1x2, y1y2, z1z2}, b(2) = ∅,

s(k) =
k⋃

i=2

a(i) ⊗ 1k−i,

a(n) = {α ⊗ σx, ixn|α ∈ s(n − 1)},
b(n) = {α ⊗ σz|α ∈ s(n − 1)},
h(n) = span{ a(n)},
f(n) = span{ b(n)}.

(7)

This decomposition structure allows us to express any n-qubit
unitary in terms of (n − 1)-qubit unitaries and elements of
orthogonal algebras. The circuit structure is visualized in
Fig. 1. Recursively it follows that each of the Ai shown in
the figure can itself be decomposed in the same way. This
decomposition method of an n-qubit unitary works all the
way down to SU(4), the space of two-qubit operations, which
can be further decomposed by K1 exp(y)K2, where Ki ∈ SU(2)
and y ∈ h(2) since f(2) = ∅.

It is important to note that x1x2 and so on are elements
of the algebra, not elements of the group such as X1 ⊗ X2.
The corresponding group element exp(x1x2) is not the direct
product of two X rotations but rather a two-qubit operation.
Moreover, note that, for α ∈ s(n − 1), α ⊗ σx and ασnx repre-
sent the same element, where σxn ≡ xn.

IV. BLOCK-DIAGONAL DECOMPOSITION

By employing a recursive method, the developed al-
gorithm extends the unstructured circuit decomposition
of a three-qubit unitary, as demonstrated in [12], to an
n-qubit unitary. This algorithm determines a decomposition
for the generators y ∈ h(n) and z ∈ f(n) of the relevant Lie
subalgebras (su(2n), sul (2n)) and (sul (2n), sul0(2n)) using a
block-diagonal matrix.

It is important to note that within these Lie subalgebras,
there are always two generators constructed through the re-
cursive equations in (7) that are proportional to each other,

{x1x2, y1y2} {z1z2, }

σx σx

{x1x2x3, y1y2x3} {z1z2x3, x3}

σx σx

{x1x2x3x4, y1y2x3x4} {z1z2x3x4, x3x4}

σx

{x1x2x4, y1y2x4}

σx

{z1z2x4, x4}

FIG. 3. Recursive algorithm showing the decomposition of the exponential operator M = ey, y ∈ h(4), where h(4) is a Cartan subalgebra
of (su(16), sul(16)). Each of the exponential operators Mi(ai, bi ) is decomposed through a circuit including a block-diagonal matrix P∓(ai, bi ),
displayed as a block in the center of each diagram, which can always be synthesized by two CNOT gates and two one-qubit gates; see Fig. 2.
For each ⊗σx , two CNOT gates are added, where the control qubit is always the nth dimension and the target qubit is given by the ith dimension
of the subalgebra h(i) from which it gets generated. The control qubits of the rest of the CNOT gates enlarge up to the respective nth dimension,
with the exception of the outermost CNOT gates, which remain unaltered since they serve as a final permutation.
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{x1x2, y1y2} {z1z2, }

FIG. 4. Quantum circuits generating the exponentials of the gen-
erators of the Lie subalgebra h(2) by using a block-diagonal form.
Each of the central blocks contains an instance of the dimensionally
adapted circuit shown in Fig. 2.

since x1x2 is proportional to y1y2, and z1z2 is proportional to
the identity. Consequently, in order to decompose the Cartan
subalgebras M = ey and N = ez, where y ∈ h(n) and z ∈ f(n)
represent, respectively, the generators of the Cartan subalge-
bras (su(2n), sul (2n)) and (sul (2n), sul0(2n)), we group the
proportional generators together and separate the exponential
terms into 2n−2 different components Mi(ai, bi ) and Ni(ai, bi ):

M = ey ≡M1(a1, b1) · · · M2n−2 (a2n−2 , b2n−2 ), (8)

N = ez ≡ N1(a1)N2(a2, b2) · · · N2n−2 (a2n−2 , b2n−2 ). (9)

An efficient way of mapping the generators to circuit elements
is by means of a particular block-diagonal form:

P∓(ai, bi ) = diag(p∓, . . . , p∓, p±, . . . , p±) (10)

with entries

p− =
(

cos(ai − bi ) i sin(ai − bi )
i sin(ai − bi ) cos(ai − bi )

)
,

p+ =
(

cos(ai + bi ) i sin(ai + bi )
i sin(ai + bi ) cos(ai + bi )

)
.

(11)

The block-diagonal structure can be implemented on a quan-
tum circuit in a straightforward way, visualized in Fig. 2. The
two parameters are implemented as rotation gates on the nth
wire and controlled via CNOTs from the first. The method we
employ to decompose the exponential terms Mi(ai, bi ) and
Ni(ai, bi ) is through a block-diagonal matrix P∓(a, b). The
method we found, based on the recursive algorithm (7), starts
by grouping the generator a(2) into its proportional terms

a(2) = i{x1x2, y1y2}
⋃

i{z1z2,1}. (12)

This recursive structure is illustrated in Fig. 3. The circuits
corresponding to these algebra elements are shown in Fig. 4,
which decomposes the block-diagonal matrix P∓. Expansion
to larger elements and therefore higher-dimensional structures
can be done recursively through adding more terms in the
algebra. The central P∓ element expands correspondingly.

We can differentiate expansion into higher dimensions
along σx and σz. We find that there is a direct correspondence
between enlarging the algebra and the circuit construction.
Adding a σx to the algebra corresponds to adding a CNOT

gate from the nth to the (n − 1)th quantum gate. For σz,
the corresponding gate is a fermionic SWAP gate, see Fig. 5,
between the same wires. This gives a circuit construction as
shown in Fig. 6 for SU(16). Higher dimensions work in a
similar fashion and exhibit a branching structure depending on
which algebra dimensions are added. This is shown in more
detail in Figs. 3 and 7. The structure is also relevant for the

FIG. 5. Quantum circuit decomposing a fermionic SWAP gate.
A fermionic SWAP can be decomposed at worst through four CNOT

gates.

CNOT count, where each fermionic SWAP will count in the end
as one CNOT gate; see Fig. 5. In addition to these structures,
on every dimension n � 3, there is one generator z1z2zn of
the Cartan subalgebra f(n) which is more efficient to treat
separately. We found that such an exponential term depending
on one parameter can always be decomposed, regardless of
the dimension, with a single rotation gate surrounded by four
dimensionally adapted CNOT gates; see Fig. 8.

These constructions are sufficient to implement all possi-
ble algebra generators since they cover the whole subalgebra
given in Definition III.2. Hence all possible unitaries U ∈
SU(2n) can be covered by the construction.

V. EXAMPLE

We now apply the decomposition method described above
to an operator U ∈ SU(8). Using the Cartan decomposition
(6), the following decomposition is obtained:

U = K1 exp(z1)K2 exp(y)K3 exp(z3)K4,

where Ki ∈ SU(4) ⊗ U(1), and z ∈ h(3) and y ∈ f(3), where
h(3) is a Cartan subalgebra of (su(8), sul(8)) and f(3) is a
Cartan subalgebra of (sul(8), sul0(8)). The elements of the
Lie subalgebra are generated by (7) and thus given by

h(3) = span i{x1x2x3, y1y2x3}
⋃

i{z1z2x3, x3},

{x1x2x3x4, y1y2x3x4}{x1x2x3, y1y2x3}

σx

{x1x2x3z4, y1y2x3z4}

∼∼

{x1x2x3, y1y2x3}

σz

FIG. 6. Quantum circuits decomposing the exponential
terms M1(a1, b1) = ei(a1x1x2x3x4+b1y1y2x3x4 ) (top) and N2(a2, b2) =
ei(a2x1x2x3z4+b2y1y2x3z4 ) (bottom). The action of ⊗σx introduces two
additional CNOT gates, and the action of ⊗σz adds two additional
SWAP gates, whose target qubits are given by the subalgebra h(3).
The rest of the control qubits in h(4) enlarge up to the fourth
dimension with the exception of the outermost CNOT gates, which
serve only as a final diagonal permutation.
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{x1x2, y1y2}

σx

{x1x2x3, y1y2x3}

σx

{x1x2x3x4, y1y2x3x4}

σx

{x1x2x4, y1y2x4}

σzσzσzσz

{x1x2x3x4z5, y1y2x3x4z5}

∼ ∼

{x1x2x4z5, y1y2x4z5}

∼ ∼

{x1x2x3z5, y1y2x3z5}

∼ ∼

{x1x2z5, y1y2z5}

∼ ∼

FIG. 7. Recursive algorithm displaying how a part of the Cartan subalgebra f(5) gets generated. For each ⊗σx , two CNOT gates are added,
while for each ⊗σz two SWAP gates are added. The control qubit of the additional gates is always the nth dimension, while the target qubit is
given by the ith dimension of the subalgebra h(i) from which it is generated, with the exception of the outermost always unaltered CNOT gates,
which serve only as a final diagonal permutation. Moreover, for each ⊗σx the control qubit of the rest of the CNOT gates enlarges up to the
respective nth dimension.

f(3) = span i{x1x2z3, y1y2z3}
⋃

i{z1z2z3},
where we have already grouped the proportional terms.

By means of the recursive algorithm introduced previously,
we decompose the exponential terms of the generators of

Rz(−2a)

FIG. 8. Quantum circuit decomposing the exponential term
N (a) = eiaz1z2z5 ≡ diag(z1z2z5) ∈ SU(32). This quantum circuit ap-
pears for all n � 3 dimensions, where the target qubits and the
one-qubit gate have to be adjusted according to the dimension of the
quantum circuit.

this subalgebra through a quantum circuit including a block-
diagonal form P∓(a, b). For instance, the unitary M1(a1, b1)
defined by

M1(a1, b1) = ei(a1x1x2x3+b1y1y2x3 ), (13)

which denotes the exponential of the generators
{x1x2x3, y1y2x3}, is decomposed through the quantum circuit
shown in Fig. 9 below, where the white box denotes the
block-diagonal operator P∓(a1, b1).

The rest of the generators can be decomposed by following
the same algorithm introduced in the previous section; see
Figs. 9 and 10. The exponential term involving the generator
{z1z2z3} can always be generated by an analogous quantum
circuit such as the one shown in Fig. 8 involving four CNOT

gates and one one-qubit gate. The entire construction can be
seen in Fig. 1.
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{x1x2, y1y2} {z1z2, }

σx σx

{x1x2x3, y1y2x3} {z1z2x3, x3}

FIG. 9. Recursive algorithm showing how to decompose
the unitaries M1(a1, b1) = ei(a1x1x2x3+b1y1y2x3 ) and M2(a2, b2) =
ei(a2z1z2x3+b2x3 ) generated from the respective subalgebra elements
{x1x2, y1y2} and {z1z2,1} of a(2) by tensoring with σx . For every
tensor product with a σx matrix, there is an additional CNOT gate on
each side whose target qubit is given by h(2), with the exception
of the outer CNOT gates since they serve only as a final diagonal
permutation.

By just counting, we can see that there are six CNOT

gates and two block-diagonal P∓ matrices decomposing
the exponential terms M1(a1, b1) = ei(a1x1x2x3+b1y1y2x3 ) and
M2(a2, b2) = ei(a2z1z2x3+b2x3 ). To decompose the exponential
terms N1(c1, d1) = ei(c1x1x2z3+d1y1y2z3 ) and N2(c2) = eic2z1z2z3

there are six CNOT gates, two fermionic SWAP gates, and one
block-diagonal P∓ matrix. Therefore, to decompose a unitary
U in SU(8) we need a total of 54 CNOT gates, where we have
assumed that every two-qubit circuit can be decomposed at
most by three CNOT gates and every fermionic SWAP gate by
at most three CNOT gates. It is possible to get rid of the SWAP

gates by interchanging the roles of the second and the third
qubit and thus reduce the number of CNOT gates to 42.

Although this is slightly worse than the previous unstruc-
tured Cartan decomposition method [12] of a three-qubit
unitary, which required a total of 40 CNOT gates, it is possible

{x1x2, x1x2} {z1z2, }

σz σz

{x1x2z3, y1y2z3}

∼ ∼

{z1z2z3}

FIG. 10. Recursive algorithm showing how the exponential ele-
ments coming from the terms in the subalgebra h(2) by tensoring
with σz are generated by adding a fermionic SWAP gate on each
side. However, the exponential term which comes from {z1z2z3} and
depends only on one parameter has to be treated separately; see
Fig. 8.

to further improve the cost to 38 CNOT gates by absorbing
some of the CNOT gates by the neighboring Ai ∈ SU(4) uni-
taries, which can be seen represented in Fig. 1.

VI. NUMBER OF CNOT GATES

To determine the amount of CNOT gates required, let Cn

denote the number of CNOT gates coming directly from the
diagram decomposition for SU(2n), where Ch(n) specifies the
number of CNOT gates required to synthesize the exponen-
tial operator M = ey, and Cf(n) specifies the number of CNOT

gates required to synthesize the exponential operator Ni = ezi .
From Corollary III.3 follows then Cn = Ch(n) + 2Cf(n). Since
the amount of CNOT gates in the recursive algorithm of the
Cartan subalgebra h(n) follows the same structure as Pascal’s
triangle, Ch(n) is given by the following equation:

Ch(n) =
n−2∑
k=0

(
n − 2

k

)
2(k + 1)CNOT + 2n−2P∓, (14)

where P∓ denotes the block-diagonal matrices, which always
consist of two CNOT gates and two one-qubit gates; see Fig. 2.
To count the number of CNOT gates for Cf(n), note that the
FSWAP gate consists of a SWAP gate followed by two Hadamard
gates and one CNOT. Note that all occurring FSWAPs are adja-
cent to the block-diagonal matrix P∓ and therefore we can get
rid of the internal SWAPs by manually adjusting the one-qubit
and the dimension of the target qubits of the block-diagonal
matrix. Thus, in terms of CNOTs, adding a pair of FSWAPs
effectively introduces two CNOTs. Moreover, the number of
CNOT gates in the recursive algorithm of f(n) also follows the
structure of Pascal’s triangle,

Cf(n) =
n−2∑
k=1

(
n − 2

k

)
2(k + 1)CNOT

+ (2n−2 − 1)P∓ + diag(z1z2zn), (15)

where diag(z1z2zn) denotes the generator z1z2zn that is not
proportional to any other generator and which always consists,
regardless of the dimension, of four CNOT gates and one-qubit
gate; see Fig. 8.

Hence, the number of CNOT gates Cn required to synthesize
the exponential operators is

Cn = 6
n−2∑
k=0

(
n − 2

k

)
(k + 1)CNOT

+ 3

(
2n−2 − 2

3

)
P∓ + 2 diag(z1z2zn) − 4

= 6
n−2∑
k=0

(
n − 2

k

)
(k + 1) + 3

2
2n, (16)

where we used the fact that every block-diagonal matrix P∓
can be decomposed by two CNOT gates; see Fig. 2. This
binomial sum can be determined by means of the following
identities:

n∑
k=0

(
n

k

)
= 2n,

n∑
k=0

k

(
n

k

)
= n2n−1. (17)
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Therefore, Cn is given by

Cn = 3 × (2n−1 + n2n−2). (18)

To determine the entire number of CNOT gates for a uni-
tary U ∈ SU(2n), we also need to take into consideration the
CNOT gates that recursively come from lower dimensions; see
Eq. (6) and its corresponding Fig. 1. To that end, let Tn denote
the total number of CNOT gates for a unitary U ∈ SU(2n). By
Corollary III.3, which follows from the decomposition of a
unitary, we have that the total number of CNOT gates for a
unitary U in SU(2n) is given by

Tn = Cn + 4Cn−1 + 42Cn−2 + · · · =
n∑

i=2

4n−iCi

= 4n−2C2 + 3 × 2n−3[3 × 2n − 2n − 8], (19)

which was determined by using Eq. (18) and where we have
explicitly separated C2 since our n = 2 base case does not
work recursively. In [22–24] it was proven that a two-qubit
quantum circuit could usually be synthesized with at most
three CNOT gates. Therefore, the total number of CNOT gates
required to decompose a unitary U in SU(2n) by means of the
Khaneja-Glaser decomposition algorithm is

Tn = 3

16
4n + 9

8
4n − 3(n2n−2 + 2n) = 21

16
4n − O(n2n),

(20)

which is roughly a factor of 5 away from the best-known
theoretical lower bound for synthesizing an n-qubit unitary
[24]. As our method is recursive and creates unitaries of any
(n − k) qubit size, more optimal unitary decompositions for
a particular number of qubits can be taken into account and
inserted at that size.

VII. DISCUSSION

We have implemented the algorithm in rudimentary form
and provide it in the supplemental material [25]. The
algorithm can certainly be optimized further. We leave this
as implementation work for colleagues more familiar with
suitable programming environments.

The presented decomposition algorithm provides a solid
basis for decomposing any arbitrary unitary in SU(2n). For
the construction, we assume an ideal quantum computer with
any-to-any connections and no noise. This assumption is com-
mon to circuit construction algorithms and can be remedied by
post-creation optimization of the circuit. The first assumption
can be approached either by exchanging CNOTs on nonexisting
connections with CNOT ladder chains that implement an equiv-
alent operation. In the worst case of a linear chain, a CNOT

connecting qubits k apart, 4(k − 1) nearest-neighbor CNOTs
are required [17]. It may be possible to optimize this through
our approach, since there is a direct correspondence between

the subalgebra generators and the CNOT gates between qubits.
Restricting the subalgebra to exclude certain connections may
provide a more optimal solution. We suggest this approach for
future work.

The robustness of a circuit with respect to noise is much
more difficult to measure and achieve. The current methods
for achieving fault-tolerance, such as stabilizer codes [26] and
logical qubits [27], are not easily implementable in our ap-
proach. However, it is possible to create a near-optimal circuit
with the presented method and adjust it to be noise-tolerant
afterwards.

Our approach is not limited to CNOT gates. While we use
it throughout our construction, it can be readily transformed
to another gate set, as long as it forms a universal family of
quantum gates [14]. Thus, if the particular hardware can only
(or efficiently) implement a different set of control gates, it is
possible to translate the circuit into a different family of uni-
versal gates. That is, the methods described here generalize to
different families of universal quantum gates, which might be
more easily implemented on the particular quantum hardware.

What sets apart the Khaneja-Glaser Cartan decomposition
of a unitary described here from the other decomposition
methods is that it gives an explicit construction of the quan-
tum circuit decomposing a unitary and thus can be directly
implemented on a quantum computer. Moreover, this de-
composition method can also be used to optimize existing
computational circuits to improve their scaling.

The method presented in this paper demonstrates how to
efficiently build quantum circuits implementing an n-qubit
unitary operation through the Cartan decomposition of Lie
algebras. Our work generalizes the previous unstructured
Cartan decomposition of a three-qubit unitary to a structured
recursive algorithm capable of synthesizing any desired uni-
tary operation. Our construction allows the expansion of any
quantum circuit in terms of rotation matrices and generators.
Moreover, we show how these generators can be recursively
decomposed through CNOT and fermionic SWAP gates into
circuits that can be directly implemented on a quantum com-
puter. This Cartan decomposition method also scales well,
with a near-optimal scaling of 21

16 4n − 3(n2n−2 + 2n) CNOT

gates required to synthesize an n qubit unitary operation.
The algorithmic structure of the method and constructions
described in this paper allows for a simple yet flexible im-
plementation, both in terms of applications of the algorithm
and software and hardware architectures.
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