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Many quantum algorithms demand a large number of repetitions to obtain reliable statistical results. Thus, at
each repetition it is necessary to reset the qubits efficiently and precisely in the shortest possible time, so that
quantum computers actually have advantages over classical ones. In this work, we perform a detailed analysis
of three different models for information resetting in superconducting qubits. Our experimental setup consists
of a main qubit coupled to different auxiliary dissipative systems, which are employed in order to perform the
erasure of the information of the main qubit. Our analysis shows that it is not enough to increase the coupling
and the dissipation rate associated with the auxiliary systems to decrease the resetting time of the main qubit,
a fact that motivates us to find the optimal set of parameters for each studied approach, allowing a significant

decrease in the reset time of the three models analyzed.

DOI: 10.1103/PhysRevA.108.052605

I. INTRODUCTION

Beyond high-fidelity preparation of the qubit initial states
[1,2] and the possibility of implementing error-correction al-
gorithms [3-6], a key step in building an operational quantum
computer is the capacity to make these devices process data
as quickly as possible. Due to the probabilistic character of
the quantum mechanics, many quantum algorithms demand
a large number of repetitions, and consequently, the resetting
of the qubits must be repeated many times. In this sense, a
strategy to speed up the computing is the optimization of the
reset process through the elaboration of a fast way to make the
qubits return to their initial states. To illustrate the significance
of reinitializing the system to the entire process of running an
algorithm, in Ref. [7] a set of N coupled linear differential
equations was solved, and the solution was mapped to the
final state of n qubits (with N = 2"), such that, to achieve a
precise solution, it is necessary to repeat the measurements up
to O(2") times since there are 2" possible states for the qubits.
For instance, we estimate that to solve a set with 1 trillion
coupled differential equations it would be necessary to repeat
the measurements around 1 trillion times. In this process, if
we consider a realistic reset time as in Refs. [8,9], which is of
the order of hundreds of nanoseconds or even a few microsec-
onds, it would take some tens of or even a few hundred hours
in the reinitialization steps of the system. In order to create
a faster resetting, several approaches can be applied. One of
them consists of performing measurements on the qubits to
invert their states using controlled-duration pulses [10-13].
Other ways to produce an efficient reset process use thermal
baths to stabilize the system in a specific final state [14,15]
and engineer light-matter interactions either by pulses with a
specific frequency interval [16] or by employing an additional
level and coupling the qubit to an auxiliary dissipative cavity
mode [8].

Looking at the fastest way to reset systems, we analyze
here two configurations that use dissipative effects to reset the

2469-9926/2023/108(5)/052605(8)

052605-1

qubit. In addition, we optimize the reset model from Ref. [§]
and compare its results with the ones achieved with the other
two models. The different experimental setups, which will be
explored throughout this paper, are indicated in Figs. 1(a)—
1(e). The first configuration studied here [Fig. 1(c)] is a work
qubit (named the main qubit) coupled directly to a second
highly dissipative qubit (auxiliary qubit). In Refs. [17,18], a
similar model was used to study how to speed up the resetting
and purification of the system, but different from the present
work, the authors employed a tunable frequency qubit as the
main system and considered the presence of correlations be-
tween the qubit and the environment. Also, Ref. [19], using
a model similar to last one, studied how increasing the size
of the ancilla qubit Hilbert space affects the resetting time. In
the second configuration [Fig. 1(d)], the main qubit is coupled
to a second one which is then coupled to a dissipative cavity
mode. Reference [20] also used two auxiliary components as
in our model but, once again, considered tunable frequencies
in order to maximize the efficiency of the resetting. Finally,
in the third experimental setup investigated here we take
into account the multilevel structure of a superconducting
device; that is, in addition to the two levels that work as
the main qubit, an auxiliary third level is considered that is
used to couple the quantum device to a dissipative bosonic
field mode [Fig. 1(e)]. This resetting mechanism is quite in-
teresting because of its simplicity and efficiency, and it was
studied before in Refs. [8,21], where the authors employed
a Jaynes-Cummings-type interaction to reset the system but
used different approaches, which made the resetting time
achieved in the latter more than twice as fast as in the former.
Concerning the last configuration, besides saving space in a
quantum computer by eliminating the need for an auxiliary
qubit, this scheme can be applied to fixed-frequency qubit ar-
chitectures, as in the case of the IBM systems in Refs. [8,22].

In this work we carry out a numerical analysis of the main
qubit dynamics for the three configurations cited above, and
then we perform an optimization for each setup, searching

©2023 American Physical Society


https://orcid.org/0000-0002-7602-0468
https://orcid.org/0000-0003-1133-6012
https://orcid.org/0000-0001-8517-6774
https://orcid.org/0000-0001-5622-786X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052605&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevA.108.052605

CIRO MICHELETTI DINIZ et al.

PHYSICAL REVIEW A 108, 052605 (2023)

(a)

Main
Qubit

Main
Qubit

FIG. 1. Pictorial representation of the proposed schemes for resetting the work qubit. (a) shows a superconducting device; our main qubit;
its equivalent circuit, composed of a capacitor (C) and two Josephson junctions, which work as a nonlinear inductor; and the respective
anharmonic potential with the corresponding energy levels associated with the circuit. (b) shows the waveguide (cavity mode) with the
corresponding harmonic potential and energy levels. (c) shows the coupling between the main (green) and dissipative (black) auxiliary qubits,
with coupling strength g. The dissipative qubit has damping rate y. (d) shows the main qubit coupled to the auxiliary one, with coupling
strength g. The auxiliary qubit is then coupled (coupling strength 1) to a dissipative cavity mode, whose dissipation rate is «. (e) shows the
qubit with an auxiliary level, which is coupled to the dissipative bosonic mode with damping rate «.

for the set of parameters that makes the resetting process
faster. To present our results, this paper is organized as fol-
lows: Sec. II introduces the three models shown in Fig. 1
and describes two different approaches that will be used in
the information erasure: (i) the pulsed and (ii) steady-state
approaches. Section III shows the parameters that optimize the
resetting for each model using these two approaches and dis-
cusses their experimental feasibility. Finally, Sec. IV presents
our conclusions.

II. DESCRIPTION OF THE MODELS

To model the resetting mechanism we resort to the open
quantum system treatment, working in a regime where the
interaction energy between the subsystems that make up our
setup is much smaller than the free energy of the subsystems
themselves. On the other hand, the coupling strengths between
the subsystems can be either stronger or weaker than their
dissipation rates, usually called strong- and weak-coupling
regimes, respectively. In these regimes, assuming the Born
and Markov approximations, the dynamics of the system is
governed by the master equation (& = 1) [23]

2—’; = —i[H, p]+ Lr(p) + La(p),
in which the Hamiltonian H describes the system coupled
to the auxiliary components, p is the density operator of
the composed setup, Lr(p) = £(2apa’ — a’ap — pa‘a) de-
scribes the dissipation in a quantum bosonic mode, and
La(p) = %(2afpaf — ofafp — pafaf) describes the en-
ergy loss of an ancilla qubit. The decay rate of the auxiliary
qubit and the bosonic mode are given by y and «, respec-

tively, af (%) is the Pauli raising (lowering) operator for the

(D

auxiliary qubit, and a (a') is the annihilation (creation) oper-
ator for the dissipative field mode. Since Eq. (1) is a general
equation, it can be used to describe the three configurations
studied here; therefore, the Hamiltonian H and the presence
of the dissipation operators in this equation will depend on
the model, which will be detailed when we formally introduce
each setup. Once we know the configuration that will be
analyzed, we are able to insert in Eq. (1) the corresponding
Hamiltonian that will rule the dynamics in each case and the
respective dissipation operators of the auxiliary components
and then proceed with the simulations. At this point, one
might notice the lack of dissipation operators for the main
qubit, our system. In this paper, its absence is a reasonable
assumption because quantum computing requires qubits with
negligible decay rates; thus, we are considering the main qubit
as a nondissipative system, and hence, the entire process of
energy dissipation takes place via auxiliary components.

The three configurations for resetting the main qubit that
we are going to study here are pictorially represented in Fig. 1.
In Fig. 1(a) we represent a superconducting device whose
two lower levels represent our main qubit. In Fig. 1(b) we
represent the waveguide, which works as a dissipative cavity
mode, and it is described by a harmonic potential. In Fig. 1(c)
we represent the two-qubit model, in which the main qubit
is coupled to an auxiliary dissipative one. In Fig. 1(d), we
represent the main qubit coupled to a second one, which in
turn is coupled to a dissipative bosonic mode. Finally, in
Fig. 1(e), we display the system studied in Ref. [8], which is
composed of the main qubit and the auxiliary third level that
is coupled to a dissipative cavity mode.

To start, let us introduce the first configuration, as shown in
Fig. 1(c), here called the two-qubit model. This setup contains
the main qubit coupled to a dissipative auxiliary one and
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has the advantage of being very simple and compact, saving
space in a quantum computer. Also, the auxiliary qubit does
not need to be fully controllable since we do not perform
operations over its states. On the other hand, as it can emit
in any direction, its dissipation could affect the work qubits in
a huge quantum computer, depending on the configuration. In
addition, to avoid extra noise and undesired dissipation in the
main qubit during the execution of a given quantum process,
we must be able to turn its interaction with the auxiliary qubit
on and off. This can be done by assuming that the main qubit
is frequency tunable and most of the time is very far from
resonance with the auxiliary qubit. Then, to implement the
reset process we turn its frequency on resonance with the
auxiliary qubit, which can be done very quickly, in less than
1 ns [24], so we disregard this time in our analyses. Thus,
during the reset process we can consider these qubits to be
resonant ones; their Hamiltonian in the interaction picture is
given by

Hp,—o, = g(afgagé + Hc) 2)

where g is the coupling strength between the main (M) and
auxiliary (A) qubits and Ui’; = |i)(j| is the transition-level
operator from level j to level i (i, j =g, e) for qubit K
(K=M,A).

The second configuration analyzed here, named the two-
qubit—cavity model, is shown in Fig. 1(d), and it is composed
of the tunable (as in the previous case) main qubit coupled to a
second nondissipative auxiliary qubit, which in turn is coupled
to a dissipative cavity mode field whose dissipation rate is
k. In this model, when turning the main qubit on resonance
with the auxiliary one and the cavity mode, we end up with
the coupling strength g between the two qubits, which can be
different from the coupling strength A between the auxiliary
qubit and the cavity mode field. In this case, in the interaction
picture, the Hamiltonian reads

Hp,—0,—r = ga:;o;e + ka%a +Hc, 3)
where a (a') is the annihilation (creation) operator for the
mode and, again, M and A stand for the main and auxiliary
qubits, respectively. This model requires more elements and
space, but the dissipative mode can direct the dissipated en-
ergy, thereby avoiding disturbances to neighboring working
qubits in a quantum computer.

Figure 1(e) shows the third model studied here, in which
the main qubit has an auxiliary level that is coupled to a
dissipative bosonic mode. This configuration is here called the
IBM model since it was studied by IBM researchers [8,25,26].
The Hamiltonian that describes this setup in the rotating frame
of the driving field, which has a frequency wy, is

Hipy =8.a’a + 8,6'b + %b*b*bb
.1
+ [gab' + 5sz(t)bT + Hc] 4)

where a (a¥) is the cavity-mode-field annihilation (creation)
operator as in the previous case; b (b') is the annihilation
(creation) operator of the main system, now considered a
multilevel structure; g is the coupling strength between the
cavity and the system; €2(¢) is the time-dependent amplitude

of the microwave field that drives the qubit; 6. = w. — wy and
8y = wge — wg, With w. (wg,) being the transition frequency of
the cavity mode (qubit); and, finally, « is the anharmonicity
that modifies the frequency transition w, s between the excited
state |e) of the qubit and the auxiliary level |f), such that
Wef = Wge — OL.

In contrast to the first two configurations, in which the
reset processes start when the main qubit begins its interaction
with the other components, the resetting in the IBM model
occurs in two steps: (i) the state population initially in |e) is
transferred by an electromagnetic pulse to the ancilla level
|f); (i) then the population of state |f) is transferred to
a dissipative cavity mode via its coupling to the transition
|g) <> | f) with the help of a driving field with amplitude €2(¢)
and frequency wy. In the first step, the time to transfer the
population depends on the intensity of the pulse, i.e., its Rabi
frequency, such that the higher the Rabi frequency is, the
smaller the time to reach the desired final state is. However,
we cannot increase the intensity indiscriminately since levels
higher than | f) could be populated in a way that would make
step (ii) and, consequently, the entire reset process ineffective.
To avoid this loss of efficiency, we will consider here the same
pulse that was used in Ref. [8] to transfer the population to the
auxiliary level, which causes the first step of the approach to
finish in 75 ns. Hence, in order to speed up the resetting for
this configuration, we will focus on optimizing the second step
by searching for parameters that dissipate the energy faster.

Besides the three configurations, we also deal with two
approaches. In the first, here called the steady-state approach,
the reset occurs when the system reaches the ground state
in a stable way. In the second approach, which we will call
the pulsed approach following Ref. [8], the reset occurs when
the interaction dynamics takes the main qubit to the ground
state for the first time and, exactly at that moment, the pulse
is turned off and the information is erased. The IBM model
was developed based on only a pulsed approach. As explained
before, the model studied in Ref. [8] involved two steps. On
the other hand, for the other two models studied here, the
pulsed approach happens just in one step since we do not have
to transfer the population to another level like in the IBM
model. Hence, for the other two models, in the pulsed ap-
proach the reset process starts when the main qubit is coupled
to the auxiliary dissipative systems, and it is finished when the
required ground-state population is achieved for the first time.
The time to couple (decouple) the main qubit to (from) the
auxiliary components is negligible in the analyses of the reset
time, as discussed above.

Now, given the models in Fig. 1, we can proceed with the
calculations. For comparison purposes, in all simulations we
considered the main qubit to be initially in the excited state,
while all the other auxiliary components were considered to
be in their respective ground states. In fact, considering the
auxiliary components to be in their ground states is a realistic
assumption according to [27] since, following their parame-
ters for the mode transition frequency and temperature, the
fidelity between the thermal state and ideal ground state is
above 99%, which is a small error in the state preparation.
Next, we solve Eq. (1) numerically in PYTHON using the QUTIP
toolbox [28,29] considering the particularities of each model
and analyze the dynamics of the ground-state population of
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FIG. 2. Resetting process for the two-qubit model. The initial
state of the main qubit is py = |e)(e|, while the initial state of the
auxiliary qubit is py = |g)(gl|. (a) shows the ground-state population
of the main qubit as a function of the dimensionless time gr for
different values of the dissipation rate y (see the legend). (b) shows
the dimensionless time gf,, needed to complete the reset as a func-
tion of the dissipation rate y /g for two reset approaches: the pulsed
approach (dashed blue line) and the steady-state approach (solid red
line).

the main qubit. Studying this property of the main system
allows us to determine how and when the reset process must
happen.

III. RESULTS AND DISCUSSION

As we are looking at the resetting process, the baseline
studied here will be the ground-state population of the main
qubit. In this way, for the steady-state approach, we consider
the reset process performed when the population of the main
qubit reaches the minimum value p, = 0.98 without recurring
anymore. Usually, to reset properly, quantum computers re-
quire a much higher population in the ground state. However,
we decided to choose this value in order to perform a fair
comparison of our results with the ones presented in [8],
which use this population value for the ground state. In the
same way, for the pulsed-reset approach, we will consider the
process to end when the population of the main qubit reaches
the minimum value of p, = 0.98 for the first time, which is
the instant when the interaction must be turned off. Still, the
required time to reach the desired ground-state population, the
reset time, is denoted fop.

Now, to study the reset protocol for the models presented
in Figs. 1(c)-1(e), let us start considering the two-qubit model
[Fig. 1(c)], where we analyzed the dynamics of the ground-
state population of the main qubit for different values of the
dissipation rate of the auxiliary qubit, given by y . For this con-
figuration, Fig. 2(a) shows the ground-state population versus
gt. Looking at this panel, when considering the steady-state
approach, we can notice that the best value is y = 10g. Unlike
what would be expected, as the dissipation rate is increased
regarding to the coupling strength between the two qubits, the
system reset becomes ineffective, i.e., the resetting will take
longer to occur, e.g., see the curve for y = 20g. Conversely,
still in the same approach, if the dissipation rate is too small, it
will take too long for the reset process to stabilize and finish,

although the first peak of the dynamics occurs earlier, what is
a good fact for the pulsed approach, as it happens for either
y = 0.5g or y = 1g for instance.

Figure 2(b) shows the time gfp as a function of y /g for
the two reset approaches. Starting with the pulsed approach,
we can see that for values of y /g smaller than approximately
2, gtyop does not depend on the decay rate of the auxiliary
qubit, with the best times being close to gtyop = 1.45. On the
other hand, when considering the steady-state approach, from
Fig. 2(a) we see that there is an optimum value for the reset
time. From Fig. 2(b), we numerically find that this optimum
value (gts0p ~ 2.08) occurs for y /g ~ 2.13. For values greater
than this ratio, the reset process is ineffective since the time
8lsop increases as y /g increases. Still, for y /g < 2, the time
also increases as the ratio y /g decreases. For instance, if we
now consider the minimum ground-state population of 0.995,
which is required to perform realistic quantum computing,
the best reset times achieved are gt ~ 1.53 and gt ~ 2.60 for
the pulsed and steady-state approaches, respectively, where
the parameter that optimizes the reset time for the latter ap-
proach is y /g &~ 2.59.

Regarding the two-qubit model, we can see in Fig. 2(a) that
the dynamics for greater values of y do not oscillate, while the
dynamics for smaller values of y do oscillate, as we can see by
comparing the curves for y = 20g and y = 0.5g. These oscil-
lations for the smaller values of y, which arise from the energy
flux between the qubits, are the origin of the discontinuities in
Fig. 2(b) in the curve for the steady-state approach. In fact, at
the beginning of the dynamics, the energy stored in the main
qubit flows to the auxiliary qubit, which has a weak decay;
that is, y has the same magnitude as or is smaller than the
coupling strength g. Then, due to its small dissipation rate, the
energy that is transferred to the auxiliary qubit is able to flow
back to the main one before it completely dissipates; hence,
the ground-state population of the main qubit keeps recurring.
This energy exchange between the qubits continues to occur,
and several oscillations in the dynamics of the ground-state
population take place until the reset process is over. It is worth
noting that the number of oscillations depends on the value of
y; that is, the greater the number of oscillations is, the longer
the reset time is and vice versa.

For the two-qubit—cavity model, represented in Fig. 1(d),
we have three parameters, two from the Hamiltonian in Eq. (3)
and one from the dissipation operator, which are, respectively,
the coupling strength g between the two qubits, the coupling
strength A between the auxiliary qubit and the cavity mode
field, and the damping rate « of the electromagnetic field
mode. Thus, by fixing the coupling g as before, two param-
eters remain to be adjusted in order to optimize the resetting
process. The results for this case are shown in Fig. 3, where we
plot in the top panels the dynamics of the ground-state popula-
tion of the main qubit as a function of the dimensionless time
gt for A = 1g [Fig. 3(a)] and X = 4g [Fig. 3(b)], in both cases
considering different values for x (see the legend). Looking
at these two panels, once again, the previous discussion about
steady-state approach applies since there are values of ¥ and
A for which the dynamics either oscillates and takes a long
time to stabilize with a ground-state population above the
predefined bound or does not fluctuate but still takes time
to reach the desired bound. Hence, for this approach, once
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FIG. 3. Resetting process for the two-qubit—cavity model. In
these simulations the initial state of the system is given by py =
le)(el, pa = |g)(gl, and p. = |0)(0|, i.e., the main qubit, auxiliary
qubit, and cavity mode, respectively. The top panels show the
ground-state population of the main qubit as a function of the di-
mensionless time gt for two coupling strength values, (a) A = 1g
and (b) A = 4g, and different dissipation rates «, as indicated in the
legend. The bottom panels show gty,, optimized according to the
parameters A /g and « /g for the two reset approaches: (c) steady-state
approach and (d) pulsed approach. In the blank areas in (c) and (d),
the time needed to reset the system is higher than the limit time
8tsiop = 400, although the reset still occurs for longer times.

more, we can infer that there is an optimum reset time. On
the other hand, for the pulsed approach, an initial analysis
reveals that the ratio between A and k appears to determine
when the reset occurs since we can see from Fig. 3(a) (where
we have the smaller value of A, A = 1g) that for all values
of k the dynamics reach their first peaks fast, whereas in
Fig. 3(b) (where we have the bigger value of A, A = 4g) only
the dynamics for the bigger values of « reach their peaks fast.

Turning now to the optimizations, Fig. 3(c) shows gfsop
as a function of x/g and A/g for the steady-state approach.
From this panel we can see that the best reset times (close
to gtgop = 1.75) are found in only a narrow range of the
parameters A and «. We can also see that there are blank
areas in this panel, which represent the set of parameters for
which it is not possible to reach the minimum ground-state
population of the main qubit (p, = 0.98) in a stable way
and within the maximum stipulated time in our simulations
(8tmax = 400). For the pulsed approach, similar results can

be seen in Fig. 3(d), but now the set of parameters with the
best resetting times is larger, with the best times being around
8tsiop A~ 1.5. On balance, for the first two configurations (the
two-qubit model and two-qubit—cavity model), we found that
the best times for the pulsed approach are slightly shorter than
the best times for the steady-state approach. In contrast, the
disadvantage of former compared to the latter approach is the
need for a high level of precision in controlling the duration
of the time pulse. In fact, since in the pulsed approach we
have to stop the time evolution at a very precise time, we need
an experimental precision of the order of 1/g, meaning that
even a small inaccuracy in the stopping time of the dynamics
will cause the system state to be far from the ground state,
thus introducing errors and making the resetting process inef-
fective. If we consider, like before, a minimum ground-state
population of 0.995, the best reset times remain the same in
both approaches. The changes in the results happen just in the
set of parameters that reaches the required population; that is,
the same best reset times are achieved, but a smaller set of
parameters achieves the required population during these best
times.

The IBM model [8] is the last configuration studied here.
Again, since this model was developed aiming at the pulsed
approach, we just searched for its optimization; that is, we
did not consider the steady-state approach for this model. As
said before, this model occurs in two steps. First, the popu-
lation of the excited state |e) is transferred to the auxiliary
state |f) via an auxiliary pulse. Since the intensity of the
pulse modifies either the time spent in this step or the possible
maximum transferred population, we consider here the same
pulse that was used in [8], which takes approximately 75 ns
to transfer the population to state | f). Once the main system
is in state |f), the second step starts coupling the system to
the dissipative cavity mode in order to bring it to the de-
sired ground state. Hence, to optimize the second step of the
approach and, consequently, the entire process, we searched
for the parameters that make the dissipative dynamics of the
transition |g) <> |f) faster.

Proceeding as in the previous cases, in Figs. 4(a) and 4(b)
we show the dynamics of the ground-state population of the
main qubit as a function of the dimensionless time gf. Recall-
ing that we are considering only the pulsed approach, from
Fig. 4(a) we can see that, for a given value of /g, very large
values of x/g do not improve the resetting process; that is,
the higher « /g is, the longer the reset will take. However,
by increasing €2/g, as shown Fig. 4(b), we see that the reset
becomes faster because, as we can see by comparing Figs. 4(a)
and 4(b), for a fixed « /g, the first peak of the ground-state
population happens earlier for 2/g = 1.67.

Looking for the optimization process, Fig. 4(c) shows two
regions. The colored region shows gty as a function of « /g
and /27 g. Note from Fig. 4(c) that the shortest time spent in
the second step of the reset is gsop ~ 40.2 (~95.5 ns, when
considering g/2mw = 67 MHz as in [8]), which results in a total
resetting time (i.e., considering the two steps of the approach)
of 170.5 ns, thus decreasing the resetting time by almost 20%
compared to the result achieved in Ref. [8], which is 210 ns.
The other region is the blank area, which represents again the
set of parameters whose resetting times are longer than the
limit of g = 400. For these parameters the resetting is delayed
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FIG. 4. Resetting process in the IBM model studied in [8]. In these simulations the initial state of the main system is py = |f){f], while
the initial state of the cavity mode is p. = |0)(0|. We considered different dissipation rates « /g, as indicated in the legend. (a) and (b) show
the ground-state population of the main qubit as a function of the dimensionless time g¢. The driven strengths in these plots are, respectively,
Q2/g =0.6m and Q2/g = 1.67. (c) shows gt as a function of the parameters /27 g and « /g. In the white area the time needed to reset the

system is higher than the maximum stipulated time gtyo, = 400.

due to one of the following reasons: (i) The dynamics for a
given 2/2m g and « /g naturally take too long; this behavior
occurs mostly for small values of @ [e.g., see the curve for
k = 0.2g in Fig. 4(a)]. (ii) As stated before, the efficiency of
the transition |g) <> |f) depends on the intensity of the pulse;
therefore, as the value of /27 g increases, the smaller the
efficiency of this transition becomes, the longer the interaction
between the qubit and the cavity has to continue until the
bound population of p, = 0.98 is reached, and occasionally,
this time surpasses the predefined limit of gr = 400.

An important question that could rise is the impact on
quantum computing of the lossy effects induced by the aux-
iliary systems in the dynamics because they can harm the
performance of the device. When the main qubit is not work-
ing, some methods can be applied to reduce the cross talk
due to the interaction of the main qubit and, consequently the
reset components with the other working qubits. For example,
following [30,31], the couplers present in the architecture of
the computer can be used to reduce such cross talk and even
effectively cancel the interactions between two specific com-
ponents, which are the main qubit and other working qubits
present in the architecture of the quantum device. On the other
hand, when the main qubit is actively involved in calculation
tasks, it is possible to set its frequency far off resonance, which
implies a large detuning between the main and auxiliary qubits
that cancels the interaction between them. Therefore, during
either the resetting process or the computing step, it is possible
to avoid the undesired cross talk and strong induced decay of
the qubits.

For instance, consider coupling strengths close to the ones
in Ref. [31], which are around g/27 = 10 MHz. The Purcell
decay time for the two-qubit model [Fig. 1(c)] is expressed
as Tpurcel = (A/g)*y ™!, with A being the detuning between
the main and auxiliary qubits during the computing step [32].
Thus, assuming that the effective decay induced by the aux-
iliary qubit is of the order of the natural decay of the main
qubit, that is, of the order of 50 us [8,33], we note that
detunings of the order of 1.5 to 2.5 GHz will be required.
For instance, for the steady-state approach, it is possible to
achieve Tpyeen = 50 us using detunings close to 2.5 GHz

and sets of parameters (y /g ~ 0.5) that result in reset times
of approximately 20 ns. On the other hand, for the pulsed
approach, it is possible to achieve Tpyce;j = 50 us considering
detunings smaller than 1.5 GHz, even if the optimum set
of parameters is used (y/g ~ 0.1). It is noteworthy that the
required detunings are feasible enough to guarantee these rea-
sonable decay times [32,34,35]. Now, for the two-qubit—cavity
model [Fig. 1(d)], it is necessary to take into account the
effective decay rate of the component coupled to the main
qubit. In the second model studied here, the auxiliary qubit
has an effective decay rate due to its resonant coupling to
the dissipative cavity mode, which is given by Ier = A2/k
[36,37], such that the Purcell decay time of the main qubit has
to be computed as Tpyreen = (A/ 2)?(A2/k)~". In this context,
it is possible to achieve the same Purcell decay times as
before, Tpyrcen = 50 us, considering, for the pulsed approach,
detunings of approximately 1.5 GHz and the optimum set of
parameters, while the steady-state approach requires detun-
ings of approximately 2 GHz and sets of parameters that result
in reset times smaller than 100 ns. Additionally, if we consider
a coupling strength similar to the one used in the IBM paper
[8], which is g/2w = 67 MHz, it is possible to achieve Purcell
decay times around 1 us when considering detunings smaller
than 3 GHz, which are still feasible, and sets of parameters
that result in reset times of approximately 100 ns.

IV. CONCLUSION

In this work we analyzed the optimization of the resetting
time of superconducting qubits in three models: (i) the two-
qubit model, in which the main qubit is coupled to a second
dissipative one; (ii) the two-qubit—cavity model, composed of
two interacting qubits with coupling strength g, with one being
the main qubit and the other being the auxiliary qubit, which
is coupled to a dissipative cavity mode; and (iii) the IBM
model, in which a qubit and an auxiliary level are coupled to
a dissipative bosonic mode. To study the resetting times in the
first two models, we considered two different situations: the
steady-state and pulsed approaches. The IBM model, which
was designed to operate with only the pulsed approach, was
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introduced in Ref. [8]. After the optimizations we were able
to reduce the resetting time achieved in [8] by about 20% for
this model, as they achieved 210 ns for the resetting time and
here, using the same coupling strength g/2w = 67 MHz, we
achieved a resetting time of 170.5 ns. Furthermore, we note
that this best resetting time of the IBM model is two orders
of magnitude larger than the best resetting times of the two
other models analyzed here, which are less than 5 ns, when
we consider the same coupling strength as before. In both
models (i) and (ii), the pulsed approach is slightly faster than
the steady-state approach. However, it is necessary to keep in
mind a possible disadvantage of the first approach compared
to the latter, as the pulsed approach requires high experimental
accuracy in its execution to control the system dynamics.
Finally, it is important to note that one could argue that it could
be possible to achieve shorter reset times in practice just by
employing even stronger couplings. However, the couplings
between the subsystems cannot be increased arbitrarily once
we might end up in the ultrastrong- and deep-strong-coupling
regimes [38,39], which are the regimes in which the interac-
tion energies between the subsystems are the same order as

or even higher than the free energies of the subsystems. In
these regimes the ground state of the system is an entangled
state between the subsystems [40,41], with virtual photons
that make it difficult to prepare the main qubit in its ground
state alone.
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