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Quantum optimal control, a powerful toolbox for engineering an optimal control field modulation that most
precisely implements a desired quantum operation in the best way possible, has evolved into one of the corner-
stones for enabling quantum technologies. The gradient ascent pulse engineering (GRAPE) algorithm is a widely
used method in quantum optimal control, which has achieved great success in different physical platforms.
However, its computational complexity increases exponentially with the number of qubits, making it challenging
to be implemented for large-scale quantum systems. To mitigate this issue, we present the iterative GRAPE
algorithm (iGRAPE), which reduces the optimization problem into a series of lower-dimensional subproblems
by incorporating disentanglement operations. Our numerical simulations on physical platforms such as nuclear
magnetic resonance and superconducting quantum systems demonstrate that iGRAPE significantly enhances
state preparation speed. Specifically, compared to GRAPE, iGRAPE achieves up to a five-fold acceleration in
preparing Greenberger–Horne–Zeilinger states using a 12-qubit implementation, and up to a 13-fold acceleration
for arbitrary state preparation with eight qubits. To further validate our findings, we conduct experimental
validation of iGRAPE on a four-qubit nuclear magnetic resonance system. Overall, iGRAPE offers an efficient
solution for implementing optimal control in large-scale quantum systems, holding great potential for advancing
quantum technologies during the noisy intermediate-scale quantum era.

DOI: 10.1103/PhysRevA.108.052603

I. INTRODUCTION

In the past few decades, quantum optimal control (QOC)
theory [1–5] has been well developed and has stimulated a
lot of interest in the field of quantum technology. Specifically,
this theory focused on achieving the optimal implementation
of a target quantum state or desired quantum operation in
quantum simulation and sensing as well as scalable quan-
tum computation devices [6–12]. To realize this goal in
practice, an efficient optimization algorithm is essential. So
far, various numerical optimization algorithms have been de-
veloped including gradient-based methods such as gradient
ascent pulse engineering (GRAPE) [13], stochastic gradient
Descent [14,15], Krotov’s algorithm [16], reinforcement
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learning algorithms and their variants [17–23], as well as
nongradient-based methods such as the chopped random basis
[24,25] and Nelder-Mead approaches [26].

The GRAPE algorithm has attracted much attention among
those algorithms. Since it utilizes a direct analytical ex-
pression for the gradient, GRAPE can efficiently find a
suitable solution in the parameter space with fast conver-
gence speed. Moreover, in combination with the advanced
optimizers (such as BFGS, AdaGrad, and Adam), as well
as the automatic differentiation technique implemented on
GPU [27], many variants of GRAPE were proposed to im-
prove its. performance [28,29]. The GRAPE algorithm was
originally developed in nuclear magnetic resonance (NMR)
systems [13], which has now been widely applied to many
other quantum platforms [30–34], such as superconducting
quantum circuits [34], circuit QED [31], trapped ions [35],
and nitrogen-vacancy (NV) centers [36]. However, this tech-
nique relied on dynamic simulations of the quantum systems
on classical computers, which essentially limited its applica-
tion on large quantum systems.
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In response to the pressing need to alleviate this is-
sue, we introduce an algorithm named iterative gradient
ascent pulse engineering (iGRAPE). Unlike its predeces-
sor, GRAPE, which focuses on the dynamics of the entire
system, the iGRAPE algorithm revolutionizes the approach
by leveraging the inverse evolution from the target state to
the initial state. By decomposing the optimization problem
into low-dimensional components using disentanglement par-
tition systems, the iGRAPE algorithm remarkably reduces
the computational resources required for optimization. To
demonstrate the effectiveness of the iGRAPE algorithm, we
apply it to two widely recognized physical platforms, namely,
NMR and superconducting quantum systems, to realize the
desired states. Our findings showcase the remarkable po-
tential of iGRAPE, revealing that its implementation with
12 qubits can accelerate the Greenberger–Horne–Zeilinger
(GHZ)-state preparation process by up to fivefold. Further-
more, in the task of arbitrary state preparation using eight
qubits, iGRAPE outperforms GRAPE by achieving a remark-
able 13-fold acceleration. In an effort to validate our findings
experimentally, we successfully prepare the GHZ state us-
ing the iGRAPE method on a four-qubit NMR platform,
achieving an impressive experimental fidelity of 98.25%.
These results not only demonstrate the practical feasibility
of the iGRAPE algorithm, but also highlight its superiority
over GRAPE for large-scale quantum systems. Consequently,
iGRAPE presents a promising and robust solution for QOC in
noisy intermediate-scale quantum systems.

II. iGRAPE ALGORITHM

A quantum system generally can be described by the
Hamiltonian

H (t ) = Hs(t ) + Hc(t ), (1)

where the system Hamiltonian is

Hs(t ) = HL +
∑
i, j

gi j (t )Hi j, (2)

and the control-field Hamiltonian reads

Hc(t ) =
∑

α

uα (t )Hα. (3)

Here Hi j denotes the coupling between qubits i and j with
the coupling strength gi j (t ) and HL represents the local terms
of the system Hamiltonian; Hα represents the control-field
Hamiltonian with the amplitude uα (t ).

The goal of GRAPE for state preparation is to design a
suitable set of uα (t ) control pulses to transfer an initial state
|ψ (0)〉, such as |ψ (0)〉 = |0 · · · 0〉 = |0〉, to a given target
state |�〉 in a specified time T . We discretize the entire time
evolution linearly into K segments, i.e., �t = T/K . For the
kth segment, the induced temporal-evolution propagator Uk is

Uk (�t ) = exp

{
−i�t

(
Hs +

∑
α

uα (k)Hα

)}
. (4)

Here, we assume the system Hamiltonian Hs and the control
parameter within the kth segment uα (k) are time independent.
Consequently, the unitary evolution of the GRAPE algorithm

iGRAPE
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,2
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(b)(a)
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,

GRAPE
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FIG. 1. Scheme of the GRAPE and iGRAPE algorithm for state
preparation problems when the initial state is |0〉. (a) The GRAPE
algorithm designs the control field from the initial state |0〉 to the
target state |�〉. (b) The iGRAPE algorithm calculates the reverse
evolution and designs the control field from the target state |�〉 to
the initial state |0〉.

can be written as U = �K
k=1Uk (�t ), which is optimized to

transfer |ψ (0)〉 to |�〉.

A. Algorithm process

The central concept behind the iGRAPE algorithm is to
leverage the inverse evolution process to convert the target
state |�〉 to the initial state |ψ (0)〉. This is achieved by break-
ing down |�〉 into a sequence of product states in subsystems
until the final product state |ψ (0)〉 is obtained. As shown in
Fig. 1(b), the operator U [1,1] optimized in algorithm Step 1
transfers the target state |�〉 to the product of the states of
its two subsystems |ψ1,1〉 and |ψ1,2〉; then in Step 2, the op-
timized operator U [2,1] further transfers |ψ1,1〉 to the product
of the states of its two subsystems |ψ2,1〉 ⊗ |ψ2,2〉, and likely
U [2,2] transfers |ψ1,2〉 to |ψ2,3〉 ⊗ |ψ2,4〉; until in Step l , all
the subsystem states become single-qubit states and can be
finally transferred to |0〉 by applying single-qubit rotations.
Each subsystem state |ψn,m〉 can be an arbitrary state in the
corresponding Hilbert space. Let n labels the Step index, and
m labels the subsystem index in the Step. The entire propaga-
tor U can be written as

U =
(⊗

m

U [l+1,m]

)
· · ·

(
2⊗

m=1

U [2,m]

)
· U [1,1], (5)

where the target U |�〉 = |0〉, thus |�〉 = U †|0〉.
The numerical optimization is applied to each step in engi-

neering the pulse sequence to implement the operation U [n,m].
Similar to GRAPE, we discretize linearly the entire time evo-
lution of U [n,m] into Kn segments. The kth temporal-evolution
propagator U [n,m]

k is

U [n,m]
k = exp

{
i�t

(
Hs +

∑
α

u[n,m]
α (k)Hα

)}
. (6)

Hence, U [n,m] = �
Kn
k=1U

[n,m]
k and u[n,m]

α (k) are the optimized
control parameters. Note that U [n,m]

k is different from Eq. (4).
Here we set −�t to �t to guarantee the physical implemen-
tation of U † in the final pulse sequence. Consequently, U [n,m]†
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is directly realized by reversing the pulse sequence engineered
for U [n,m]. Via the operation U [n,m], the system is disentangled
into two subsystems

U [n,m]|ψn−1,m〉 = |ψn,2m−1〉 ⊗ |ψn,2m〉. (7)

To further drive each subsystem independently in the fol-
lowing Steps, one needs to turn off all couplings between
these subsystems at the end of each Step. By labeling the
two subsystems in Eq. (7) as subsystem A and subsystem
B and setting the cost function as Lt = 1 − tr(ρAρA), with
ρA = trB(U [n,m]|ψn−1,m〉〈ψn−1,m|U [n,m]†), one can obtain a
pure state ρA by minimizing Lt . The parameters uα (k) are
optimized through gradient descent.

B. Gradient for the cost function

To find the specific set u[n,m]
α (k), the previous cost function

Lt can be written as

Lt = 1 − tr
[
tr2

B(|φn,m〉〈φn,m|)],
|φn,m〉 = U [n,m]|ψn−1,m〉, (8)

minimizing Lt such that ρA = trB(|φn,m〉〈φn,m|) becomes the
pure state. The parameters u[n,m]

α (k) could be adjusted by the
updated rule

u[n,m]
α (k) ← u[n,m]

α (k) − ω
∂Lt

∂u[n,m]
α (k)

. (9)

Expand ρA such that

ρA =
∑

j

(1A ⊗ 〈 j|B)|φn,m〉〈φn,m|(1A ⊗ | j〉B), (10)

and the basis of subsystems A and B are denoted as |i〉A and
| j〉B. The gradient can be written as

∂Lt

∂u[n,m]
α (k)

= 4Re
(〈λn,m|i�tU [n,m]

left HαU [n,m]
right |ψn−1,m〉),

U [n,m]
left = U [n,m]

Kn
. . .U [n,m]

k+1 ,

U [n,m]
right = U [n,m]

k . . .U [n,m]
1 , (11)

where the elements in vector |λn,m〉 is given as

(〈i|A〈 j|B)|λn,m〉 =
∑
i′, j′

〈φn,m|(|i′〉A| j′〉B)

× (〈i|A〈 j′|B)|φn,m〉(〈i′|A〈 j|B)|φn,m〉.
(12)

The iGRAPE method also relies on dividing the system into
different components at each Step that can be selected based
on the desired target state and the Hamiltonian of the system.
In this study, we will evaluate the performance of both the
GRAPE and iGRAPE algorithms by preparing target states
on two physical systems: superconducting and NMR quantum
computing systems.

(a)
Steps

1 2 3

(b)

FIG. 2. Benchmark of the iGRAPE and the GRAPE algorithms
for GHZ-state preparation on superconducting quantum systems.
(a) Variation of cost functions during the optimization process of the
GRAPE and iGRAPE algorithms on a four-qubit case. (b) Runtime
versus number of qubits. Each point is an average over 20 random
selections of a set of initial control parameters for different numbers
of qubits. The colored band-region accounts for the statistical distri-
bution. The inset is a semi-log plot.

III. BENCHMARK ON SUPERCONDUCTING QUANTUM
SYSTEMS WITH TUNABLE COUPLINGS

Our benchmark of the iGRAPE algorithm is first per-
formed on a one-dimensional (1D) 12-superconducting-qubit
chain, where the system Hamiltonian HSC and the correspond-
ing control field Hamiltonian Hc can be described as [37]

HSC =
∑

j

(
ω j n̂ j + η j

2
n̂ j (n̂ j − 1)

)

+
∑

j

[g j (t )(â†
j â j+1 + â j â

†
j+1)],

Hc(t ) =
∑

j

[ux j (t )(â j + â†
j ) + uy j (t )i(â j − â†

j )], (13)

where n̂ is the number operator, â†
j (â j) is the creation

(annihilation) operator, ω j and η j are the transition frequency
and the anharmonicity of the jth qubit, respectively, and g j (t )
denotes the interaction strength between the jth and ( j + 1)th
qubits. Each qubit can be fully controlled by individual capac-
itively coupled microwave control lines (XY ), and ux j, uy j are
the amplitudes of the control fields.

Figure 2(a) shows the varying of cost functions during the
optimization process of iGRAPE and GRAPE algorithms on
a four-qubit case for a GHZ-state preparation, which consists
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of three Steps:

Step 1: |GHZ〉 U [1,1]−−→ |ψ1,1〉 ⊗ |ψ1,2〉,

Step 2:

⎧⎨
⎩|ψ1,1〉 U [2,1]−−→ |ψ2,1〉 ⊗ |ψ2,2〉,

|ψ1,2〉 U [2,2]−−→ |ψ2,3〉 ⊗ |ψ2,4〉,

Step 3: |ψ2,i〉 U [3,i]−−→ |0〉, ı ∈ [1, 4].

(14)

Here |ψ1,1〉 and |ψ1,2〉 are two-qubit states and |ψ2,i〉(i =
1, . . . , 4) are single-qubit states. U [1,1], U [2,i](i = 1, 2), and
U [3,i], (i = 1, . . . , 4) are, respectively, 16 × 16, 4 × 4, and
2 × 2 unitary operations. Although the cost function in Eq. (8)
for each training curve is different, they all fall within the
range of [0,1]. It can be seen that the iGRAPE algorithm
converges quickly in each Step (denoted by the blue solid
lines), while the GRAPE algorithm takes longer to reach
convergence (denoted by the red dashed line). For Step 2 and
Step 3, the optimization tasks in each Step can be simulta-
neously optimized in lower-dimensional Hilbert spaces. Note
that, on superconducting systems, the coupling parameters
g j (t ) can be controlled off and on; thus in Steps 2 and 3, the
couplings between the different subsystems are turned off.

Using the L-BFGS-B optimization algorithm [38],
Fig. 2(b) shows that the relationship between the running time
of the iGRAPE algorithm and the qubit number on the 1D
12-qubit superconducting-qubit chain, in contrast to the case
of the GRAPE algorithm. It can be seen from Fig. 2(b) that the
execution times of iGRAPE (in blue dots) are less than those
of GRAPE (in red dots) and the advantage is more significant
as the qubit number grows. We observe a five-fold iGRAPE
speedup for the 12-qubit case. We also show the semi-log plot
in the inset of Fig. 2(b). Although the runtime of iGRAPE
still grows exponentially with the system size, the exponential
index is reduced to 0.398 from 0.446 in the case of GRAPE.

IV. BENCHMARK ON NMR QUANTUM SYSTEMS
WITH ALWAYS-ON COUPLINGS

For NMR quantum systems, the system Hamiltonian and
the control-field Hamiltonian can be, respectively, written as

HNMR =
∑

j

(
πν j σ̂

( j)
z

) +
∑
i< j

(
π

2
Ji j σ̂

(i)
z σ̂ ( j)

z

)
,

Hc(t ) =
∑

j

(
πux j (t )σ̂ ( j)

x + πuy j (t )σ̂ ( j)
y

)
. (15)

Here HNMR is time independent, ν j represents the chemical
shift of the jth spin, Ji j is the scalar coupling strength between
two spins, and ux j and uy j denote, respectively, the control
radio-frequency (rf) fields along the x and y directions. In the
Appendix, we provide a table showing the values of νi and Ji j

for some NMR samples. Unlike the superconducting quantum
systems mentioned earlier, these coupling terms are always
present in NMR systems. Therefore, they must be taken into
consideration during each Step of the optimization process.

A. Adaptation of iGRAPE

To avoid the evolution under the couplings between two
subspaces in the optimization of the following Steps, we find
that the evolution between two subsystems can be frozen when
one of these two subsystems is in the state |0〉:

e−iHt |0〉A|ψ〉B = eiθ |0〉Ae−iHBt |ψ〉B, (16)

where H denotes the whole-system Hamiltonian and HB de-
notes the Hamiltonian for the Ssubsystem B

HB = π

2

⎡
⎣∑

i

⎛
⎝2νi +

∑
p<i

Jpi

⎞
⎠σ̂ (i)

z +
∑
i< j

Ji j σ̂
(i)
z σ̂ ( j)

z

⎤
⎦

+ HB, control, (17)

and eiθ is a global phase. When the state of subsystem A
reaches |0〉A, the coupling Hamiltonian Ji j σ̂

(i)
z σ̂

( j)
z will not

change the state of the subsystem A except for a global phase.
In this situation, the cost function L f can be expressed as

L f = 1 − tr(ρ0ρ
A), (18)

where ρ0 denotes the state |0〉〈0|A in subsystem A. The
gradient of L f is

∂L f

∂uα (k)
= 2Re

(〈ηn,m|i�tU [n,m]
left HαU [n,m]

right |ψn−1,m〉),
U [n,m]

left = U [n,m]
Kn

. . .U [n,m]
k+1 , (19)

U [n,m]
right = U [n,m]

k . . .U [n,m]
1 ,

where the elements in vector |ηn,m〉 is defined as

(〈0|A〈 j|B)|ηn,m〉 = (〈0|A〈 j|B)|φn,m〉. (20)

Therefore, we can set |ψn,2m〉 in Eq. (7) as |0〉, as shown in
Fig. 3(a)

U [n,m]|ψn−1,m〉 = |ψn,2m−1〉 ⊗ |0〉. (21)

In the following Step, the control fields to be optimized are
only performed on the |ψn,2m−1〉 state. For instance, if we con-
sider the NMR sample Crotonic acid which can be regarded
as a seven-qubit quantum simulator [39], we divide the system
into two subsystems: four 13C spins and three 1H spins. The
varying of cost functions in the optimization processes for a
GHZ-state preparation is shown in Fig. 3(b), and the algorithm
Steps are designed as

Step 1: |GHZ〉 U [1,1]−−→ |ψ1,1〉C|0〉H,

Step 2: |ψ1,1〉C
U [2,1]−−→ |0〉C. (22)

A similar result was observed as the case in Fig. 2(a).
We investigate the scalability of the iGRAPE algorithm for

GHZ-state preparation, similar to superconducting systems.
The benchmark results are presented in Fig. 3(c), indicating
that the iGRAPE algorithm (represented by blue dots) outper-
forms the traditional GRAPE algorithm (represented by red
dots). Notably, this advantage is more pronounced in larger
quantum systems; for instance, a four-fold improvement over
GRAPE is achieved in the seven-qubit case. Additionally,
we observe that the exponential index in iGRAPE has been
reduced to 0.349 from 0.449 in GRAPE as shown in the inset.
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Steps
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FIG. 3. Benchmark of the iGRAPE and the GRAPE algorithms for GHZ-state preparation on NMR quantum systems. (a) Revised scheme
of iGRAPE for the coupling always-on NMR systems. (b) Evolution of the cost functions during the running of the GRAPE and iGRAPE
algorithms for the seven-qubit NMR quantum system. (c) Runtime versus number of qubits. Each point in the plot represents the average result
obtained from 20 random selections of initial control parameters on NMR systems with different numbers of qubits. See the Appendix for
details. The colored band-region accounts for the statistical distribution. The inset is a semi-log plot. (d) Experimentally reconstructed density
matrix (real part) for the prepared GHZ state by the iGRAPE algorithm on the four-qubit NMR system (13C-iodotriuroethylene, see the
Appendix). The imaginary part is almost zero (<0.06).

B. Experimental verification

To verify the feasibility of the iGRAPE algorithm in our
experiments, we employ 13C-iodotriuroethylene dissolved in
d-chloroform as a four-qubit quantum simulator. The sam-
ple comprises one 13C and three 19F nuclear spins (see the
Appendix for details) [40,41]. Experiments are performed on
a Bruker Avance III 400 MHz spectrometer at room temper-
ature. The system is initially at a thermal equilibrium state
and first prepared to a pseudopure state (PPS) ρ̂pps = [(1 −
ε)/16]1 + ε|0〉〈0| using the selective-transition approach [42]
with polarization ε ≈ 10−5. The experimental fidelity of ρ̂pps

is about 99.29% (see the Appendix for details).
According to the iGRAPE method, the algorithm process

for the experiment shown in Fig. 3(d) contains two Steps:

Step 1: |GHZ〉 U [1]−−→ |0〉C|ψ〉F,

Step 2: |ψ〉F
U [2]−−→ |0〉F. (23)

We first transfer the target GHZ state into a product state
|0〉C|ψ〉F by designing a pulse sequence in Step 1. Here, |ψ〉F

is a three-qubit state for three 19F spins. In Step 2, we search
for a pulse sequence to transfer three 19F spins from |ψ〉F into
the state |0〉. The fidelity of a pure state |ψ〉 and a density
matrix ρ is defined as F (|ψ〉, ρ) = 〈ψ |ρ|ψ〉, which is used

to calculate the final state fidelity of the experiment. Subse-
quently, the final pulse sequence is obtained by reversing the
complete pulse sequence and applied to PPS. The resulting
state is subjected to state tomography, which produces a GHZ
state fidelity of 98.25%, as depicted in Fig. 3(d). In compari-
son, the pulse sequences produced by the GRAPE algorithm
attain a fidelity of 97.82% in this experiment.

V. BENCHMARK FOR ARBITRARY QUANTUM STATES

To further demonstrate the effectiveness of the iGRAPE
algorithm, we will examine its performance in preparing ar-
bitrary quantum states. We employ parameterized quantum
circuits (PQC) to generate a range of target states that need
to be prepared. As each Step in the iGRAPE algorithm aims
to transform the target state into subsystem products, it is cru-
cial to consider the entanglement between these subsystems,
particularly during the first Step. By utilizing von Neumann
entropy as a measure of entanglement [43], we can evaluate
how well the iGRAPE algorithm performs for different levels
of entanglement in the target states.

Figures 4(a) and 4(b) illustrate the PQC used to generate ar-
bitrary states with eight qubits, along with the corresponding
performance of the algorithm in a superconducting quantum
system. Figures 4(c) and 4(d) depict the PQC employed for
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(c) (d)

layer 1

Subsystem B

layer 2

Subsystem A

Layer 1 Layer 2

d

Subsystem A

Subsystem B

19F

1H

d

(a) (b)

Layer 1
Layer 2

FIG. 4. Benchmark of the iGRAPE and the GRAPE algorithms for arbitrary quantum states preparation. Target states are generated
by parameterized quantum circuits (PQC). (a) PQC that generates arbitrary eight-qubit quantum states for the superconducting quantum
system, where d represents the number of layers. (b) The von Neumann entropy, the runtime for both algorithms and the runtime ratios
(GRAPE/iGRAPE) versus different layers of the circuit. Twenty sets of different random parameters are generated for each circuit, with
each point and its error bar representing the mean value and corresponding standard deviation, respectively. (c) PQC that generates arbitrary
five-qubit quantum states for the NMR quantum system. (d) The corresponding von Neumann entropy, runtime, and the runtime ratios versus
different layers of circuit.

generating arbitrary quantum states with five qubits, as well as
the algorithm’s performance on an NMR quantum platform.
The general U gate in Fig. 4 has the form

U (θ, φ, λ) =
(

cos( θ
2 ) −eiλ sin( θ

2 )
−eiφ sin( θ

2 ) −eiλ+iφ cos( θ
2 )

)
, (24)

where θ ∈ [0, π ], φ ∈ [0, 2π ], λ ∈ [0, 2π ], and {θi, φi, λi}
are randomly chosen in the range. An arbitrary pure state |ψ〉
of a composite system AB can be described by its Schmidt
decomposition

|ψ〉 =
∑

i

αi|iA〉|iB〉, (25)

where |iA〉 and |iB〉 are orthonormal states for subsystems A
and B, respectively. For pure states, the von Neumann entropy
S of the reduced states ρA and ρB is a well-defined measure of

entanglement

S(ρA) = S(ρB) = −
∑

i

|αi|2 log(|αi|2), (26)

and this is zero if and only if |ψ〉 is a product state (not
entangled). In Fig. 4(b), a significant improvement in speed
is observed for the iGRAPE algorithm, ranging from 2.7
to 13.6 times faster, when preparing eight-qubit arbitrary
quantum states of a superconducting quantum system. For
the 1-bromo-2,4,5-trifluorobenz sample, we divide the sys-
tem consisting of five spins [shown in Fig. 4(c)] into two
subsystems: Subsystem A composed of two 1H spins and sub-
system B composed of three 19F spins. Figure 4(d) reveals that
iGRAPE achieves a speedup ranging from 1.5 to 2 times faster
for preparing arbitrary quantum states of a NMR quantum
system with five qubits. As the number of layers increases,
the von Neumann entropy of subsystems in the final state
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Algorithm 1. The GRAPE algorithm.

Input: Target state |�〉
Set tolerance ε0

Output: Control parameters uα (k)
1: Initialization: guess initial controls uα (k)
2: Evolution: |ψ (T )〉 = UK ...U1|0〉
3: Cost function: L = 1 − |〈�||ψ (T )〉|2
4: while L � ε0

5: Calculate gradient ∂L
∂uα (k)

6: Update: uα (k) ← uα (k) − ω ∂L
∂uα (k)

7: Evolution: |ψ (T )〉 = UK . . .U1|0〉
8: Cost function: L = 1 − |〈�||ψ (T )〉|2
9: end while

escalates. It is noteworthy that both algorithms exhibit similar
fluctuation patterns when generating quantum states under
different circuit depths. The runtime advantage provided by
the iGRAPE algorithm tends to remain stable as circuit depth
increases.

VI. CONCLUSION AND DISCUSSION

In conclusion, we introduce the iGRAPE technique for
addressing state-transfer challenges in QOC. Our research
reveals that the iGRAPE algorithm surpasses the traditional
GRAPE method in terms of resource efficiency. By harness-
ing advanced optimization techniques and pioneering parallel
computing strategies, iGRAPE significantly reduces resource
usage while ensuring high computational precision. This is
substantiated by numerical simulations conducted on state

preparations and further validated through experiments car-
ried out on a four-qubit NMR quantum processor.

There are several factors that contribute to the superi-
ority of the iGRAPE over the GRAPE algorithm when it
comes to state preparation problems. First, the cost functions
used in the iGRAPE algorithm focus solely on disentan-
gling the quantum state, without considering its specific
form. This approach leads to multiple possible final states,
which helps with optimization convergence. Second, the dis-
entangling process simplifies the optimization problem by
breaking it down into lower-dimensional subsystems at each
Step. This allows for parallel optimization after the initial
step. These findings are particularly relevant in today’s noisy
intermediate-scale quantum (NISQ) era, where implementing
quantum algorithms on real quantum systems is a significant
challenge.

If the coupling terms gi j in the system’s Hamiltonian are
fixed and nonzero, in the case of ZZ coupling, we can set
one of the subsystems into |0〉 so that the other subsys-
tem can evolve independently. If the coupled Hamiltonian
Hi j takes on different forms [44], we can employ a similar
approach to transform one of the subsystems into an eigen-
state of Hi j . This ensures that operations on one subsystem
only contribute a global phase to other subsystems. Cur-
rently, the number of operators Kn in the iGRAPE algorithm
for the nth Step primarily relies on the system and control
Hamiltonian. By considering the entanglement information
of the target state, it is possible to devise an improved ap-
proach that minimizes the number of Steps. For transferring
an arbitrary state |ψ〉 to another arbitrary state |ψ ′〉, we can
employ the intermediate state |0〉 and utilize iGRAPE to

Algorithm 2. The iGRAPE algorithm.

Input: Target state |�〉
Set tolerance ε0

Output: Pulse sequence U that satisfies U †|0〉 = |�〉
1: Set n = 1, |ψn−1,1〉 = |�〉
2: while ∃a s.t. |ψn−1,a〉 �= single qubit state do � Outer loop: divide the quantum system
3: for m in {m||ψn−1,m〉 �= single qubit state} do � Inner loop: generate pulse sequence for each subsystem
4: Guess initial controls u[n,m]

α (k)
5: Evolution: |φn,m〉 = U [n,m]

Kn
. . .U [n,m]

1 |ψn−1,m〉
6: Calculate cost function L
7: while L � ε0 do � Minimize cost function L
8: Calculate gradient: ∂L

∂u[n,m]
α (k)

9: Update: u[n,m]
α (k) ← u[n,m]

α (k) − ω ∂L
∂u[n,m]

α (k)

10: Evolution: |φn,m〉 = U [n,m]
Kn

. . .U [n,m]
1 |ψn−1,m〉

11: Recalculate cost function L
12: end while
13: Pulse sequence for the subsystem is U [n,m] = �Kn

k=1U
[n,m]
k

14: end for
15: n ← n + 1
16: end while
17: for m in {m||ψn−1,m〉 �= |0〉} do
18: Generate single qubit rotation U [n,m] s.t. U [n,m]|ψn−1,m〉 = |0〉
19: end for
20: The whole pulse sequence is U = (

⊗
m U [l+1,m] ) · · · (

⊗2
m=1 U [2,m] ) · U [1,1]

052603-7



YUQUAN CHEN et al. PHYSICAL REVIEW A 108, 052603 (2023)

TA
B

L
E

I.
N

M
R

sa
m

pl
es

of
di

ff
er

en
ts

ys
te

m
si

ze
s.

T
he

m
ol

ec
ul

ar
pa

ra
m

et
er

s
of

ea
ch

sa
m

pl
e

in
cl

ud
in

g
ν

i
(d

ia
go

na
l)

an
d

J i
j

(o
ff

-d
ia

go
na

l)
.

Sa
m

pl
e

na
m

e
M

ol
ec

ul
ar

fo
rm

ul
a

Sy
st

em
si

ze
Pa

ra
m

et
er

s
(H

z)

D
ie

th
yl

flu
or

om
al

on
at

e
FC

H
(C

O
O

C
2
H

5
) 2

2
qu

bi
ts

H
F

T 1
(s

)
T 2

(s
)

H
40

0M
2.

8
1.

2
F

47
.6

37
6M

3.
1

1.
3

D
ie

th
yl

flu
or

om
al

on
at

e
FC

H
(C

O
O

C
2
H

5
) 2

3
qu

bi
ts

C
H

F
T 1

(s
)

T 2
(s

)
C

10
0M

2.
9

1.
1

H
16

0.
7

40
0M

2.
8

1.
2

F
−1

94
.4

47
.6

37
6M

3.
1

1.
3

C
ar

bo
n-

13
-i

od
ot

ri
flu

ro
et

hy
le

ne
C

2
F 3

I
4

qu
bi

ts

C
F 1

F 2
F 3

T 1
(s

)
T 2

(s
)

C
15

47
9.

88
7.

9
1.

22
F 1

−2
97

.7
1

−3
,
13

2.
45

6.
8

0.
66

F 2
−2

75
.5

6
64

.7
4

−4
2

68
2.

97
4.

4
0.

63
F 2

39
.1

7
51

.5
0

−1
29

.0
8

−5
6

44
5.

71
4.

8
0.

61

1-
br

om
o-

2,
4,

5-
tr

ifl
uo

ro
be

nz
en

e
B

rC
6
H

2
F 3

5
qu

bi
ts

F 1
F 2

F 3
H

1
H

2
T 1

(s
)

T
∗ 2
(m

s)
F 1

−4
7

70
8

0.
8

50
F 2

−4
5.

5
−4

5
25

7
0.

6
50

F 3
13

5.
8

32
3.

5
−3

7
73

4
0.

8
50

H
1

62
.1

14
68

.2
18

11
.2

23
96

1.
5

11
0

H
2

17
81

.1
12

2.
9

60
.9

−1
0.

1
23

93
1.

5
11

0

C
ro

to
ni

c
ac

id
C

4
H

6
O

2
7

qu
bi

ts

C
1

C
2

C
3

C
4

H
1

H
2

H
3

C
1

17
50

.3
C

2
40

.8
14

93
0.

1
C

3
1.

6
69

.5
12

19
9.

9
C

4
8.

47
1.

4
71

.0
4

17
17

3.
7

H
1

4.
0

15
5.

6
−1

.8
6.

5
27

85
.8

5
H

2
6.

64
−0

.7
16

2.
9

3.
3

15
.8

1
23

20
.2

5
H

3
12

8
−7

.1
6.

6
−0

.9
6.

9
−1

.7
71

8.
48

7

052603-8



ACCELERATING QUANTUM OPTIMAL CONTROL THROUGH … PHYSICAL REVIEW A 108, 052603 (2023)

TABLE II. Shaped pulses details of states preparation on NMR quantum systems.

Number of qubits 2 3 4 5 7

iGRAPE pulse steps 500, 100 800, 200 1500, 260 2000, 400 2800, 1200
GRAPE pulse steps 600 1000 1760 2400 3000
Transfer time (ms) 3 5 8.8 12 20

generate a pulse sequence from |ψ〉 to |0〉. Subsequently,
this same approach can be used to generate another pulse
sequence from |0〉 to |ψ ′〉. Currently, the utilization of the
iGRAPE algorithm is restricted exclusively to problems re-
lated to state transfer in pure quantum states. Nevertheless,
our aim for the future is to expand its scope and explore
potential applications in broader areas of quantum optimal
control. This includes the manipulation of mixed quantum
states, the preparation of unitary operations, nonunitary pro-
cesses in dissipative systems, and enhancing robustness,
among others.

Data generated and analyzed during the current study are
available from the corresponding author upon reasonable re-
quest.
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APPENDIX A: ALGORITHM STEPS

In this paper, we employ the L-BFGS-B optimization
algorithm [38] for pulse optimization in both GRAPE and
iGRAPE. We successfully attain a minimum state fidelity of
99.7% across all our examples. The central processing unit

(CPU) model utilized is an Intel® Xeon® CPU E5-2620 V3
operating at a frequency of 2.4 GHz. Detailed information
regarding the NMR sample, including various system sizes
and experimental parameters for superconducting quantum
systems, will be provided in the subsequent sections.

A quantum system generally can be described by the
Hamiltonian

H (t ) = Hs(t ) + Hc(t ), (A1)

which is tunable through the time-dependent control
Hamiltonian Hc(t ). The goal of quantum optimal control is to
prepare the target state or the target unitary by appropriately
adjusting Hc(t ). For example, consider the situation where the
system is initially in a given state |0〉 = |0 . . . 0〉 and we are
interested in dynamics that prepares the target state |�〉 within
a transfer time of T . To search for controls that accomplish
this task, a cost function L must be introduced to quantify the
degree of fulfillment

L = 1 − |〈�|U (T )|0〉|2, (A2)

FIG. 5. The pulse sequences produced by iGRAPE and GRAPE
for the four-qubit NMR experiment.
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FIG. 6. Experimental data and the corresponding tomography results. (a) Experimental 13C spectra of PPS ρ0000 state. (b) Experimental
13C spectra of GHZ state with Ry(π/2) rotation on 13C as the readout operator. (c) The PPS tomography and (d) the GHZ-state tomography.
(e) The ideal tomography of PPS and (f) the ideal tomography of GHZ state.

where U (T ) is determined by solving

i
dU (t )

dt
= H (t )U (t ),

U (0) = 1, (A3)

evaluated at t = T .
For the GRAPE algorithm, the control Hamiltonian can be

expressed as

Hc(t ) =
∑

α

uα (t )Hα, (A4)

where a set of external control fields uα (t ) acting on the sys-
tem via control operators Hα . We will assume for simplicity
that the chosen transfer time T is discretized into K equal
steps of duration �t = T/K . During each step, the control
amplitudes uα are constant. In other words, during the kth
step, the amplitude uα of the αth control Hamiltonian is given
by uα (k). The time evolution of the system during a time step
k is given by the propagator

Uk = exp

{
−i�t

(
Hs +

∑
α

uα (k)Hα

)}
, (A5)
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TABLE III. Experimental parameters for all 12 qubits in the superconducting quantum system. ω is the idle frequency of each qubit and
η is the anharmonicity. T1, the energy relaxation time, and T ∗

2 , the dephasing time extracted from Ramsey experiment, are measured at their
respective idle frequencies.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

ω (GHz) 4.978 4.183 5.192 4.352 5.110 4.226 5.030 4.300 5.142 4.140 4.996 4.260
η (MHz) −248 −204 −246 −203 −247 −202 −246 −203 −244 −203 −246 −201
T1 (μs) 40.1 34.7 30.8 43.2 31.8 34.3 46.5 38.1 32.2 54.6 29.6 30.3
T ∗

2 (μs) 7.9 1.5 6.3 2.4 4.9 2.7 6.8 2.3 5.1 3.5 5.9 3.0

and the corresponding cost function Lg becomes

Lg = 1 − |〈�||ψ (T )〉|2, (A6)

where |ψ (T )〉 = UK . . .U1|0〉. Update uα (k) to minimize the
cost function Lg,

uα (k) ← uα (k) − ω
∂Lg

∂uα (k)
. (A7)

Here ω is the learning rate (a small step size). This forms the
basis of the GRAPE algorithm. The whole process of GRAPE
is shown in Algorithm 1.

The algorithmic process of iGRAPE is extensively de-
scribed in the preceding text. The pseudocode for iGRAPE
can be found in Algorithm 2.

APPENDIX B: PARAMETER SETTINGS

1. For NMR quantum systems

The NMR samples utilized in the journal text are presented
in Table I. It is worth mentioning that the subsystem of the
three-qubit NMR sample Diethyl fluoromalo corresponds to a
two-qubit system, as indicated in the table.

The duration �t for each propagator U [n,m]
k mentioned in

the journal text is 5μs, and the parameters of shaped pulses
can be found in Table II. In the iGRAPE algorithm, we deter-
mine through empirical means how to distribute the number
of pulses among each subsystem.

Figure 5 depicts the pulse sequences produced by both
algorithms in the four-qubit NMR experiment showcased. The
corresponding numerical final-state fidelity of this sequence
is 99.83%. It is worth mentioning that the pulse sequence
generated by the iGRAPE algorithm at Step 2 in Eq. (23) is
tailored to the F subsystem, hence it does not encompass the
control field for C.

The spectrum of the PPS, denoted as ρ0, is depicted in
Fig. 6(a). This state is obtained by applying shaped pulses
to the thermal equilibrium state ρeq. The figure presented in
Fig. 6(b) illustrates the spectrum of the target (GHZ) state,
achieved by applying a Ry(π/2) rotation on 13C as the read-
out operator. This state is prepared using a pulse sequence
generated by iGRAPE and added to the PPS. Additionally,
we conduct full-state tomography to reconstruct the density
matrices of both the PPS and the target states. In our NMR
setup, we initially obtain only the deviation of the density
matrix ρ� = ρ − 1/2N through NMR tomography. However,
it is important to note that this deviation cannot be consid-
ered as a quantum state. Hence, we employ postprocessing
techniques to derive density matrices as depicted in Fig. 6(c)
(the PPS) and Fig. 6(d) (the target GHZ state). This is achieved
by imposing constraints on the normalization [tr(ρ) = 1],
hermiticity (ρ = ρ†), and positive semi-definiteness (ρ � 0).
All these constraints are realized using the CVX toolbox in
MATLAB.

Thus, the reconstructed matrices fulfill all the requirements
for a quantum-state density matrix. The theoretical tomog-
raphy results for both PPS and GHZ state are depicted in
Figs. 6(e) and 6(f), respectively. The fidelity between a pure
state |ψ〉 and a density matrix ρ is defined as F (|ψ〉, ρ) =
|〈ψ | ρ̂|ψ〉|2. The reconstructed PPS in Fig. 6(c) exhibits a
fidelity of 99.29%, while the reconstructed GHZ state in
Fig. 6(d) demonstrates a fidelity of 98.25%.

2. For superconducting quantum systems

The superconducting quantum systems employed in this
study are based on a one-dimensional chain model, where
the coupling between qubits can be adjusted. The parameters,
such as the idle frequency denoted by ω and the anharmonicity
represented by η, are presented in Table III.

TABLE IV. Shaped pulses details of states preparation on superconducting quantum systems.

Number of qubits 2 4 6 8 10 12

iGRAPE pulse steps 320, 300 380, 320, 300 420, 360, 320, 300 440, 380, 340, 300 460, 440, 360, 320, 300 500, 420, 360, 320, 300
GRAPE pulse steps 620 1000 1400 1460 1840 1900
Transfer time (ns) 31 50 70 73 92 95

052603-11



YUQUAN CHEN et al. PHYSICAL REVIEW A 108, 052603 (2023)

The duration �t for each propagator U (n,m)
k in the journal

text is 0.05 ns, and the parameters of shaped pulses are shown
in Table IV.

APPENDIX C: BENCHMARK FOR HAAR
RANDOM STATES

We supplement a set of numerical tests here for the
section of Fig. 4 in the main text, to examine the performance
of both algorithms under Haar random states. We utilize
IBM’s QISKIT package to generate Haar random states. For the
cases ofeight qubits and five qubits, we generate 500 quantum
states for each scenario and prepare each generated state using
two different algorithms. From Fig. 7, it can be observed
that the von Neumann entropy corresponding to the generated
Haar random states mostly falls within a narrow range. The
runtime of both algorithms is also approximately similar to
the runtime of the von Neumann entropy shown in Fig. 4 of
the main text. Specifically, for eight qubits, iGRAPE has an
average runtime of 138.8 s for Haar random states, while
GRAPE has an average runtime of 389.4s . On average,
iGRAPE provides a speedup factor of 2.8 compared to
GRAPE, consistent with the performance under von Neu-
mann entropy shown in Fig. 4 of the main text. For the case
of five qubits, iGRAPE has an average runtime of 15.0 s
while GRAPE has an average runtime of 25.0 s; on aver-
age, iGRAPE provides a speedup factor of 1.67 compared
to GRAPE, again consistent with the performance under von
Neumann entropy shown in Fig. 4. Based on the numeri-
cal simulations, we find that the performance improvement
achieved by iGRAPE is primarily determined by the value of
von Neumann entropy associated with target states rather than
how those target states are obtained initially.

(a)

(b)

FIG. 7. Benchmark of the iGRAPE and the GRAPE algorithms
for Haar random states preparation. We generate 500 Haar random
states for each of the two cases corresponding to Fig. 4 and the
dashed line represents the average runtime of the algorithm. (a)
The runtime of the two algorithms in the case of eight qubits. (b) The
runtime of the two algorithms in the case of five qubits.
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