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Conditional phase gate between two photons through control of the interaction
time with a single atom in a cavity
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We show that the simultaneous interaction of two single-photon fields with a single atom in the V configuration
can, in principle, produce a conditional phase gate of arbitrarily high fidelity, for an appropriate choice of the
interaction time, as long as the fields can be described by a single temporal mode (as in an optical cavity); this
requires a “gated” interaction, where, e.g., dynamical coupling techniques could be used to get the fields in
and out of the cavity, and a large detuning induced by a strong external field could be used to turn the atom-field
interaction on and off at the right times. With these assumptions, our analysis shows that the largest gate fidelities
are obtained for a cavity containing a single atom, and that adding more atoms, in effect, “dilutes” the system’s
nonlinearity. We also study how spontaneous emission losses into noncavity modes degrade the fidelity, and
consider as well a couple of alternate atomic level schemes, namely, two- and five-level systems.
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I. INTRODUCTION AND SUMMARY

Single photons are, in many ways, ideal systems to be
used as qubits for quantum information processing tasks,
but the lack of a direct interaction between photons makes
conditional logic operations challenging, particularly in the
optical domain, where the single-photon–single-atom cou-
pling is too weak, in free space, to effectively mediate the
interaction. Nevertheless, the coupling can be substantially
increased by placing the atoms in an optical cavity, and a
number of schemes involving single atoms (or even ensembles
of atoms) in cavities have been proposed [1–3], and several
also demonstrated experimentally [4–6].

A common feature of all these systems, however, is that the
interaction is sequential: The two photons involved interact
with the cavity-atom system one at a time. One reason for
this is that (as was shown in [7]), in general, if two traveling
photons interact simultaneously with an ideal χ (3) medium,
in order to get a conditional phase shift, the interaction typi-
cally leaves them in a frequency-entangled state whose small
overlap with the initial state results in a very low gate fidelity
[8]. Subsequently, it was shown that this would also be the
case for a χ (2) medium, and also if the nonlinear medium
was placed in a cavity [9,10]. (See the introduction to [11]
for a detailed history of these and other difficulties in devising
passive, deterministic gates for optical photons.)

Eventually, a theoretical solution to the spectral entan-
glement problem for traveling photons was found to be,
essentially, to make the photon-photon interaction nonlocal
by spreading it coherently over many sites [11–14] or over
a suitably nonlocal medium [15,16]; however, these proposals
have not yet been demonstrated experimentally. An alternative
approach that would make use of a different atom-photon
coupling has also been suggested very recently [17].

Another way to avoid the spectral entanglement problem,
while taking advantage of the enhanced coupling provided

by an optical cavity, was proposed in [18,19]. Basically, this
would make use of “dynamical coupling” techniques (such as
discussed in [20]) to get the two photons wholly inside the
cavity first, then turn on the interaction with the nonlinear
medium, turn it off after a suitable time, and then reverse the
loading process to get the photons out with negligible wave-
packet distortion [21]. Since while the interaction is taking
place, the photons are described by a single temporal mode
(i.e., the cavity mode), no spectral entanglement is possible.

For the interaction, the authors of [18,19] focused primar-
ily on conventional nonlinear materials, which would require
extremely high nonlinearities to achieve the desired phase
shifts at the single-photon level. We explore here, instead,
the possibility of using a single, V-type atom as the “non-
linear medium,” where the photon-atom interaction could, in
principle, be turned off at will by, e.g., applying an external
field to the atom to induce a large detuning. We find that,
assuming perfect control and ideal (i.e., lossless) conditions,
it is possible to find parameters for which a conditional phase
(CPHASE) gate with arbitrarily large fidelity can be achieved.
This turns out to be nontrivial: As explained in Sec. II, our
result is actually based on the fact that efficient rational ap-
proximations exist to the irrational frequencies appearing in
the state evolution coefficients.

We need to note, at this point, that the possibility of using
a precise control of the interaction time between two photons,
each described by a single temporal mode, and an ensemble of
N atoms, to effect a CPHASE gate was originally suggested
by Ottaviani et al. [22,23], and, in fact, it was this work
that provided the original motivation for our research. As we
shall show here, however, the scheme only works optimally
for a single atom, as adding atoms, in effect, “dilutes” the
nonlinearity of the system until, in the limit of very large N ,
it essentially vanishes (i.e., the phase shift for two photons
is just twice the phase shift for a single photon). This, the
second main result of our paper, is established in detail for
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FIG. 1. The symmetric V configuration. Fields a and b (same
frequency, different polarization) connect the ground state |g〉 to the
excited states |ea〉 and |eb〉, respectively.

the V system in Sec. III. In Sec. IV, and for completeness, we
also explore the suggestion of [22,23] of extending the system
to five levels with a couple of strong driving fields, to possibly
take advantage of electromagnetically induced transparency
(EIT) to mitigate the loss of fidelity due to spontaneous
emission.

As noted above, most of our paper focuses on the V system,
for several reasons: It is a reasonable simplification of the
scheme of Ottaviani et al. [22,23] (superior, in fact, if losses
are negligible, as shown in Sec. IV); it has been at the heart
of several earlier proposals (e.g., [3,11,12,14]); and it seems
especially suited to work with a polarization encoding. We
note, however, in Sec. V, that our method would work as
well with an ordinary two-level atom and a two-rail encoding,
using a scheme similar to that proposed in [24]. This might,
therefore, serve as an alternative to the scheme proposed in
Sec. VI C of [19]. This and other related issues are further
discussed in the conclusions (Sec. VI).

II. C-PHASE GATE USING A SINGLE V-TYPE ATOM

A. The lossless case

In this section, we consider the interaction of one atom
in the V configuration (as shown in Fig. 1), with two field
modes, a and b, with different polarizations, which can ini-
tially contain, at most, one photon each. The single-temporal
mode assumption implies that the interaction takes place in an
optical cavity. This can, in principle, be set up by first loading
the photonic traveling fields into the cavity, using techniques
such as described in Refs. [18–20]; the frequency-conversion
process used to this end needs to preserve the individual
polarizations. The finesse of the cavity at the frequency of the
a and b modes is assumed to be essentially infinite. We also
assume this frequency to be far detuned from the initial atomic
transition frequency, so no interaction between the atom and
the fields takes place during the loading process. At t = 0,
we assume the atom is brought into (near) resonance with the
fields, and hence allowed to interact with them for 0 < t < T .
At T , the interaction is stopped, by again bringing the atom far
from resonance, and the fields are extracted from the cavity by
the reverse of the frequency-conversion process used to load
them in.

We assume a symmetric arrangement with equal detun-
ings and coupling constants for both modes, for simplicity;
the problem is analytically solvable also without these as-
sumptions, and we have verified that the best results (i.e.,
highest gate fidelities) are obtained under these conditions.
The Hamiltonian, in an interaction picture for the fields, is
then

H = h̄δ|ea〉〈ea| + h̄δ|eb〉〈eb| + h̄g(|ea〉〈g|a + |eb〉〈g|b +H.c.).
(1)

We have made the dipole and rotating-wave approximations,
which are standard for cavity QED in the optical domain.

With one photon initially in each mode and the atom start-
ing in the ground state |g〉, the system’s state at any later time
can be written as

|�(t )〉 = C(2)
ea |01〉|ea〉 + C(2)

eb |10〉|eb〉 + C(2)
g |11〉|g〉, (2)

leading to the equations of motion,

Ċ(2)
ea = −iδC(2)

ea − igC(2)
g ,

Ċ(2)
eb = −iδC(2)

eb − igC(2)
g ,

Ċ(2)
g = −igC(2)

ea − igC(2)
eb . (3)

In the case only one of the photons, say, the a photon, is
initially present, the relevant equations would instead be

Ċ(1)
ea = −iδC(1)

ea − igC(1)
g ,

Ċ(1)
g = −igC(1)

ea . (4)

These equations are easily solved, with the results, for the
single-photon case,

C(1)
g (t ) = e−iδt/2

[
iδ

2ω1
sin ω1t + cos ω1t

]
,

C(1)
ea (t ) = −ige−iδt/2 sin ω1t

ω1
, (5)

and, for the two-photon case,

C(2)
g (t ) = e−iδt/2

[
iδ

2ω2
sin ω2t + cos ω2t

]
,

C(2)
ea (t ) = C(2)

eb (t ) = −ige−iδt/2 sin ω2t

ω2
, (6)

where

ω1 = 1
2

√
δ2 + 4g2,

ω2 = 1
2

√
δ2 + 8g2. (7)

In order to carry out a successful CPHASE gate on this pair
of photons, we would ideally like to choose an interaction
time T such that the atom returns to the ground state with
unit probability at that time, independently of whether one or
both photons are initially present, so that

C(1)
g (T ) = eiφ1 , C(2)

g (T ) = eiφ2 , (8)

and with the phases φ1 and φ2 such that

φ2 − 2φ1 = π. (9)
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In what follows we will often refer to φ2 − 2φ1 as the nonlin-
ear phase shift since φ2 = 2φ1 is just what is expected from
linear evolution.

While it is not actually possible to satisfy Eqs. (8) and
(9) exactly for a finite interaction time T , it is, in principle,
possible to get arbitrarily close for a sufficiently long T . This
is most easily seen in the resonant case, δ = 0, where C(1)

g =
cos(gt ) and C(2)

g = cos(
√

2gt ). Equations (8) and (9) would
then be satisfied if we could simultaneously have gT = nπ ,
with n an integer (so φ1 = π or 2π ), and

√
2gT = mπ , with

m an odd integer. This would require
√

2 to be of the form
m/n, i.e., to be a rational number, which it is certainly not;
however, a result in number theory [25] shows that there exist
rational approximations to

√
2 (and, indeed, to any irrational

number) with the property that∣∣∣√2 − m

n

∣∣∣ <
1

n2
, (10)

with n arbitrarily large. One then only has to choose one
such approximation with odd m, and let gT = nπ , to have
|C(1)

g (T )| = 1 and C(2)
g (T ) = cos(mπ + ε), where ε ∼ 1/n.

Note that the 1/n2 bound in (10) plays an essential role
here: If the difference between

√
2 and the fractional approx-

imation m/n only decreased as 1/n, then making gT = nπ

would make
√

2gT = √
2nπ ∼ [m/n + O(1/n)]nπ = mπ +

πO(1), and there would be no way to bound the error in
C(2)

g (T ).

The best sequence of rational approximations to
√

2,
as obtained from its partial fraction expansion [26],
is 1, 3/2, 7/5, 17/12, 41/29, . . . , pk/qk, . . ., with pk+1 =
pk + 2qk and qk+1 = pk + qk (note that the first of this rela-
tions implies that, conveniently, all the numerators are odd). It
is easy to check that the relatively rough approximation

√
2 �

17/12 already yields C(2)
g (T ) = cos(12

√
2 π ) = −0.9957, for

gT = 12π .
Instead of making C(1)

g (T ) exactly equal to 1, one might try
a slightly different value of T that makes C(1)

g (T ) somewhat
smaller than 1 but C(2)

g (T ) closer to −1. A way to quantify,
in a single number, the potential impact of these tradeoffs is
provided by a gate fidelity that can be defined, for this system,
in the following way. Assume the initial state of the atom-
field system to be |�(0)〉 = (α00|00〉 + α01|01〉 + α10|10〉 +
α11|11〉)|g〉. Then, ideally, we would want the state of the field
at the time T to be

|
ideal〉 = α00|00〉 + α01eiφ1 |01〉 + α10eiφ1 |10〉−α11e2iφ1 |11〉,
(11)

where the phase φ1 is arbitrary, and given by eiφ1 =
C(1)

g /|C(1)
g |; what matters is that Eq. (9) be satisfied, as indi-

cated by the minus sign in Eq. (11).
We can then define the gate fidelity by

F = 〈
ideal|ρ f |
ideal〉. (12)

Here, ρ f = Trat [|�(T )〉〈�(T )|] is the reduced density oper-
ator for the field after tracing over the atomic states, and
the overbar means that the quantity 〈
ideal|ρ f |
ideal〉 is to be
averaged over the coefficients αi j of the initial state, assuming
them to be uniformly distributed in magnitude between zero

FIG. 2. Contour plots of the gate fidelity (12) as a function of
detuning and interaction time.

and 1, with random phases, and satisfying
∑ |αi j |2 = 1. This

formal average yields

F = 1

10

{
1 + 3

∣∣C(1)
g

∣∣2 + ∣∣C(1)
e

∣∣2 + ∣∣C(2)
g

∣∣2 + ∣∣C(2)
e

∣∣2 + 2
∣∣C(1)

g

∣∣
− 1∣∣C(1)

g

∣∣2

(
1 + 2

∣∣C(1)
g

∣∣)Re
[(

C(1)
g

∗)2
C(2)

g

]}
, (13)

where |C(1)
e |2 and |C(2)

e |2 are the occupation probabilities of
either state |ea〉 or |eb〉 in the single- and two-photon cases,
respectively. [Note that in the lossless case considered in this
subsection, one could use |C(1)

e |2 + |C(1)
g |2 = 1 and 2|C(2)

e |2 +
|C(2)

g |2 = 1 to further simplify the result (13).]
Figure 2 shows a contour plot of F as a function of δ/g

and gT . The maxima visible along the vertical axis (δ = 0),
specifically for gT = 6.473 and 15.629, correspond to the first
two continued fraction approximations to

√
2, namely, 3/2

and 7/5, and despite their crudeness they already yield F =
0.9714 and 0.9950, respectively. The next term, 17/12, men-
tioned above but not visible in the figure, as it corresponds to
the rather large gT � 12π � 37.7, would yield F = 0.9992.
(Note that in a practical application, one could probably not
make gT very large since the effective interaction time T will
be limited by losses, as seen in the following Sec. II B.)

Also of potential interest are the fidelity peaks visible
in Fig. 2 for nonzero detuning δ. The mathematical expla-
nation for these peaks follows along similar lines to the
zero-detuning case. If, for some δ and T , one can make
ω1T � nπ and ω2T � mπ , then by Eqs. (5) and (6) one has
C(1)(T ) � (−1)ne−iδT/2 and C(2)(T ) � (−1)me−iδT/2. In that
case, 2φ1 � −δT and φ2 � −δT/2 if m is even, or φ2 �
−δT/2 + π if m is odd. The conditions (8) and (9) will then
be satisfied if one can find three integers, m, n, and q, such that

1
2

√
δ2 + 4g2T � nπ,

1
2

√
δ2 + 8g2T � mπ, 1

2δT � qπ, (14)
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with m and q of opposite parity. This requires n, m, and q to
approximately satisfy

2n2 = m2 + q2, (15)

with m > n > q.
All the maxima seen in Fig. 2 correspond to approximate

solutions of this equation, and it is easy to see that the ap-
proximations can be improved, and the gate fidelity along
with them, indefinitely, for long enough times, as in the δ = 0
case. For example, letting n = 3q, Eq. (15) becomes 17q2 =
m2, and one can then choose m and q from the successive
optimal approximations to

√
17: 4/1, 33/8, 268/65, . . . [27].

The first one, m = 4, q = 1, when substituted in (14), yields
δ/g = 0.707 and gT = 8.886; the actual maximum of F is
at δ/g = 0.699 and gT = 8.762, and equals 0.9849. [For ref-
erence, the largest maximum of F in the region shown in
Fig. 2 occurs at δ/g = 1.3881 and gT = 18.007, and equals
0.9968; the corresponding values of n, m, and q in Eq. (14)
are (7,9,4).]

Before we proceed to consider the impact of losses, it may
be worthwhile to recall here the results we obtained in [9] for
the same system (two photons incident on a cavity containing
a V-system atom), but without the “gating” proposed here. In
that case, where the photons are described by wave packets
that simply enter and leave the cavity by transmission through
the mirror and interact with the atom continuously during this
process, the maximum achievable gate fidelity (optimizing
over all the parameters g, δ, κ , the cavity bandwidth, and σ ,
the pulse’s spectral width) is F = 0.556 for a pulse with a
Lorentzian spectrum, f0(ω) ∝ 1/[(ω − ω0)2 + σ 2].

B. Impact of losses (spontaneous emission)

The possibility that the atom may decay by emitting a
photon into a mode other than a or b can be approximately
treated by making the replacement δ → −iγ + δ in Eqs. (3)
and (4) (note that γ here is an amplitude decay rate). This
“pure-state approximation,” corresponding to evolution with
a non-Hermitian Hamiltonian [Eq. (1) with δ → −iγ + δ],
ignores the fact that the atom must return to the ground
state after a spontaneous emission event. It is, nevertheless,
often used in quantum optics to treat weakly driven systems,
if one is only concerned with effects of first order in the
driving field, since changes to the ground-state population
are of second order in the driving, but for our strongly cou-
pled system, it would not do (beyond, perhaps, providing
an order-of-magnitude estimate): A proper calculation of the
gate fidelity for our system, in the presence of spontaneous
emission losses, requires a full density-matrix treatment (see,
e.g., [28,29]).

Nevertheless, as shown in the Appendix, we have found
that this full treatment simplifies to some extent for our system
because it is not driven externally, and hence the Hamiltonian
preserves the excitation number, while the (irreversible) spon-
taneous decay only couples manifolds of states with different
excitation numbers in the downward direction (i.e., from two
excitations to one to zero). As a result of this, one can just
use the pure-state approximation (with the replacement δ →
−iγ + δ) to calculate the evolution in the two-excitation man-
ifold, and then use the terms obtained in that way as source

FIG. 3. Solid line: The unconditional gate fidelity (16) as a func-
tion of γ /g, for optimal values of gT and δ/g. Dashed lines: The
conditional gate fidelity for the same parameters.

terms for the evolution in the lower manifolds. The final result
for the gate fidelity ends up including the same terms shown in
Eq. (13), only now calculated from the non-Hermitian Hamil-
tonian evolution, plus a few additional terms:

F = [Eq. (13), with δ → −iγ + δ] + 1
10ρ

(1)
00g,00g

+ 1
20ρ

(2)
00g,00g + 1

10ρ
(2)
00e,00e + 1

10ρ
(2)
01g,01g. (16)

Here, ρ
(1)
00g,00g (probability to be in the ground state with zero

photons, when starting from the ground state with one photon)
is calculated from the single-photon results as

ρ
(1)
00g,00g = 2γ

∫ T

0

∣∣C(1)
e (t )

∣∣2
dt, (17)

and the other terms correspond to the two-photon case (equa-
tions of motion for them are given in the Appendix). Note
that the symmetry of the system has been used throughout;
in particular, 1

10ρ
(2)
10g,10g = 1

10ρ
(2)
01g,01g, where the first pair of

subscripts refers to the a and b photons, respectively.
Figure 3 shows the gate fidelity as a function of γ calcu-

lated from the density matrix, optimized at every point over
T and δ, with 0 � gT � 20 and 0 � δ/g � 2 (the parameter
region covered in Fig. 2). Specifically, in the range 0 � γ /g �
0.005, we have taken gT = 18.01, δ = 1.388g; between
γ = 0.005g and γ = 0.015g, we take gT = 8.76, δ = 0.7g;
between γ = 0.015g and γ = 0.07g, gT = 6.473, δ = 0;
and between γ = 0.07g and γ = 0.155g, gT = 2.695, δ = 0.
These choices of T and δ roughly correspond to the different
maxima shown, for γ = 0, in Fig. 2; note how as γ increases,
a shorter time evolution is favored, as well as (eventually) the
choice δ = 0.

Besides the “unconditional” fidelity just discussed, one
may be interested in the conditional fidelity, that is, the (gate)
fidelity that one would obtain in a run of the experiment in
which no photons were lost to spontaneous emission. This
can be easily calculated by ignoring the additional terms in
Eq. (16) and renormalizing the pure-state wave function (with
δ → −iγ + δ) before calculating (13). The result is shown as
the dashed line in Fig. 3, for the same values of T and δ as
the corresponding conditional fidelity. The stepwise decreases
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seen there are due to the fact that the successive choices of
T and δ made as γ increases become optimal because they
reduce the probability of a spontaneous emission relative to
the previous choice, but they do lead to a smaller gate fidelity
when spontaneous emission does not happen at all.

Figure 3 clearly shows that one needs to have a very small
ratio of γ to g in order to have a substantial unconditional
fidelity in this setup. This was to be expected since, as we
showed in the previous section, getting a high fidelity in
this system requires a relatively large value of gT , and the
probability of a spontaneous emission event over the time
T (causing the loss of a photon, and hence an unavoidable
decrease in fidelity) will scale as 2γ T = 2gT (γ /g). For this
reason, in the next couple of sections, we will discuss schemes
that have been proposed to either enhance g or reduce γ ,
always in the context of a single-mode treatment of the two
quantized fields.

III. MULTIPLE V-TYPE ATOMS

It is well known that for some atom-field interaction pro-
cesses, having a large number of atoms N at a given field
location (in a small volume compared to the wavelength)
leads to an effective enhancement of the atom-field coupling
g by a factor of

√
N . However, while this is true for linear

processes, and even for some nonlinear processes when the
density of photons is sufficiently large, it does not work for
single-photon nonlinear processes like the one considered
here.

The key fact that needs to be appreciated is that in this
scheme, in order for one photon to affect the other, they both
need to be interacting with the same atom. The essence of the
V-atom nonlinearity is that an individual atom cannot absorb,
say, an a photon if it has absorbed a b photon. Introducing
more atoms would indeed make it possible for any of them to
interact with either photon (thus increasing the single-photon
coupling), but it would also make it much more likely for the
two photons to interact with different atoms, in which case the
joint interaction presented in Sec. II A would just not happen.
We should then expect the effective nonlinearity (specifically,
the nonlinear phase shift φ2 − 2φ1) to actually go down as N
increases.

This can indeed be shown to be the case, formally, as
follows. Let the Hamiltonian for the N-atom, two-photon
system be

H = h̄δ

N∑
i=1

|ea〉i〈ea| + h̄δ

N∑
i=1

|eb〉i〈eb|

+ h̄g
N∑

i=1

(|ea〉i〈g|a + |eb〉i〈g|b + H.c.), (18)

where the bras and kets shown act only on the space of the ith
atom. This is a straightforward generalization of the single-
atom Hamiltonian, under the assumption that all the atoms
are close enough (well within a wavelength) to see the same
field and hence the same coupling constant g [30]; we fur-
ther assume, as in Sec. II, that both transitions have identical
strengths and detunings. The state vector of the system when
only one photon (say, a) is initially present and the atoms all

start in the collective ground state |gall〉 can be written as

|�(t )〉(1) = C(1)
g (t )|gall〉|1〉a + C(1)

e (t )|ψa〉|0〉a. (19)

Here,

|ψa〉 = 1√
N

(
N∑

i=1

|ea〉i〈g|
)

|gall〉 (20)

denotes a normalized, completely symmetric state in which
one of the atoms is in the excited state |ea〉, and all the others
are in the ground state. The state |ψb〉 is defined analogously.
When both photons are initially present, the evolution of the
system is

|�(t )〉(2) =C(2)
g (t )|gall〉|11〉ab + C(2)

e (t )|ψa〉|01〉ab

+ C(2)
e (t )|ψb〉|10〉ab + C(2)

ee (t )|ψab〉|00〉ab, (21)

where

|ψab〉 = 1√
N − 1

(
N∑

i=1

|ea〉i〈g|
)

|ψb〉

= 1√
N − 1

(
N∑

i=1

|eb〉i〈g|
)

|ψa〉 (22)

is again a symmetric, normalized state in which one atom is
in state |ea〉, another one is in state |eb〉, and the rest are in the
ground state. From the basic nature of |ψa〉, |ψb〉, and |ψab〉,
and taking into account their normalization, it is clear that the
following results hold:(

N∑
i=1

|ea〉i〈ea|
)

|ψa〉 = |ψa〉,
(

N∑
i=1

|ea〉i〈ea|
)

|ψab〉 = |ψab〉,
(

N∑
i=1

|g〉i〈ea|
)

|ψa〉 =
√

N |gall〉,
(

N∑
i=1

|g〉i〈ea|
)

|ψab〉 = √
N − 1|ψb〉,

(23)

so the Schrödinger equation, with the Hamiltonian (18), yields

Ċ(1)
e = −ig

√
N C(1)

g − iδC(1)
e ,

Ċ(1)
g = −ig

√
N C(1)

e (24)

for the single-photon case, and

Ċ(2)
ee = −2iδC(2)

ee − 2ig
√

N − 1C(2)
e ,

Ċ(2)
e = −iδC(2)

e − ig
√

N − 1C(2)
ee − ig

√
N C(2)

g , (25)

Ċ(2)
g = −2ig

√
N C(2)

e

for the two-photon case.
In the limit where N is large, so that one can approximate√

N − 1 � √
N , it is easy to see that the solutions of Eqs. (24)

and (25) satisfy

C(2)
g = C(1)

g
2
, C(2)

e = C(1)
g C(1)

e , C(2)
ee = C(1)

e
2
, (26)
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FIG. 4. Solid line: The unconditional gate fidelity as a function of
γ /g, for optimal values of gT and δ/g, for a single atom [Eq. (16)].
Dashed line: The unconditional gate fidelity (see the Appendix for
the explicit formula), for two atoms, also optimized with respect to
gT and δ/g.

which means the N-atom two-photon system reduces, for-
mally, to two independent N-atom, one-photon systems. In
particular, we see, from the first of Eqs. (26), that one will
always have φ2 = 2φ1, and hence no CPHASE at all in this
limit.

We do note that this result depends on the approximation√
N − 1 � √

N , which even for large N will cease to be
valid for long enough times, such that gt/

√
N ∼ 1; however,

the whole point of bringing in N atoms was to increase the
effective coupling so one could have a substantial effect for
shorter times, i.e., times such that g

√
Nt ∼ 1 while γ t 
 1.

If one has to wait for times t ∼ √
N/g, then the requirement

γ t 
 1 becomes even harder to satisfy than in the single-atom
problem.

Although this clearly shows that a large number of atoms
is undesirable, one may still wonder about what happens for a
small number of atoms. For δ �= 0, solving the system (25) an-
alytically requires solving a cubic equation that is, in general,
much too unwieldy to be useful, but for δ = 0, the problem
simplifies substantially and the solution for C(2)

g is

C(2)
g (t ) = N − 1 + N cos(

√
4N − 2 gt )

2N − 1
. (27)

It is clear that this can never be equal to −1, unless N = 1;
in fact, the largest (in magnitude) negative value it can take is
−1/(2N − 1), which is only equal to −1/3 for N = 2 and
decreases monotonically in magnitude with N . This means
that at least for δ = 0, the N > 1 atom system, unlike the
N = 1 case, cannot get arbitrarily close to unit fidelity.

Figure 4 shows the results of a full numerical study of the
case N = 2, including the effects of detuning and spontaneous
emission losses, as a dashed line, compared to the equivalent
result for a single atom (solid line). For each point, F has
been optimized with respect to both gT and δ/g, over the same
space of parameters shown in Fig. 2, and the density matrix
treatment has been used for both calculations (details can be
found in Sec. 2 in the Appendix). It is apparent that adding
even just one atom to the system substantially degrades its

FIG. 5. The five-level system.

performance as a CPHASE gate, especially as the spontaneous
emission losses increase.

IV. THE FIVE-LEVEL SCHEME
WITH TWO CLASSICAL FIELDS

It has long been known that electromagnetically induced
transparency (EIT) can increase the effective optical nonlin-
earity of an atomic gas, while at the same time decreasing its
absorption, i.e., making it more transparent [31], and, in fact, a
proposal to use this “giant Kerr effect” for quantum logic was
put forth by Lukin and Imamoglu [32]. This idea motivated
the authors of [22,23] to consider the potential for a CPHASE
gate of the five-level, “M”-configuration scheme illustrated in
Fig. 5, where the two auxiliary levels |ga〉 and |gb〉 are coupled
by external, classical fields (with Rabi frequencies �) to the
excited states |ea〉 and |eb〉, to provide EIT in the |g〉 → |ea〉
and |g〉 → |eb〉 transitions. The purpose of this section is to
explore this system fully, in the single-atom regime (it is easy
to verify that the argument against multiple atoms presented
in the previous section applies to this scheme as well [33]).

It may be worth pointing out, at the outset, that it is not
immediately obvious how EIT would actually help here. The
standard derivation of EIT involves a perturbative treatment
of the probe field (in this case, the single-photon fields a
and b) [34,35]. This implicitly assumes that the interaction
of each probe photon with each atom is relatively weak, and
hence both the absorption and the phase shift result from
the cumulative effect of many atoms interacting with (essen-
tially) a classical probe field. This is the complete opposite
of the situation considered here, where each photon needs to
be coupled as strongly as possible to a single atom. Indeed,
the results we show below are not really very EIT-like, and we
believe it is best to just think of the auxiliary fields and levels
as a way to introduce an additional parameter in the system—
formally, the Rabi frequency �—that makes it possible, to
some extent, to satisfy the conditions (8) and (9) somewhat
better than the three-level system in the presence of losses.

Figures 6 and 7 illustrate these points. Figure 6 shows the
gate fidelity for the five-level system, as a function of γ , for
different values of the auxiliary fields �. We find that for
small γ , the five-level system always performs worse than
the three-level system. For γ T larger than about 0.07 in the
figure, however, it is possible to find a value of � that brings
the five-level fidelity somewhat above the three-level curve
(which here corresponds to � = 0). Nevertheless, it appears
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FIG. 6. Gate fidelity for the five-level system, as a function of
γ , for different values of � (optimized for T and δ in the intervals
0 � gT � 30 and 0 � δ � 10).

that as � increases past some optimal value, the improve-
ment over the � = 0 case disappears or is confined to larger
and larger values of γ , where the fidelity is already quite
low. Figure 7, which shows the gate fidelity as a function
of � for different values of γ , confirms this and also sug-
gests the existence of an optimum value or range of values
of �.

As it turns out, however, Figs. 6 and 7 do not tell the
whole story. Each point in the graphs has been optimized
with respect to T and δ in the intervals 0 � gT � 30 and
0 � δ/g � 10, but many of the values shown correspond,
in fact, to either gT = 30 or δ/g = 10, meaning that larger
values are possible, in principle, if either T or δ are increased.
We find, in fact, that the optimal values for given � and γ

are found by increasing both gT and δ/g together, keeping the
ratio g2T/δ constant. In practice, of course, we would expect
the maximum value of T to be limited by some practical
considerations (for instance, if the interaction takes place in
a cavity, by the decay time of the field in the cavity, which
we have not considered here at all), and similarly δ may be
limited by the possibility of coupling to nearby atomic levels,

FIG. 7. Gate fidelity for the five-level system, as a function of
�, for different values of γ (optimized for T and δ in the intervals
0 � gT � 30 and 0 � δ � 10).

so Figs. 6 and 7 are probably a fair representation of what
one might qualitatively expect in a realizable experimental
setting. Nevertheless, a full study of the asymptotic behavior
of the five-level system, for large T and δ, is possible and not
exempt of interest, so we will devote the rest of this section
to it.

We begin with the equations of motion for the wave-
function amplitudes in the “quasi-pure state” approximation.
When both photons are initially present, we have

Ċ(2)
ea = −(γ + iδ)C(2)

ea − igC(2)
g − i�C(2)

ga ,

Ċ(2)
g = −igC(2)

ea − igC(2)
eb ,

Ċ(2)
eb = −(γ + iδ)C(2)

eb − igC(2)
g − i�C(2)

gb ,

Ċ(2)
ga = −i�C(2)

ea ,

Ċ(2)
gb = −i�C(2)

eb ,

(28)

and when only one is present (say, the a photon), we have

Ċ(1)
ea = −(γ + iδ)C(1)

ea − igC(1)
g − i�C(2)

ga ,

Ċ(1)
g = −igC(2)

ea ,

Ċ(1)
ga = −i�C(2)

ea . (29)

Both (28) and (29) can be solved with the initial condition
Cg(0) = 1, with the results, for the ground-state amplitude at
the time t ,

C(1)
g = �2

g2 + �2
+ g2

g2 + �2
e− 1

2 t (γ+iδ)

× 1

2

[
e−μ1t/2

(
1 − γ + iδ

μ1

)
+ eμ1t/2

(
1 + γ + iδ

μ1

)]
,

μ1 ≡
√

(γ + iδ)2 − 4�2 − 4g2, (30)

and

C(2)
g = �2

2g2 + �2
+ g2

2g2 + �2
e− 1

2 t (γ+iδ)

×
[

e−μ2t/2

(
1 − γ + iδ

μ2

)
+ eμ2t/2

(
1 + γ + iδ

μ2

)]
,

μ2 ≡
√

(γ + iδ)2 − 4�2 − 8g2. (31)

These results immediately show that if � is allowed to become
very large, one will simply have C(1)

g = C(2)
g = 1, and the

desired nonlinear phase shift will vanish. This makes sense
physically: A very large � produces a Stark shift that takes
the atom out of resonance with the a and b photons in such a
way that the interaction effectively vanishes.

The interesting thing, however, is that it is formally possi-
ble to take the photons very far from resonance in another way
by making δ large—so large that, in effect, the probability of a
spontaneous emission event becomes negligible—and yet, as
long as � remains finite, one can still approximately achieve
the desired phase shift, albeit for very long times.

052601-7



ARKAN HASSAN AND JULIO GEA-BANACLOCHE PHYSICAL REVIEW A 108, 052601 (2023)

The precise result follows in a very straightforward way
from Eqs. (30) and (31). Note that for δ  γ , g,� one
has

μ1 = γ + iδ + 2i

δ
(g2 + �2) + O

(
1

δ2

)
,

μ2 = γ + iδ + 2i

δ
(2g2 + �2) + O

(
1

δ2

)
, (32)

and, consequently, we have the asymptotic forms

C(1)
g � �2

g2 + �2
+ g2

g2 + �2
eit (g2+�2 )/δ,

C(2)
g � �2

2g2 + �2
+ 2g2

2g2 + �2
eit (2g2+�2 )/δ. (33)

One can now see how the conditions (8) and (9) can be
approximately satisfied. To begin with, �/g should be suffi-
ciently small for the second term on the right-hand side of
Eqs. (33) to dominate over the first; then, to get Eq. (9), it
would suffice to have

t

δ
(2g2 + �2) − 2

t

δ
(2g2 + �2) = − t

δ
�2 = −nπ, (34)

with n odd. Note that with small �/g, this can only be satisfied
for very large values of gt ; δ/g itself is required to be very
large in order for the approximation (32) to be valid, and
we require, additionally, δ  γ ,�. The value δ = 10g in the
optimized fidelity plots of Figs. 6 and 7 is, in fact, sufficiently
large for (32) to be approximately valid; the optimum value
of � seen then in the graphs, about 0.8g, is the best compro-
mise between trying to keep � small enough for |Cg| ∼ 1 in
Eqs. (33) and large enough for (34) to be approximately valid,
given the constraint gT � 30.

V. A TWO-LEVEL ATOM SCHEME

The three- (or five-)level scheme considered so far is suit-
able for a CPHASE gate when a “single-rail” encoding is used
(i.e., the logical 0 and 1 states correspond to single-photon
states with orthogonal polarizations [36]). However, by mak-
ing use of a setup such as the one shown in [24], one could
apply these ideas to a dual-rail encoding, the idea being that
an initial state |ε1, ε2〉, with ε1, ε2 ∈ {0, 1}, becomes a cavity
field state with ε1 + ε2 photons. Then a single two-level atom
can be used to produce the desired phase shift between the
single-photon and two-photon states.

With a single two-level atom in the cavity, the results for
C(1)

g (t ) and C(2)
g (t ) turn out to be identical to those given

by Eqs. (5)–(7). The expression for the gate fidelity is also
identical to Eq. (13), except for the absence of the terms
involving the excited-state amplitudes. This is because, with
a dual-rail encoding, the number of physical photons involved
in a two-qubit operation is always two, regardless of the initial
logical state. Hence, if the atom is left in an excited state at the
end of the interaction time, the final field state will necessarily
be orthogonal to the ideal one since it will have one photon
less. This means that the gate fidelity will always be slightly
smaller than for the single-rail, three-level scheme, although it
too can, in principle, be made arbitrarily large for sufficiently
large times.

As was the case for the system considered in Sec. III,
here also adding more atoms has a detrimental effect and
eventually causes the nonlinearity to vanish. If we write the
state of the N-atom, one-photon system in the form

|�(t )〉(1) = C(1)
e |0〉|ψe〉 + C(1)

g |1〉|gall〉, (35)

where |ψe〉 is defined in a form analogous to |ψa〉 in Eq. (20),
the equations of motion for C(1)

e and C(1)
g are identical to

Eqs. (24). On the other hand, for the N-atom, two-photon case,
the overall state must be written as

|�(t )〉(2) = C(2)
ee |0〉|ψee〉 + C(2)

e |1〉|ψe〉 + C(2)
g |2〉|gall〉, (36)

where now, instead of Eq. (22), we must define

|ψee〉 = 1√
2(N − 1)

(
N∑

i=1

|e〉i〈g|
)

|ψe〉, (37)

and the equations of motion read

Ċ(2)
ee = −2iδC(2)

ee − ig
√

2(N − 1)C(2)
e ,

Ċ(2)
e = −iδC(2)

e − ig
√

2(N − 1)C(2)
ee − ig

√
2N C(2)

g ,

Ċ(2)
g = −ig

√
2N C(2)

e . (38)

Now it is easy to see that in the limit N  1, the solution to
the system (38) can be written in terms of the solution to the
system (24) as

C(2)
g = C(1)

g
2
, C(2)

e =
√

2C(1)
g C(1)

e , C(2)
ee = C(1)

e
2
, (39)

and therefore, as before, φ2 = 2φ1.
As mentioned in Sec. I, the authors of [19] did briefly

consider a scheme in which the nonlinear phase shift would
result from the interaction with a two-level atom, rather than a
second- or third-order nonlinearity. In their scheme, a control
field and a nonlinear medium would be used to bring the
frequency of the cavity field, initially off-resonance with the
atom, into resonance, and off again. They found numerically
a shape for a control pulse that achieved unit fidelity, under
lossless conditions. Our scheme here may be regarded as a
variation on theirs, where we assume the atom-field interac-
tion is turned on and off abruptly, as opposed to gradually.

VI. CONCLUSIONS

The goal of this research was to consider—and, where
necessary, clarify—the potential for quantum logic of systems
of the Jaynes-Cummings type, i.e., single or multiple atoms
interacting with single temporal modes, containing one or two
photons, over a finite time. Our two main results are (1) that
(within the scope of such models), gate fidelities arbitrarily
close to 1 can be achieved for some of these systems if losses
(including cavity losses) are neglected, and (2) that using more
than one atom is suboptimal, and a very large number of atoms
actually causes the useful phase shift to go to zero.

Our analysis has entirely neglected the cavity losses, i.e.,
it has assumed essentially a cavity of “infinite” finesse at
the operating frequency [20]. We expect that cavity losses
will degrade the system’s performance in a way similar to
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spontaneous emission losses (see, also, the loss analysis in
[18]). Alternatively, we could say that the fidelities we have
calculated are all actually conditioned on no photons being
lost through cavity losses.

Optical cavities with low values of γ /g, and also (to a
lesser extent) κ/g, have been reported: For example, γ /g =
0.45 and κ/g = 0.37 for the conventional optical cavity in
[4], and γ /g = 0.014 and κ/g = 0.25 for the “optical cavity
on a chip” of [37]. In principle, if the latter value of κ/g
could be reduced by an order of magnitude, gate fidelities
very close to 1 should be possible with our setup. We note
that in a relatively recent review article, Chang et al. [38]
have projected that nanocavities could in the future achieve
single-atom cooperativities (g2/κγ ) of the order of 103 and
even 104 (see Fig. 6 of [38]), although it is not clear how this
improvement of up to two orders of magnitude over recent
values would be split between g/κ and g/γ .

Although the above numbers appear hopeful, the real ques-
tion is how large an atom-cavity coupling could be achieved
in the dynamically coupled setups envisioned in [18–20]. We
are unable to answer this, but note that a single two-level atom
was already considered as a potential candidate for a nonlinear
medium in [19], and also that the nanocavities envisioned in
[38] would appear to be consistent, in this regard at least,
with the small mode volumes that appear to be required in
the analysis in [18,19].

Another relevant question is that since any attempt to real-
ize this system in practice would require making use of optical
nonlinearities to load and unload the cavities, would there
be anything to be gained by using an atom for the nonlinear
phase shift instead of the nonlinear materials themselves (as
suggested in [18])? An immediate answer is that the scheme
in [18] requires, for the phase shift, very large optical nonlin-
earities at the single-photon level, whereas the loading and
unloading of the cavity can, in principle, be achieved with
reasonable nonlinearities as long as the auxiliary field is strong
enough. Moreover, it is not immediately apparent why the
large single-photon nonlinearities assumed in [18] would not
suffer from the phase noise problem originally pointed out in
[39,40], at least for the χ (3) case.

The situation is different with regard to the two-level atom
scheme presented in Sec. VI.C of [19]. This can be regarded
as a variation of our scheme involving a gradual turning
on and off of the interaction. From a theory viewpoint, our
approach is simpler in that it allows for a largely analytical
treatment and does not require numerically searching for an
optimal control pulse. From an experimental viewpoint, a fair
comparison of the two approaches would probably require
a detailed analysis based on specific parameters. Such an
analysis, however, is beyond the scope of the present paper.

Finally, we note that (as we mentioned in [21]) recent
developments in circuit quantum electrodynamics might also
make a possible realization of this scheme with superconduct-
ing qubits worth considering.
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APPENDIX: DENSITY-MATRIX GATE
FIDELITY CALCULATIONS

1. Single V-type atom

The density matrix equation of motion for this system is

ρ̇ = − i

h̄
[H, ρ] − γ

∑
e=ea,eb

(ρ|e〉〈e| + |e〉〈e|ρ

− 2|g〉〈e|ρ|e〉〈g|). (A1)

In this expression, the first two terms under the summation
sign give the decay of the excited states, and their action
on those states (and/or on the corresponding density matrix
elements) can be completely accounted for by a wave-function
treatment with the non-Hermitian Hamiltonian resulting from
the substitution δ → δ − iγ in Eq. (1) (the “pure-state ap-
proximation” mentioned in Sec. II B). The last term in (A1),
on the other hand, is a “source” term that repopulates the
ground state as a result of the decay of an excited state. It
only acts on, and only produces, diagonal components (in the
atomic basis) of the density operator. It cannot be handled
by pure-state (Hamiltonian) methods, except when the master
equation is unraveled along “quantum trajectories,” in which
case its effect is accounted for by the random “jumps” that
are eventually averaged over in that formalism [41]. We will
not use such an unraveling here; instead, we show below how
the nature of our system allows us to simplify the solution of
Eq. (A1).

As mentioned in the main text, our system has the property
that the Hamiltonian evolution [in which we now include all
but the last term of (A1)] preserves the excitation number
(number of photons + number of excited states). The action
of the last term, on the other hand, reduces the excitation
number by one. This allows for a substantial simplification of
the calculation of the gate fidelity (12): The evolution of ρ in
a manifold with a given excitation number is not affected by
the terms evolving in a lower manifold, and, in particular, the
evolution in the manifold with the largest excitation number
can be calculated using a pure state with the non-Hermitian
Hamiltonian. Diagonal terms in a manifold then act, through
the last term in (A1), as source terms for the density-matrix
evolution in the next lower manifold.

To calculate F , one needs to apply Eq. (A1) to the density
matrix that evolves from the initial state ρ(0) = |�(0)〉〈�(0)|,
with

|�(0)〉 = (α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉)|g〉. (A2)

By the linearity of the master equation, we can separately
consider the evolution of each of the 16 terms into which
|�(0)〉〈�(0)| splits. The diagonal terms all have a well-
defined excitation number and can be calculated by the
approach sketched above. The off-diagonal terms can mix
different manifolds, but a careful study of the equations of
motion shows that their contribution to the gate fidelity can
also be calculated by considering only the non-Hermitian
Hamiltonian evolution.

Consider, for example, the terms that evolve from
α01α

∗
11|01〉〈11| ⊗ |g〉〈g|. Initially, the last term in (A1) has

no effect on this component of the density operator, but
with time the Hamiltonian evolution can transform it into
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α01α
∗
11|00〉〈10| ⊗ |eb〉〈eb|, which by the action of the last term

in (A1) can then evolve into α01α
∗
11|00〉〈10| ⊗ |g〉〈g|. How-

ever, when the expectation value in |
ideal〉 is taken, this term
will select the coefficients α∗

00 on the left and α10 on the
right (since the number of photons has gone down by 1, on
either side, relative to the initial state), and the average of
α∗

00α01α
∗
11α10 is zero.

In this way, we eventually obtain the result (16) of the
main text, where the term ρ

(1)
01g,01g is calculated as shown in

Eq. (17) and the other terms correspond to the evolution in the
one-excitation manifold driven by spontaneous decay from
the upper (two-photon) manifold, in the way described above:

ρ̇
(2)
01g,01g = 2γ ρ

(2)
01ea,01ea

− ig
(
ρ

(2)
00eb,01g − ρ

(2)
01g,00eb

)
,

ρ̇
(2)
00eb,01g = −(γ + iδ)ρ00eb,01g − ig

(
ρ

(2)
01g,01g − ρ

(2)
00eb,00eb

)
,

ρ̇
(2)
01g,00eb

= −(γ − iδ)ρ01g,00eb + ig
(
ρ

(2)
01g,01g − ρ

(2)
00eb,00eb

)
,

ρ̇
(2)
00eb,00eb

= −2γ ρ
(2)
00eb,00eb

+ ig
(
ρ

(2)
00eb,01g − ρ

(2)
01g,00eb

)
(A3)

[where γ ρ
(2)
01ea,01ea

= |C(2)
ea

(t )|2]. A similar set of equations de-
scribes the evolution on the “b” side, switching ea and eb and
the corresponding photonic subscripts. Two of the additional
terms in (16) are directly given by the diagonal elements in
(A3), and the last remaining one is given by

ρ̇
(2)
00g,00g = 2γ ρ

(2)
00eb,00eb

+ 2γ ρ
(2)
00ea,00ea

. (A4)

For completeness, we also show below how we have calcu-
lated the nonzero averages of the products of coefficients αi j .
Let x = |α00|2, y = |α01|2, z = |α10|2. Then, for the state (A2)
to be normalized, we must have |α11|2 = 1 − x − y − z. As
this quantity has to be between 0 and 1, we find z � 1 − x − y,
and, again, because z � 0, we find y � 1 − x. So, to calculate
our averages, we can use a probability distribution function
which is constant and nonzero over the volume defined by
{0 � x � 1, 0 � y � 1 − x, 0 � z � 1 − x − y} (note that
in spite of the seemingly asymmetric way we have defined this
volume, it is in fact symmetric in the three coordinates, i.e., a
triangular pyramid). We normalize this by requiring that the
average of 1 be 1, that is,

1 = 1

N

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz = 1

6N . (A5)

So, with N = 1/6, we can calculate the averages we want as

|αi j |4 = x2 = 6
∫ 1

0
x2 dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz = 1

10
(A6)

and

|αi j |2|αkl |2 = xy = 6
∫ 1

0
x dx

∫ 1−x

0
y dy

∫ 1−x−y

0
dz = 1

20
.

(A7)

2. Two V-type atoms

For the two-atom case, it is best to use the basis introduced
in Sec. III, where the atomic state with one excitation of the
“a” type is the symmetric combination

|ψa〉 = 1√
2

(|ea, g〉 + |g, ea〉), (A8)

and similarly for |ψb〉, and the doubly excited state is also the
symmetric combination

|ψab〉 = 1√
2

(|ea, eb〉 + |eb, ea〉). (A9)

In Eqs. (24) and (25), Ce denotes the probability amplitude to
find the system in either one of |ψa〉 or |ψb〉, and Cee that of
finding it in |ψab〉.

We shall also assume that the two atoms decay to the
same reservoir, which allows us to stay within the atomic
space spanned by {|gg〉, |ψa〉, |ψb〉, |ψab〉}. The corresponding
master equation is

ρ̇ = − i

h̄
[H, ρ] − γ

∑
l=a,b

(ρJ†
l Jl + J†

l Jlρ − 2JlρJ†
l ) (A10)

(see Eq. (6.131) of [28]), where the Jl are collective atomic
decay operators, Ja = |g〉1〈ea| + |g〉2〈eb| and Jb = |g〉1〈eb| +
|g〉2〈eb|. They can also be defined by their effect on the states
of interest: Ja|gg〉 = Ja|ψb〉 = 0, Ja|ψa〉 = √

2|gg〉, Ja|ψab〉 =
|ψb〉 (and similarly for Jb).

As was the case for the single atom, the action of the J†J
terms alone could be accounted for by pure-state evolution
under a modified non-Hermitian Hamiltonian,

H ′ = H − 2iγ (|ψa〉〈ψa| + |ψb〉〈ψb| + |ψab〉〈ψab|), (A11)

which means all the excited-state amplitudes in Eqs. (24) and
(25) would decay at the rate 2γ (a collective enhancement of
the decay rate, relative to the N = 1 case, that parallels the
enhanced coupling to the field). This Hamiltonian evolution
again preserves the excitation number, whereas the JρJ† term
in (A10) drops the system down to a manifold with one fewer
excitation. This means that as was the case for the single atom,
the expression for the gate fidelity can be written as a sum of
terms arising from the nonunitary Hamiltonian evolution of
the uppermost manifold, plus terms arising from the evolution
of the lower manifolds that do require solving the master
equation, in a reduced subspace and with source terms derived
from the higher-excitation manifolds.

The Hamiltonian evolution can be computed by starting
with the state

|�(0)〉 = (α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉)|gg〉
(A12)

and building the time-evolved state |�(t )〉 through the substi-
tutions

|01〉|gg〉 → C(1)
g (t )|01〉|gg〉 + C(1)

e (t )|00〉|ψb〉,
|10〉|gg〉 → C(1)

g (t )|10〉|gg〉 + C(1)
e (t )|00〉|ψa〉,

|11〉|gg〉 → C(2)
g (t )|11〉|gg〉 + C(2)

e (t )|01〉|ψa〉
+ C(2)

e (t )|10〉|ψb〉 + C(2)
ee (t )|00〉|ee〉,

(A13)

where the C(1) and C(2) coefficients are the solutions to
Eqs. (24) and (25), respectively, with the additional de-
cay terms and starting from the ground state. The trace of
|�(t )〉〈�(t )| over the atoms produces a ρ f (t ) that is for-
mally identical to the single-atom result, except for the extra
term |α11|2|C(2)

ee (t )|2|00〉〈00|, so taking the expectation value
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〈
ideal|ρ f |
ideal〉 and averaging over the αi j produces an ex-
pression for the gate fidelity that is also formally identical to
Eq. (13), except for an additional term,

1
20

∣∣C(2)
ee (T )

∣∣2
. (A14)

To this, one must now add the effect of the evolution caused
by decay to lower-excitation manifolds. As in the single-atom
case and for the same reasons, these do not contribute to off-
diagonal (in the photon basis) terms, that is, to terms that start
out from |i j〉〈kl| with i �= k, j �= l . For single-photon diago-
nal terms (starting from |01〉〈01| or |10〉〈10|), the additional
terms are again trivial: The term 2γ |C(1)

e |2Ja|ψa〉〈ψa|J†
a =

4γ |C(1)
e |2|gg〉〈gg| populates the double ground state at a rate

4γ |C(1)
e |2, so together the a and b terms contribute to F the

amount

2 × 1

20
ρ

(1)
00g,00g = 2γ

5

∫ T

0

∣∣C(1)
e (t )

∣∣2
dt (A15)

(note that in subscripts, we use the single letter g to refer to
the double ground state |gg〉, to lighten the notation and for
consistency with Sec. III).

For the two-photon case, spontaneous decay produces
source terms proportional to |C(2)

e |2Ja|ψa〉〈ψa|J†
a ,

|C(2)
e |2Jb|ψb〉〈ψb|J†

b , |C(2)
ee |2Ja|ψab〉〈ψab|J†

a , and
|C(2)

ee |2Jb|ψab〉〈ψab|J†
b . The corresponding one-excitation

evolution is governed by the equations

ρ̇
(2)
01g,01g = 4γ

∣∣C(2)
e

∣∣2 − ig
√

2
(
ρ

(2)
00ψb,01g − ρ

(2)
01g,00ψb

)
,

ρ̇
(2)
00ψb,01g = −(2γ+iδ)ρ00ψb,01g − ig

√
2
(
ρ

(2)
01g,01g−ρ

(2)
00ψb,00ψb

)
,

ρ̇
(2)
01g,00ψb

= −(2γ − iδ)ρ01g,00ψb+ig
√

2
(
ρ

(2)
01g,01g−ρ

(2)
00ψb,00ψb

)
,

ρ̇
(2)
00ψb,00ψb

= −4γ ρ
(2)
00ψb,00ψb

+ ig
√

2
(
ρ

(2)
00ψb,01g − ρ

(2)
01g,00ψb

)
+ 2γ

∣∣C(2)
ee

∣∣2
, (A16)

on the |ψb〉 side, and a similar set involving |ψa〉, leading
finally to

ρ̇
(2)
00g,00g = 4γ ρ

(2)
00ψb,00ψb

+ 4γ ρ
(2)
00ψa,00ψa

. (A17)

The final expression for the gate fidelity will then be

F2 = [as in Eq. (13)] + 1
20 |C(2)

ee (t )|2 + 1
10ρ

(1)
00g,00g

+ 1
20ρ

(2)
00g,00g + 1

10ρ
(2)
00e,00e + 1

10ρ
(2)
01g,01g, (A18)

where the subscript “e” in the next to last term could stand for
either ψa or ψb equivalently.

3. Single M-type atom

Unlike in the previous two cases, this is an externally
driven system, which means that the Hamiltonian evolution
does not preserve the excitation number: From the state
|00〉|ga〉, for instance, the external field � can take the system
to |00〉|ea〉 (and from here, again by Hamiltonian evolution,
to |10〉|g〉). This means that the evolution of the uppermost
manifold is no longer insulated from the lower ones, and one
ends up having to solve the full master equation repeatedly,
starting with different initial conditions, to calculate the gate
fidelity.

Specifically, the master equation for this case takes the
form

ρ̇ = − i

h̄
[H, ρ] − γ

∑
l=a,b

[ρ|el〉〈el | + |el〉〈el |ρ

− |g〉〈el |ρ|el〉〈g| − |gl〉〈el |ρ|el〉〈gl |], (A19)

where, to make the comparison to the three-level system as
favorable for the five-level scheme as possible, we have kept
the total amplitude decay rate of the excited states equal to γ ,
even though they now have two states to decay into.

The final expression for the gate fidelity in this case takes
the form

F = 1
10 (1 + A + B + C + D), (A20)

where, as always, the 1 comes from the |00〉〈00| term in
|�(0)〉〈�(0)|, and

A = 2
∣∣C(1)

g

∣∣ − 1∣∣C(1)
g

∣∣2 Re
[(

C(1)
g

∗)2
C(2)

g

] + ∣∣C(1)
g

∣∣2
(A21)

are the only terms that can be obtained from the non-
Hermitian Hamiltonian evolution, which in this case involves
solving the system (28) and (29). Here, the first term comes
from the |00〉〈01| and |00〉〈10| terms, the second one comes
from |00〉〈11|, and the last one comes from |01〉〈10| (and
Hermitian conjugates in every case).

All the other terms in (A20) require solving the full master
equation. The terms in B are

B = 2ρ
(1)
01g,01g + ρ

(1)
00eb,00eb

+ ρ
(1)
00gb,00gb

+ ρ
(1)
00g,00g, (A22)

and they arise from |01〉〈01| (or, equivalently, |10〉〈10|), that
is, from solving the master equation with the initial condition
ρ01g,01g = 1 [the a and b contributions are, of course, identical
and have already been added in the expression (A20)].

The term in C is

C = −2Re

[
C(1)

g
∗∣∣C(1)

g

∣∣ρ11g,01g

]
, (A23)

and comes from |01〉〈11| and its Hermitian conjugate (i.e.,
from solving the master equation with the initial condi-
tion ρ01g,11g = 1). As in Eq. (13), the prefactor C(1)

g
∗
/|C(1)

g |
(with the corresponding amplitudes calculated from the non-
Hermitian Hamiltonian evolution) is inserted “by hand” to get
e−iφ1 , by which the term ρ11g,01g needs to be multiplied when
the expectation value 〈
ideal|ρ f |
ideal〉 is taken. [Again, an
identical contribution arising from |10〉〈11| has already been
included in (A20).]

Finally, the terms in D are

D = ρ
(2)
11g,11g + ρ

(2)
01eb,01eb

+ ρ
(2)
01gb,01gb

+ 1
2ρ

(2)
00g,00g + ρ

(2)
01g,01g + ρ

(2)
00eb,00eb

+ ρ
(2)
00gb,00gb

, (A24)

and follow from the evolution of |11〉〈11|, i.e., from solving
the master equation with the initial condition ρ11g,11g = 1;
again, in every case where there is a corresponding term
with b → a, its contribution has been implicitly included in
(A20).
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