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Hardy’s argument constitutes an elegant proof of quantum nonlocality. In this work, we report an exotic
application of Hardy’s nonlocal correlations in two-party communication setup. We come up with a task, wherein
a positive payoff can be through 1 bit of communication from the sender to the receiver if and only if the
communication channel is assisted with a no-signaling correlation exhibiting Hardy’s nonlocality. This further
prompts us to establish a counterintuitive result in a correlation-assisted reverse zero-error channel coding
scenario, where the aim is to simulate a higher input-output noisy classical channel by a lower input-output
noiseless one in assistance with preshared correlations. We show that there exist such reverse zero-error channel
simulation tasks where nonmaximally entangled states are preferable over the assistance with a maximally
entangled state, even when the former states carry an arbitrarily small amount of entanglement. Our work thus
establishes that within the operational paradigm of local operations and limited classical communication the
structure of entangled resources is even more complex to characterize.
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I. INTRODUCTION

The pioneering work of J. S. Bell establishes one of the
most striking departures of quantum theory from the profound
classical worldview of local realism [1] (see also Refs. [2,3]).
Violation of a Bell-type inequality, as demonstrated in several
milestone experiments [4–9], endorses the nonlocal nature of
the quantum world. Apart from its foundational implications,
Bell nonlocality has also been identified as a useful resource
for several practical tasks, such as device-independent cryp-
tography [10–12], reduction of communication complexity
[13], and device-independent randomness certification and
amplification [14–17].

A quite popular technique, known by the name “nonlocal-
ity without inequality” proof, is often used to establish the
nonlocal behavior of quantum theory. Unlike the Bell-type in-
equalities, where statistics of many events are collected, these
proofs focus on a single event whose occurrence shows the
incompatibility of quantum theory with the notion of local re-
alism. While the first proof of this kind for tripartite quantum
systems is due to Greenberger-Horne-Zeilinger [18] (see also
Ref. [19]), for bipartite systems, such proof was first proposed
by Hardy [20], which is considered to be “simpler and more
compelling than the arguments that underlie the derivation of
Bell-CH inequality” [21,22]. More recently, Hardy-type non-
locality proofs have also been shown to be useful in several
practical tasks [23–28].

In this work, we report an application of Hardy’s nonlocal
correlation in the simplest communication scenario. We show
that Hardy’s nonlocal correlation shared between two distant
parties can empower the communication utility of a perfect
classical channel. This is quite striking, as such a correla-
tion by itself cannot be used for information transfer, which

otherwise will imply violation of the no-signaling (NS) prin-
ciple. We also argue that the advantage reported in this work
is different than the advantage of nonlocal correlations known
in communication complexity tasks [13].

We consider a guessing game played between two distant
players—a sender and a receiver. First, we show that the
expected collaborative payoff of this game cannot be posi-
tive whenever only 1-bit classical communication is allowed
from the sender to the receiver, who otherwise can share
an unlimited amount of classical correlation between them.
Interestingly, assistance of Hardy’s nonlocal correlation to the
same classical channel can ensure a strictly positive payoff,
establishing a nontrivial advantage of Hardy’s correlation in
communication tasks. The advantage can be better understood
in the framework of a correlation-assisted reverse zero-error
coding scenario [29], where the aim is to simulate a higher
input-output noisy classical channel by a lower input-output
identity channel in the presence of NS correlations. In this
scenario, the aforesaid game makes Hardy’s nonlocal correla-
tions special as we show that among all the 2-input-2-output
NS correlations only those exhibiting Hardy’s nonlocality can
ensure a positive payoff. This further motivates us to show that
pure entangled states which are not maximally entangled are
preferable over the maximally entangled one for simulating
certain noisy classical channels. At the end we show that a
similar sort of results can also be obtained by considering a
generalization of Hardy’s nonlocality argument as proposed
by Cabello [30]. The present work, therefore, establishes that
the comparison of entanglement in quantum states even for
bipartite systems is quite complex when classical communi-
cation among distant parties are treated as costly.

The manuscript is organized as follows. In Sec. II we intro-
duce a two-party guessing game which we call the distributed
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FIG. 1. Distributed mine-hunting (DMH) game. Opening a box
with + $ assures dollar bill gain for Bob, whereas a box with − $
demands him to pay a dollar bill to Charlie. A box with a smile
neither offers nor demands any dollar bill, but a box with a bomb
turns out to be fatal to Bob. Alice knows which of the arrangements
{A-1, . . . , A-4} Charlie chooses in a particular run and tries with
1-bit classical channel to help Bob to optimize his expected dollar
gain. NS correlation can be used as assistance to the channel

mine-hunting game. Here we also discuss the reverse zero-
error channel coding setup. In Sec. III we present our main
results, and in Sec. IV we discuss implications of our results
along with future outlooks.

II. A TWO-PARTY GUESSING GAME

The game involves two distant players, Alice and Bob, and
a referee named Charlie. In each run of the game, Charlie
provides four closed boxes numbered 1–4 to Bob, who has
to open one of these boxes. Some of the boxes contain a bomb
that will explode upon opening it. Among the boxes that do
not contain the bomb, some are empty, some contain a dollar
bill, and others may even prompt Bob to pay a dollar bill
to Charlie. In each run of the game, Charlie uniformly and
randomly picks one of four different arrangements of these
boxes, as shown in Fig. 1. Charlie then informs Alice about the
arrangement of the boxes in that particular run, and Alice tries
to help Bob in choosing a box. However, only 1 bit of classical
communication is allowed from Alice to Bob, which may be
further assisted with NS correlations shared between them a
priori. From now on, we will refer to this as the distributed
mine-hunting (DMH) game.

General scenario

The aforesaid game can be formally studied within a more
generic setup as considered in the reverse zero-error chan-
nel coding scenario [29]. In the zero-error communication
scenario the core goal is to characterize the ability of noisy
classical channels to transmit classical information with zero
probability of error [31] (see also Ref. [32]). A channel from
Alice to Bob, with input m ∈ M at Alice’s end and output
z ∈ Z at Bob’s end, can be represented as a matrix S ≡ (smz ),
where smz denotes the probability of producing the output
z ∈ Z by Bob given that Alice receives the message m ∈ M.

The cardinality of M and Z is referred to as the input and
output dimensions of the channel, respectively. The direct or
forward zero-error coding theorem tries to find the maximum
number of distinct input alphabets that can be sent perfectly
from Alice to Bob through a noisy channel S. In other words,
the aim is to find the largest dimensional identity channel
(i.e., a noiseless channel) that can be simulated by the given
channel S. The reverse problem, on the other hand, aims to
simulate a higher-dimensional noisy channel with the help of
a lower-dimensional identity channel. While both the direct
and reverse problems can be studied in the single-shot setup as
well as in the asymptotic limit, here we will restrict our study
to the reverse problem in the single-shot setup. Interestingly,
nonlocal correlations arising from entangled quantum states
can provide a nontrivial advantage in the reverse zero-error
coding scenario [29]. The present work, however, reports quite
an exotic behavior of entanglement by establishing the prece-
dence of nonmaximally entangled states over the maximal one
in some instances of the reverse zero-error channel coding
problem.

Within the aforesaid notation, a game (such as DMH) is
entirely specified by the payoff matrix G ≡ (gmz ), where gmz ∈
R is the reward or payoff given when Bob produced the index
z provided Alice received the message m. For instance, the
DMH game is specified by the following payoff matrix:

GDMH ≡

M\Z 1 2 3 4
1 −1 0 0 −∞
2 −∞ 0 −∞ 0
3 +1 0 −∞ −∞
4 −∞ −∞ 0 0

(1)

Payoffs in (1) quantitatively capture the scenario of the DMH
game. A reward of −∞ for the box containing the bomb
captures the notion that choosing such a box must be avoided
at all costs [33]. The reward 0 corresponds to the event where
the players survive but do not receive any reward. Events
with reward +1 (−1) correspond to the scenario where the
players receive (pay) some dollar bills from (to) Charlie. The
game matrix and the sampling distribution of Alice’s inputs
are common knowledge to the players.

Alice and Bob are cooperative in nature and aim to max-
imize the payoff. Their collaborative strategy depends on the
available resources, which can be broadly categorized into two
types: (i) correlation shared between them before the game
starts and (ii) communication from Alice to Bob. Any strategy
employed by the players can be represented as an input-output
channel S ≡ (smz ). Given such a strategy matrix S, the average
payoff can be obtained as

P (S) =
∑
z,m

p(m) gmz smz . (2)

As it is evident, there will always be a perfect strategy for
such a game if log2 |M| bits of communication are allowed
from Alice to Bob. Interesting situations arise when commu-
nication is limited, which can further be aided by preshared
correlations of different kinds.
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III. RESULTS

Let �nc+SR(|M|, |Z|) denote the set of strategy matrices
obtained when n bits of classical communication and an un-
limited amount of shared randomness are available. The set
�nc+SR(|M|, |Z|) forms a polytope with extreme points Se

representing strategy matrices obtained through deterministic
encoding E : M → {0, 1}n at Alice’s end and determinis-
tic decoding D : {0, 1}n → Z at Bob’s end [34] (see also
Ref. [35]). Our first technical result is to limit the optimal suc-
cess probability of the game in Eq. (1) for classical strategies
with limited communication. .

Theorem 1. The average payoff of the DMH game is up-
per bounded by zero while following a strategy from the set
�1c+SR(4, 4), i.e., P (S) � 0, ∀ S ∈ �1c+SR(4, 4).

Proof. Since average payoff depends linearly on the strat-
egy [see Eq. (8)], the polytope structure of �1c+SR(4, 4)
ensures that maximum payoff will be attained at one of its
vertices. For �nc+SR(|M|, |Z|), the number of vertices N can
be calculated using the formula [35]

N =
2n∑

k=1

k!

(|Z|
k

){|M|
k

}
,

(|Z|
k

)
:= |Z|!

k!(|Z| − k)!
, (3)

{|M|
k

}
:=

k∑
j=0

1

k!
(−1)k− j

(
k
j

)
j|M|.

Note that the players’ first priority is to avoid the bomb at any
cost, i.e., the −∞ reward in Eq. (1). This will exclude some
vertices. For instance, consider the extreme strategy matrix,

Se
ns :=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ (4)

Comparing with Eq. (1), it is evident that in this strategy the
bomb will be triggered with a nonzero probability (for m = 2).
Among all possible vertices, only in the following five cases,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Se
s1 :=

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠, Se

s2 :=

⎛
⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

Se
s3 :=

⎛
⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠, Se

s4 :=

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠,

Se
s5 :=

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

the bomb will never be triggered. However, we have P (Se
sK ) =

0, ∀ K ∈ {1, . . . , 5}. Since all the deterministic strategies re-
sult in either zero or −∞ payoff, the optimal payoff with 1-bit

FIG. 2. General strategy to play a game G when the 1-cbit com-
munication channel is assisted with NS correlation. Alice computes
the input x = X (m) to her part of the nonlocal box based on the mes-
sage m ∈ M received from Referee. The output a of the nonlocal box
at her end and the message m determine the classical bit c = C(a, m)
sent to Bob. Bob then inputs y = Y (c) into his end of the NS box,
obtaining the output b. Finally, he generates his guess as z = Z (b, c).

classical communication and shared randomness is simply
zero. This completes the claim. �

We now consider the scenario where the com-
munication line from Alice to Bob is aided with
a generic NS correlation P ≡ {p(a, b|x, y)}, where
p(a, b|x, y) � 0, ∀ a, b, x, y &

∑
a,b p(a, b|x, y) = 1, ∀ x, y.

Here, p(a, b|x, y) denotes the probability of obtaining
outcome a ∈ A at Alice’s end and b ∈ B at Bob’s end
for their respective inputs x ∈ X and y ∈ Y . Classical
correlations that allow a local-realistic description,
p(a, b|x, y) = ∫

�
μ(λ)p(a|x, λ)p(b|y, λ)dλ, form a strict

subset (a subpolytope) of the NS polytope; here, λ ∈ � is
some classical variable shared between Alice and Bob and
μ(λ) is a probability distribution on � [3]. Quite surprisingly,
entangled quantum states can lead to correlations that are
not local realistic and nonlocality of those correlations can
be certified through violation of some Bell-type inequalities
[1]. Given such an NS correlation (possibly nonlocal) as an
assistance to 1-bit classical communication from Alice to
Bob, the general strategy to play a game G is described in
Fig. 2.

For the binary input-output case, Hardy proposed an ele-
gant argument according to which any NS correlation H ≡
{h(a, b|x, y)} satisfying the constraints

h(0, 0|0, 0) := h0 > 0, h(0, 1|0, 1) := h5 = 0,

h(1, 0|1, 0) := h10 = 0, h(0, 0|1, 1) := h3 = 0,

with h(a, b|x, y) := ha×23+b×22+x×21+y×20 (6)

must be nonlocal in nature [20] (for the sake of completeness
we analyze the argument in Appendix A). A correlation ex-
hibiting Hardy’s nonlocality is termed as Hardy’s nonlocal
correlation. Our next result proves a nontrivial advantage of
Hardy correlation while playing the DMH game.

Theorem 2. A strictly positive average payoff in the DMH
game is achievable with 1-bit perfect classical channel from
Alice to Bob when the channel is assisted with a 2-input-2-
output Hardy’s nonlocal correlation.

Proof. Consider the following strategy by Alice and Bob.
Alice’s action:
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(i) Depending on m ∈ M Alice computes her input in the
NS box. For m ∈ {1, 3} she chooses x = 0, otherwise she
chooses x = 1.

(ii) Based on the tuple (m, a) ∈ M × A she commu-
nicates to Bob. She sends c = 0 to Bob when (m, a) ∈
{(1, 1), (2, 1), (3, 0), (3, 1)}, else she sends c = 1.

Bob’s action:
(i) The communicated bit from Alice is used as input in

Bob’s part of the NS box.
(ii) Depending on the tuple (c, b) ∈ C × B he chooses

the box as follows: (0, 0) �→ 1, (0, 1) �→ 2, (1, 0) �→
3, (1, 1) �→ 4.

The above strategy with 1-bit communication and 2-input-
2-output Hardy’s correlation H ≡ {h(a, b|x, y} leads to the
strategy matrix

SH ≡

M\Z 1 2 3 4
1 h8 h12 h1 0
2 0 h14 0 h7

3 h0 + h8 h4 + h12 0 0
4 0 0 h11 h7 + h15

(7)

As evident from the payoff matrix (1) and the strategy (7),
a box containing a bomb will never be opened. Furthermore,
assuming Charlie’s choice to be completely random, we have
the average payoff

P (SH) = 1
4 Tr

[
GT

DMH SH
] = 1

4 h0 > 0. (8)

This completes the proof. �
This in turn establishes that the 4-input-4-output noisy

channel SH can be perfectly simulated by the two-dimensional
identity channel (i.e., a 1-bit perfect channel from Alice
to Bob) when assisted with Hardy’s nonlocal correlation.
However, as follows from Theorem 1, assistance of an arbi-
trary amount of shared randomness fails to achieve the goal.
A correlation with Hardy success h0 yields Clauser-Horne-
Shimony-Holt (CHSH) [4] value 2 + 4 h0 [36]. Accordingly,
the CHSH value corresponding to the optimal quantum Hardy
correlation is strictly less than the Cirel’son bound [37,38].
Therefore, a natural question is whether other nonlocal quan-
tum correlations can lead to better success in the DMH game.
Our next result answers this question in negation.

Theorem 3. Any 2-input-2-output NS correlation provid-
ing a strictly positive payoff in the DMH game as an assistance
to the 1-bit of perfect classical channel must exhibit Hardy’s
nonlocality.

Proof. The set of strategy matrices simulable by 1-cbit
communication with the assistance of a given NS cor-
relation P ≡ {p(a, b|x, y) | a, b, x, y ∈ {0, 1}} and unlimited
shared randomness (SR) forms a polytope. We denote this set
by �1c+SR+P. Vertices of this polytope correspond to strategies
where the players follow an encoding and decoding scheme
characterized by deterministic functions of the form x =
X (m), c = C(m, a), y = Y (c), z = Z (c, b). The linearity of
the payoff function again implies that the maximum payoff
occurs at one of the vertices of �1c+SR+P.

Elementary counting shows that there are 24 × 28 × 22 ×
44 such deterministic strategies. Furthermore, elements of the
strategy matrix are related linearly to the NS correlation P =

{p(a, b|x, y)},
smz =

∑
x,a,c,b,y∈{0,1}

δx,X (m) × δc,C(m,a) × δy,Y (c)

× δz,Z (c,b) × p(a, b|x, y). (9)

For a nonnegative payoff, the game matrix enforces some of
the entries of S ≡ (smz ) to be zero. Since Eq. (9) is linear, one
can solve these equality constraints to see what restrictions are
imposed on the NS correlation P(a, b|x, y). By brute-forcing
through all the deterministic strategies and by symbolic pro-
gramming, we were able to verify that for each vertex of
�1c+SR+P, the positivity of average payoff imposes the condi-
tions in Eq. (3) in the main manuscript (or its local reversible
relabeling) to the NS correlation {p(a, b|x, y)}. This proves
the claim that among all 2-input-2-output correlations, only
Hardy’s nonlocal correlations can provide a positive payoff in
the DMH game. �

Although it is known that a two-qubit maximally entan-
gled state does not exhibit Hardy’s nonlocality [39,40], still
Theorem 3 is not sufficient to make a claim that such a
state shared between Alice and Bob cannot lead to a strategy
yielding strictly positive payoff in the DMH game. Increasing
the cardinality of the input-output sets X , Y, A, B, Alice and
Bob can generate a more general NS correlation and then try
to utilize this correlation to assist the 1-cbit channel to obtain
a nonzero payoff in the DMH game. However, our next result
proves a no-go to this aim.

Theorem 4. Two-qubit maximally entangled state together
with 1-bit perfect classical channel from Alice to Bob does not
result in a strategy ensuring a strictly positive average payoff
in the DMH game.

Proof. Let Alice and Bob share the two-qubit maximally
entangled state |φ+〉 = 1√

2
(|00〉 + |11〉). Note that the exis-

tence of a strategy involving SR that yields an advantage
in winning the game necessarily implies the existence of a
strategy without involving any SR. We now prove that such
a strategy does not exist. Without loss of generality, we can
assume that Alice does a two-outcome measurement depend-
ing on the classical message m she receives, i.e., she performs
{E (m)

0 , E (m)
1 | E (m)

0 + E (m)
1 = I} for m ∈ {1, . . . , 4}. Alice then

communicates c ∈ {0, 1} if the outcome E (m)
c clicks. Based

on the communicated bit c, Bob performs a four-outcome
measurement, and based on the measurement outcome, he
chooses a box. Bob’s measurement is denoted by {N (c)

z }4
z=1

with
∑4

z=1 N (c)
z = I when the communication c ∈ {0, 1} is

received. This leads to the strategy matrix with elements

smz =
1∑

c=0

smzc :=
1∑

c=0

Tr
[|φ+〉〈φ+|(E (m)

c ⊗ N (c)
z

)]
,

= 1

2

1∑
c=0

Tr
[
E (m)

c N∗(c)
z

]
. (10)

The aim is to find positive operator-valued measure (POVM)
elements E (m)

c and N∗(c)
z such that the resulting strategy yields

a positive payoff in the DMH game. For simplicity, we drop
the notation “∗” in N∗(c)

z , keeping in mind that if we do indeed
find a solution for Eq. (10), we need to complex conjugate the
matrices N (c)

z . We also note that if N (c)
z forms a measurement,
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so does N∗(c)
z . Therefore, a strictly positive payoff in the DMH

game demands the following conditions to be satisfied:

Tr
[
E (1)

0 N (0)
4

] = 0 = Tr
[
E (1)

1 N (1)
4

]
, (11a)

Tr
[
E (2)

0 N (0)
1

] = 0 = Tr
[
E (2)

1 N (1)
1

]
, (11b)

Tr
[
E (2)

0 N (0)
3

] = 0 = Tr
[
E (2)

1 N (1)
3

]
, (11c)

Tr
[
E (3)

0 N (0)
3

] = 0 = Tr
[
E (3)

1 N (1)
3

]
, (11d)

Tr
[
E (3)

0 N (0)
4

] = 0 = Tr
[
E (3)

1 N (1)
4

]
, (11e)

Tr
[
E (4)

0 N (0)
1

] = 0 = Tr
[
E (4)

1 N (1)
1

]
, (11f)

Tr
[
E (4)

0 N (0)
2

] = 0 = Tr
[
E (4)

1 N (1)
2

]
, (11g)

1∑
c=0

Tr
[
E (3)

c N (c)
1

]
>

1∑
c=0

Tr
[
E (1)

c N (c)
1

]
. (12)

The inequality (12) can further be written as

Tr
[
E (3)

0

(
N (0)

1 − N (1)
1

)]
> Tr

[
E (1)

0

(
N (0)

1 − N (1)
1

)]
. (13)

Note that if a solution of POVMs exists satisfying (11) and
(13), then there also exists a solution with {E (m)

0 , E (m)
1 } be-

ing projective measurements ∀ m ∈ {1, . . . , 4}. This can be
argued easily by expanding all the operators {E (m)

0 , E (m)
1 } in

the spectral form. For example, in inequality (13) on the
left-hand side, we can choose the projector formed by the
eigenvector of E (3)

0 giving the maximum value of the trace.
Similarly, on the right-hand side, we can choose the projector
formed by the eigenvector of E (1)

0 giving the lowest value of
trace. Moreover, notice than for Eqs. (11) all the projectors
corresponding to different eigenvalues of {E (m)

0 , E (m)
1 } must

satisfy the Eqs. (11) individually. Thus, we start by assuming
all measurements {E (m)

0 , E (m)
1 } are projective. In particular, let

E (3)
0 = |ψ〉〈ψ |, E (3)

1 = |ψ⊥〉〈ψ⊥|,
E (4)

0 = |φ〉〈φ|, E (4)
1 = |φ⊥〉〈φ⊥|.

Thus, looking into the left-hand side of Eqs. (11d) and (11g),
we have

N (0)
1 = p1|φ⊥〉〈φ⊥|, N (0)

2 = p2|φ⊥〉〈φ⊥|,
N (0)

3 = p3|ψ⊥〉〈ψ⊥|, N (0)
4 = p4|ψ⊥〉〈ψ⊥|,

with 0 � p1, . . . , p4 � 1. Since {N (0)
1 , . . . , N (0)

4 } form a mea-
surement, we therefore have

(p1 + p2)|φ⊥〉〈φ⊥| + (p3 + p4)|ψ⊥〉〈ψ⊥| = I,

which will be satisfied if and only if

p1 + p2 = p3 + p4 = 1, & |φ〉 = |ψ⊥〉 .

A similar argument can be made for the other measurement
of Bob, and we get the following:

N (0)
1 = p1|ψ〉〈ψ |, N (1)

1 = q1|ψ⊥〉〈ψ⊥|, (14a)

N (0)
2 = p2|ψ〉〈ψ |, N (1)

2 = q2|ψ⊥〉〈ψ⊥|, (14b)

N (0)
3 = p3|ψ⊥〉〈ψ⊥|, N (1)

3 = q3|ψ〉〈ψ |, (14c)

N (0)
4 = p4|ψ⊥〉〈ψ⊥|, N (1)

4 = q4|ψ〉〈ψ |, (14d)

where 0 � q1, . . . , q4 � 1 and q1 + q2 = q3 + q4 = 1. Now,
let E (1)

0 = |χ〉〈χ | and E (1)
1 = |χ⊥〉〈χ⊥|. From the left-hand

side of Eqs. (11a) and (14d) we must have p4|ψ⊥〉〈ψ⊥| =
s1|χ⊥〉〈χ⊥|, with 0 � s1 � 1. A solution is p4 = s1 > 0 and
|ψ〉 = |χ〉, which implies E (1)

0 = E (3)
0 and E (1)

1 = E (3)
1 . This

further tells us that Alice uses the same strategy for m = 1
and m = 3, and this will never yield a positive payoff. The
only other solution is

p4 = s1 = 0 ⇒ N (0)
4 = 0 ⇒ N (0)

3 = |ψ⊥〉〈ψ⊥|.

Similarly, we can argue that we must have N (1)
3 = |ψ〉〈ψ |.

Now, from Eq. (11c) we have E (2)
0 ∝ |ψ〉〈ψ | and E (2)

1 ∝
|ψ⊥〉〈ψ⊥| ⇒ E (2)

0 = |ψ〉〈ψ | and E (2)
1 = |ψ⊥〉〈ψ⊥|. From

Eqs. (11b) and (14a), the only solution is N (0)
1 = N (1)

1 = 0,
which leads to violation of the inequality in Eq. (12). Thus, a
consistent solution cannot be found satisfying the conditions
(11) and (12). This completes the proof. �

This theorem has an interesting implication. It shows that
there exists a communication task wherein a nonmaximally
pure entangled state can be preferable over the maximally
entangled one even when the entanglement of the former is
vanishingly zero. More formally, we can deduce the following
corollary.

Corollary 1. For every nonmaximally entangled state
|ψ〉 ∈ C2 ⊗ C2 there exists a strategy matrix Sψ such that
Sψ ∈ �1c+SR+|ψ〉(4, 4) but Sψ /∈ �1c+SR+|φ+〉(4, 4).

Here, |φ+〉 := (|00〉 + |11〉)/
√

2 and �1c+SR+|χ〉(4, 4) de-
notes the convex set of strategy matrices simulable with 1-cbit
communication from Alice to Bob when the communication
channel is further assisted with preshared quantum state |χ〉
and unlimited shared randomness. Corollary 1 follows when
results of Theorems 2 and 4 are combined with the fact that
all nonmaximally pure entangled states exhibit Hardy’s nonlo-
cality [39]. More precisely, for every nonmaximally entangled
state |ψ〉 ∈ C2 ⊗ C2 there exists a noisy channel of the form
SH that can be perfectly simulated with 1-bit perfect classical
channel when assisted with the state |ψ〉, but not with |φ+〉. A
more detailed discussion on the implications of theses results
is presented in Appendix B.

IV. DISCUSSION AND OUTLOOK

The seminal quantum superdense coding protocol is worth
mentioning as it shows that quantum entanglement, preshared
between a sender and a receiver, can increase the classical
communication capacity of a quantum system [41] (see also
Ref. [42]). While in quantum superdense coding protocol a
quantum channel is considered, here we show that quantum
entanglement can even empower the communication utility
of a perfect classical channel. As already mentioned, such an
advantage can be better understood in zero-error and reverse
zero-error communication setup. While such an advantage of
quantum entanglement is already known (see Proposition 21
in Ref. [29] and see also Refs. [43–45]), the full picture of
entanglement assistance is not well understood. Our Theorem
4 proves a nontrivial result to this direction. It shows that
in the correlation-assisted reverse zero-error coding scenario,
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there exist noisy channel simulation tasks wherein nonmaxi-
mally entangled states, with arbitrarily less entanglement, are
preferable over a maximally entangled state. In the resource
theory of quantum entanglement [46], where local opera-
tions and classical communication (LOCC) are considered
to be free, a maximally entangled state is more useful than
a nonmaximally entangled one, and a deterministic LOCC
transformation is always possible from the former to the
latter [47]. Our work, however, establishes that within the
operational paradigm of local operations and limited classical
communication the structures of entangled resources are quite
complex to characterize.

A nonlocal advantage is also known in a variant of the
communication scenario known as the communication com-
plexity problem [13]. In such a scenario, Bob’s goal is not to
determine Alice’s data M but to determine some information
that is a function of M in a way that may depend on the other
data N that resides with Bob while N is unknown to Alice.
In that sense, our scenario is closer to the standard framework
of Shannon [48] (and considered by Holevo in quantum setup
[49]), where at Bob’s end, no further data set N is considered,
albeit in a single-shot setup.

In conclusion, the present work establishes exotic uses of
quantum entanglement in zero-error information theory [31]
(see also Ref. [32]) whose motivation arises from the fact that
in many real-world critical applications, no errors can be toler-
ated, and in practice, the communication channel can only be
available for a finite number of times. In particular, we show
that quantum correlations exhibiting Hardy’s nonlocality can
empower the communication utility of a perfect classical com-
munication channel. In Appendix C we show that similar
results can be obtained by considering the generalization of
Hardy’s nonlocality argument as proposed by Cabello [30].
Our work also motivates many questions for future study. For
instance, it would be interesting to see whether any nonlocal
correlation can be made useful as a communication resource
in the sense discussed here. It will also be interesting to
see whether maximally entangled states of higher dimensions
provide some advantage in the DMH game. More generally,
characterizing the set �nc+SR+χ (|M|, |Z|) for an arbitrary
quantum state |χ〉 would be very interesting.
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APPENDIX A: HARDY’S NONLOCALITY ARGUMENT

Hardy’s argument is a popular method to check the Bell
nonlocality of a given NS correlation [20]. A 2-input-2-output
NS correlation H ≡ {h(a, b|x, y)} with a, b, x, y ∈ {0, 1} will
exhibit Bell nonlocality if they satisfy the constraints

h(0, 0|0, 0) > 0, (A1a)

h(0, 1|0, 1) = 0, (A1b)

h(1, 0|1, 0) = 0, (A1c)

h(0, 0|1, 1) = 0. (A1d)

Recall that the “Bell locality” condition demands that such
a correlation {h(a, b|x, y)} must be factorizable in the form

h(a, b|x, y) =
∫

λ∈�

dλμ(λ)pA(a|x, λ)pB(b|y, λ),

× ∀ a, b, x, y, (A2)

where λ ∈ � is the local hidden variable; μ(λ) is the dis-
tribution of the hidden variable over �, which according to
freedom of choice is assumed to be independent of Alice’s and
Bob’s choices of inputs, i.e., μ(λ|x, y) = μ(λ); and pX (i| j, λ)
is the probability that party X observes outcome i given that
they have performed measurement j when the hidden state is
λ. Applying Eq. (A2) to Eq. (A1a), we can say that there exists
a set �̃ ⊆ � of nonzero measures with respect to � which can
be defined as

�̃ ≡ {λ ∈ λ|μ(λ) > 0, pA(0|0, λ) > 0, pB(0|0, λ) > 0}.
Now, Eq. (A2) can be written as

h(a, b|x, y) =
∫

λ∈�̃

dλμ(λ)pA(a|x, λ)pB(b|y, λ)

+
∫

λ∈�̃c

dλμ(λ)pA(a|x, λ)pB(b|y, λ), (A3)

where �̃c is defined as the complement of �̃ with respect to
�. It can be noted that since both the terms appearing on the
right-hand side of Eq. (A3) are nonnegative, if the left-hand
side of Eq. (A3) is 0 then both the individual terms on the
right-hand side must be 0. Thus, from Eq. (A1b) we must have∫

λ∈�̃

dλμ(λ)pA(0|0, λ)pB(1|1, λ) = 0,

⇒ pB(1|1, λ) = 0 ∀ λ ∈ �̃.

Since pA(0|0, λ) > 0 & μ(λ) > 0 ∀ λ ∈ �̃,

⇒ pB(0|1, λ) = 1 ∀ λ ∈ �̃. (A4)

Similarly, from Eq. (A1c) we must have

pA(0|1, λ) = 1 ∀ λ ∈ �̃. (A5)

Thus, from Eq. (A1d) we have(∫
λ∈�̃c

+
∫

λ∈�̃

)
dλμ(λ)pA(0|1, λ)pB(0|1, λ) = 0,

⇒
∫

λ∈�̃c

dλμ(λ)pA(0|1, λ)pB(0|1, λ)

+
∫

λ∈�̃

dλμ(λ) = 0. (A6)
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This is impossible due to the fact that μ(λ) > 0 ∀ λ ∈ �̃,
which guarantees a strictly positive contribution from the
second term on the left-hand side in Eq. (A6). Thus, a
Bell local NS correlation does not satisfy all the constraints
((A1a)–(A1d)). Accordingly, a NS correlation satisfying
all the constraints ((A1a)–(A1d)) must be Bell nonlo-
cal, and such a correlation is called Hardy’s nonlocal
correlation.

APPENDIX B: ANALYSIS AND IMPLICATIONS
OF THEOREMS 3 AND 4 AND COROLLARY 1

In the framework of resource theory, quantum entangle-
ment is considered to be a useful resource under the free
operation of LOCC. In this operational paradigm, Nielson’s
result [47] proves that a state |ψ〉 can be transferred to another
state |φ〉 under LOCC if and only if λψ is majorized by λφ ,
where λ′

is are Schmidt coefficient of the respective states. As
it turns out, for the C2 ⊗ C2 system any nonmaximally entan-
gled state |ψ〉 ∈ C2 ⊗ C2 can be deterministically prepared
from the maximally entangled state |φ+〉 using 1-bit classi-
cal communication from Alice to Bob, whereas the reverse
transformation is not possible. This implies that maximally
entangled states |φ+〉 will surpass any nonmaximally entan-
gled state |ψ〉 in all possible tasks if classical communication
is considered as a free resource.

However, the situation is quite different if classical com-
munication is treated as a costly resource. This becomes
quite evident in the reverse zero-error channel simulation task
considered in our work. For instance, as discussed in our
Corollary 1, there exists a 4-input-4-output noisy channel Sψ

of the form SH of Eq. (4) of the main manuscript, which can
be perfectly simulated by 1-bit classical communication from
Alice to Bob with the assistance of the nonmaximally entan-
gled state |ψ〉. By performing suitable local measurements
on the state |ψ〉 one first obtain a 2-input-2-output NS cor-
relation that exhibits Hardy’s nonlocality, which according to
Theorem 3 is necessary to simulate a channel of the form SH
when communication from Alice to Bob is limited to 1-cbit.
At this point it should be noted that 2-input-2-output corre-
lation obtained from the state |φ+〉 cannot exhibit Hardy’s
nonlocality [39,40]. However, this itself does not discard the
possibility of simulating a noisy channel of the form SH with
1-cbit channel from Alice to Bob in assistance with |φ+〉.
From the state |φ+〉 one can try to come up with higher input-
output NS correlation by performing local POVM on |φ+〉,
which can further be used for the targeted simulation task. Our
Theorem 4, however, proves that this, in fact, is not possible.
Given the state |φ+〉 one might aim to convert it to the state
|ψ〉 following Nielson’s protocol and then try to simulate the
channel Sψ . But, this also is not possible since the available
1-cbit channel is consumed at the state transformation step
and hence makes the simulation impossible. Therefore, our
results establish a nontrivial advantage of a nonmaximally
entangled state over the maximally entangled state in the
paradigm of limited classical communication scenario even
when the nonmaximally entangled state contains an arbitrarily
small amount of entanglement. Of course, there might be the
possibility of a different 4-input-4-output noisy channel which
can be simulated by a 1-cbit channel in assistance with |φ+〉,

FIG. 3. Set of 4-input-4-output channels simulable by 1 bit of
classical communication in assistance with different kinds of pre-
shared resources. �1c+SR(4, 4) denotes the set of channels simulable
by 1-bit classical communication when an unlimited amount of
shared randomness is available as assistance. �1c+NS (4, 4) corre-
sponds to the set when the communication line is assisted with
an arbitrary amount of NS correlation. �1c+SR+|χ〉(4, 4) denotes the
set of channels simulable when an arbitrary amount of SR along
with the state |χ〉 ∈ C2 ⊗ C2 is available as assistance. Two convex
sets are depicted for maximally and nonmaximally entangled states.
The red dot denotes the channel Sψ such that Sψ ∈ �1c+SR+|ψ〉 but
Sψ /∈ �1c+SR+|φ+〉. The star denotes a possible channel that lies within
�1c+SR+|φ+〉, but does not belong to the set �1c+SR+|ψ〉.

but not in assistance with |ψ〉. Although we believe that such
channels should exist, we could not come up with explicit
examples, and leave the question for future research. The
aforesaid discussion is depicted in Fig. 3.

APPENDIX C: ADVANTAGE OF CABELLO’S
NONLOCAL CORRELATION

In the main manuscript, we have shown that Hardy’s non-
local correlation provides a communication advantage in the
DMH game. Here, we extend this result for nonlocal cor-
relations exhibiting Cabello’s nonlocality [30], which can
be thought of as a generalization of Hardy’s nonlocality ar-
gument. As shown by Cabello, a binary input-output NS
correlation {c(a, b|x, y)} satisfying the constraints

c(0, 0|0, 0) := c0 > c3, c(0, 1|0, 1) := c5 = 0,

c(1, 0|1, 0) := c10 = 0, c(0, 0|1, 1) := c3,

with c(a, b|x, y) := ca×23+b×22+x×21+y×20 (C1)

must be nonlocal in nature. To establish the communication
advantage of such a correlation, we consider a variant of the
DMH game which will be denoted as DMH′ and specified by
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the payoff matrix

GDMH′ ≡

M\Z 1 2 3 4
1 −1 0 0 −∞
2 −∞ 0 −1 0
3 +1 0 −∞ −∞
4 −∞ −∞ 0 0

(C2)

Our next result limits the success probability of this game
when 1-cbit communication from Alice to Bob is allowed
along with an unlimited amount of shared randomness.

Theorem 5. The average payoff of the DMH′ game is up-
per bounded by zero while following a strategy from the set
�1c+SR(4, 4), i.e., P (S) � 0, ∀ S ∈ �1c+SR(4, 4).

Proof. The proof follows similar reasoning to Theorem 1
in the main manuscript. The only extreme strategies which
will not trigger the bomb are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Se
s1 :=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠, Se

s2 :=

⎛
⎜⎜⎝

0 0 1 0
0 0 1 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠,

Se
s3 :=

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠, Se

s4 :=

⎛
⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

Se
s5 :=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ Se

s6 :=

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

Se
s7 :=

⎛
⎜⎜⎝

0 0 1 0
0 0 1 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ Se

s8 :=

⎛
⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠,

Se
s9 :=

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C3)

As all the extreme strategies result in either zero or negative
payoff, the optimal payoff with 1-bit classical communication
and shared randomness is simply zero. �

Next, we proceed to establish the communication advan-
tage of nonlocal correlation exhibiting Cabello’s nonlocality.

Theorem 6. A strictly positive average payoff in the DMH′

game is achievable with a 1-bit perfect classical channel from
Alice to Bob when the channel is assisted with a 2-input-2-
output Cabello’s nonlocal correlation.

Proof. Once again the proof structure is the same as Theo-
rem 2 of the main manuscript. Alice’s action:

(i) Depending on m ∈ M, Alice computes her input in
the NS box. For m ∈ {1, 3} she chooses x = 0, otherwise she
chooses x = 1.

(ii) Based on the tuple (m, a) ∈ M × A, she commu-
nicates to Bob. She sends c = 0 to Bob when (m, a) ∈
{(1, 1), (2, 1), (3, 0), (3, 1)}, else she sends c = 1.

Bob’s action:
(i) The communicated bit from Alice is used as input in

Bob’s part of the NS box.
(ii) Depending on the tuple (c, b) ∈ C × B, he chooses

the box as follows: (0, 0) �→ 1, (0, 1) �→ 2, (1, 0) �→
3, (1, 1) �→ 4.

The above strategy with 1-bit communication and 2-input-
2-output Cabello’s correlation {c(ab|xy} leads to the strategy
matrix

SH ≡

M\Z 1 2 3 4
1 c8 c12 c1 0
2 0 c14 c3 c7

3 c0 + c8 c4 + c12 0 0
4 0 0 c3 + c11 c7 + c15

(C4)

As evident from the payoff matrix (C2) and the strategy (C4),
a box containing a bomb will never be opened. Furthermore,
assuming Charlie’s choice to be completely random, we have
the average payoff

P (SH ) = 1
4 Tr

[
GT

DMH′ SH
] = 1

4 (c0 − c3) > 0. (C5)

This completes the proof. �
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