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Quantum reservoir computing is an emerging field in machine learning with quantum systems. While classical
reservoir computing has proven to be a capable concept for enabling machine learning on real, complex
dynamical systems with many degrees of freedom, the advantage of its quantum analog has yet to be fully
explored. Here, we establish a link between quantum properties of a quantum reservoir, namely, entanglement
and its occupied phase-space dimension, and its linear short-term memory performance. We find that a high
degree of entanglement in the reservoir is a prerequisite for a more complex reservoir dynamics, which is key to
unlocking the exponential phase space and higher short-term memory capacity. We quantify these relations and
discuss the effect of dephasing in the performance of physical quantum reservoirs.
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I. INTRODUCTION

Machine-learning models based on artificial neural net-
works (ANNs) have already demonstrated their transforma-
tive potential on a global scale. These models typically rely
on the optimization of thousands or even billions of param-
eters [1], the training of which uses excessive amounts of
energy. Alternative approaches lie in the implementation of
ANNs as physical systems [2]. Reservoir computing (RC)
is a field that has emerged from neuromorphic computing
and aims at using the natural dynamics of complex systems
for information processing tasks [3]. While the capability
of physical reservoir computing has been proven in several
key experiments [4,5], RC with quantum-mechanical systems
has only recently become a research objective [6–8]. Quan-
tum reservoir computing (QRC) is particularly suited to be
implemented on noisy intermediate-scale quantum (NISQ)
hardware and is considered as an alternative to quantum ma-
chine learning using variational quantum gate logic [9]. QRC
has two advantages over classical RC: (i) native processing
of quantum input [10,11], and (ii) exponential scaling of the
phase space with system size. In principle, the exponential
scaling is able to outgrow the parameter space of any classical
system, wherein lies the promise of many quantum technolo-
gies. Only now, different aspects of QRC are beginning to
be investigated [12,13], such as the role of the Hilbert-space
dimension, [14,15], its robustness to noise [16], the origin
of nonlinearity in QRC from the underlying linear quantum
dynamics [14,17,18], and the role of dissipation [6,19].

In this article we address the question in how far quantum
properties can improve computing performance over classi-
cal implementations by quantifying the relationship between
entanglement, the utilization of the available quantum phase
space, and the linear short-term memory capacity as a measure
of QRC performance. Although, in principle, the Hilbert space
grows exponentially, it is a priori not clear how much of
this available space is used for computation. To answer this
question, we introduce the covariance dimension to the field

of QRC as a measure of the effective phase-space dimension
of the quantum reservoir dynamics. We find that the degree of
entanglement in the system is directly linked to the dimension
of the used phase space. Furthermore, we discuss the role
of dephasing mechanisms for the complexity of the reservoir
dynamics and its effect on the memory capacity of the QRC.

II. QUANTUM SYSTEMS AS RESERVOIRS

We consider a transverse-field Ising model [6] as a proto-
typical system that is well suited to address general questions
on quantum advantage without relying on specifications of
certain hardware platforms. In that sense, the N-qubit quan-
tum reservoir is represented by the Hamiltonian (h̄ = 1)
[6,20,21]

H = h
N∑

i=1

σ (i)
z +

∑
i �= j

Ji j σ
(i)
x σ ( j)

x , (1)

with 2h being the single-qubit energy, which we choose to
be equal for all qubits, and (Ji j ) being the symmetric qubit
coupling matrix. The values Ji j are sampled randomly from
the real interval [−1, 1] and are then normalized in such a
way that the maximal absolute-value eigenvalue of the matrix
(Ji j ) is given by the parameter J0, which we refer to as the
spectral radius of the coupling or the coupling strength. By
changing J0, we can consistently tune the timescale on which
the system evolves, even with randomly selected couplings.

While the physical implementation of the reservoir is a sys-
tem of N qubits, the amount of independent internal properties
exploitable as reservoir nodes is much larger. Each spin degree
of freedom and correlations thereof are affected nontrivially
by the system dynamics and act as reservoir nodes. These
correlations are key to unlocking the exponential scaling of
the phase-space dimension of the quantum reservoir [22]. The
combined properties of exponential scaling and nonclassical-
ity are key prerequisites for a possible quantum advantage.
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FIG. 1. Quantum dynamics of a three-qubit reservoir system.
(a) Readout nodes 〈σ (i)

z 〉. The input map Sk sets the input qubit to
a well-defined pure state |ψsk 〉 at time intervals h�t = 5. Magenta
(dark) lines indicate the average over N = 50 randomly sampled
Hamiltonians (cyan, light). The weight vector W combines the node
trajectories into the output signal y. (b) Normalized negativity Nd

for all possible bipartitions. After each input, the input qubit is
completely disentangled from the other qubits. The unitary dynamics
(re-)entangles the whole system on a timescale proportional to J0.
(c) Nd of partition 1|23 after input shows a larger entangling rate for
increasing J0.

To operate the QRC, a method to input information into
the physical system is needed. Here, the discrete-time input
signal sk ∈ [0, 1] is injected into the reservoir system via state
initialization. In our model, this is realized mathematically by
the completely positive trace preserving (CPTP) map [6]

ρ �→ ∣∣ψsk

〉 〈
ψsk

∣∣ ⊗ Tr1 [ρ], (2)

where Tr1 denotes the partial trace over the input qubit, taken
to be qubit 1, and the input-encoding pure state is given by
|ψsk 〉 = √

1 − sk |0〉 + √
sk |1〉. This operation corresponds to

a projective measurement of qubit 1 and discarding the mea-
surement outcome, and subsequently preparing the input qubit
in the state |ψsk 〉. The resulting time evolution in the time
interval �t between two successive inputs is ρ(t + �t ) =
U�t Sk (ρ(t ))U †

�t
, where Sk is the superoperator encoding the

input operation of Eq. (2), and U�t = exp(−iH�t ) is the
unitary time evolution determined by the system Hamiltonian.

As the reservoir’s readout signal we consider the expec-
tation values of the spin components 〈σ (i)

z 〉. Their exemplary
temporal behavior is shown in Fig. 1(a). Marked by the gray
dashed lines are the times at which the input is injected
into the first qubit. It is evident how this directly affects its
state: As the input qubit is set to |ψsk 〉, the value of 〈σ (1)

z 〉
changes abruptly to the encoded input sk . The measurement
process of the 〈σ (i)

z 〉 is interpreted in an ensemble picture
neglecting backaction. Protocols taking the backaction into
account, either by rewinding or spatial multiplexing, as well
as the influence of finite ensembles, or schemes involving
weak measurements, have been put forward in the litera-
ture [23–25]. We employ a V -fold temporal multiplexing of
the N readout signals by dividing the time interval between
successive inputs and sampling the readout nodes at time

intervals �t/V . This method allows us to train on NV vir-
tual readout nodes and has been shown to improve reservoir
performance significantly [6]. In our experiments we choose
V = 10. More detailed information on the technical imple-
mentation is provided in the Appendix. Furthermore, we only
use the spin-z components 〈σ (i)

z 〉 of the N qubits in the net-
work of the readout nodes for simplicity. We refrain from
additionally recording two- and multiqubit correlations of the
form 〈σ (i)

z · · · σ ( j)
z 〉 [26]. In general, a variety of different state

properties are thinkable as output nodes, the feasibility of
which will depend on the concrete physical implementation
of the reservoir [17].

The training process of the QRC in this setup is equivalent
to that of a classical reservoir computer [27] in that the mul-
tiplexed readout signals are multiplied by the weight vector
W = (w0,w1, . . .)ᵀ to receive the output signal as illustrated
in Fig. 1(a) (see Appendix for more details). The components
of W are the only parameters in our QRC approach that are
being trained.

III. ENTANGLEMENT IN QRC

In this article we investigate how the presence of en-
tanglement correlates with the quantum reservoir’s memory
capacity as a measure of its performance. As a measure to
quantify entanglement, we introduce the normalized negativ-
ity [22,28,29] with respect to the bipartition with subsystems
A and B,

Nd (ρ) =
∥∥ρTA

∥∥
1 − 1

d − 1
, (3)

where ‖ · ‖1 denotes the trace norm, ρTA is the partial
transpose of ρ with respect to subsystem A, and d =
min{dim(HA), dim(HB)}. In comparison with the conven-
tional definition of negativity, Nd has a maximal value of one
irrespective of the chosen bipartition, which here facilitates
better comparability (see the Appendix). Nd is easy to com-
pute and provides a sufficient condition to rule out separability
between two subsystems, because Nd (ρ) = 0 for all separable
states [30,31]. This implies that, while an entangled state can
exhibit a negativity of zero, a finite negativity is an unambigu-
ous sign of entanglement.

The negativity’s time evolution for a QRC with input at
intervals of h�t = 5 is shown in Fig. 1(b), averaged over
50 Hamiltonians representing randomized realizations of the
quantum reservoir. At every input injection, the drop of N 1|23

d
to zero is clearly visible, whereas the two other bipartitions
show a finite negativity as qubits 2 and 3 remain entangled.
To deal with the statistical fluctuations that come with the
randomly sampled system Hamiltonians, in the following we
use the average negativity N̄d over all bipartitions of the QRC
qubits as a measure of the system’s entanglement at any point
in time. To obtain a single value for the negativity during the
whole process of performing a memory task, the negativity is
also averaged over all times, including the input and build-up
stages. We use this procedure to define a measure of entan-
glement, which is a good indicator for the mean entanglement
in the system during task execution. By tuning the coupling
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FIG. 2. Characteristic QRC properties with varying coupling
strength J0 for N = 3 (cyan, light) and N = 4 (magenta, dark) qubits
averaged over 20 random realizations of the quantum reservoir.
The four quadrants (I–IV) show the different functional depen-
dence between coupling strength J0, mean negativity N̄d , covariance
dimension Dc (given as a fraction of the theoretically available di-
mension Dmax) and linear short-term memory capacity CSTM. Dashed
lines are a guide to the eye highlighting the connection between the
shown quantities. The Appendix provides an alternative representa-
tion of the same data.

strength J0, we can control the build-up rate of entanglement,
as shown in Fig. 1(c).

For 20 randomized system Hamiltonians and comparing
QRC systems with N = 3 (cyan) and N = 4 (magenta) qubits
corresponding to 64 and 256 internal nodes, respectively, we
investigate the connection between the reservoir connectivity
in terms of the spectral radius and the mean entanglement in
quadrant I of Fig. 2. With J0 increasing from 0.1 to 0.5, a
monotone increase of the time-averaged mean entanglement
N̄d is observed, underlining the connection mentioned above.

IV. PHASE-SPACE DIMENSION

QRC aims at exploiting the exponential scaling of the
phase space with the system size to leverage the opportunities
of NISQ devices for real-world tasks. Here, we investigate
if the available phase space is used efficiently, or if the
quantum dynamics is confined to a lower-dimensional man-
ifold [32,33]. To access this information, we introduce a
measure called the covariance dimension Dc to the field of
QRC, which analyzes the trajectory of the systems’ quantum
dynamics in geometrical terms, a concept well known from
dynamical systems theory [34]. The Appendix provides de-
tails on the calculation of Dc. Figure 3 illustrates the concept
of the covariance dimension: Although the system dynamics
(cyan dots) takes place in a three-dimensional (3D) phase

FIG. 3. Illustration of the covariance dimension using the exam-
ple of a Möbius strip (cyan). While embedded in three-dimensional
space, the strip itself is two dimensional, which is revealed by analy-
sis of local properties of the system’s trajectory (magenta).

space, the trajectory might be confined to a two-dimensional
(2D) manifold—a Möbius strip in this example. This can be
detected by analyzing the local structure (magenta clusters) of
the systems’ phase-space trajectories. In quadrant II of Fig. 2
we show the relation between the mean negativity N̄d and
the fraction of the available phase-space dimension Dc/Dmax

utilized by the reservoir dynamics, where Dmax = 4N − 1 is
the maximum dimension. We observe a clear positive corre-
lation with the degree of entanglement in the network and a
nearly linear increase with the coupling strength. The mono-
tone increase is explained by the fact that stronger coupling
enhances the rate of change of the system’s state vector, thus
allowing it to explore a higher-dimensional submanifold of
the state space before collapsing again due to the input in-
jection. Nevertheless, our analysis shows that only 40%–60%
of the available phase space dimension is effectively used.
Furthermore, for N = 4 qubits, the occupied fraction of the
maximal dimension is lower than for N = 3 qubits, hinting at
a subexponential scaling, the origin of which can most likely
be attributed to an increased influence of dephasing induced
by the input operation.

V. QRC PERFORMANCE

To test our initial hypothesis of a positive correla-
tion between reservoir entanglement and QRC performance,
we investigate the linear short-term memory CSTM as a
simple but fundamental benchmark in reservoir comput-
ing [3,35]. Given an input sequence (sk, sk−1, sk−2, . . . ), the
reservoir is tasked to produce the target sequence ŷτ =
(sk−τ , sk−1−τ , sk−2−τ , . . . ) with k, τ ∈ N. The linear short-
term memory for the time delay τ is then given by the squared
Pearson correlation coefficient,

Cτ
STM = cov2 (y, ŷτ )

σ 2
y σ 2

ŷτ

, (4)

where y is the reservoir output signal obtained after the QRC
was trained on this particular task. Furthermore, σy is the stan-
dard deviation of y, and cov(y, ŷτ ) is the covariance between
y and ŷτ . Per definition, Cτ

STM lies in the interval [0, 1], with 1
indicating a perfect reconstruction of the delayed input signal.
As any reservoir computer has to fulfill the fading memory
property [36], we can expect Cτ

STM to vanish for larger τ ,
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FIG. 4. (a) Normalized negativity for all three possible bipartitions in the three-qubit system averaged over 20 Hamiltonians with different
coupling matrices and fixed coupling strength J0 = 0.4 for different pure-dephasing rates. Input injection occurs at time intervals h�t = 5.
(b) Relation between Dc and N̄d for the same dephasing rates and coupling strength as in panel (a). (c) Dependence of CSTM on the dephasing
rate for different coupling strengths. The color bar to the right applies to all panels simultaneously.

enabling us to define the total memory capacity

CSTM =
∞∑

τ=0

Cτ
STM. (5)

For the perfect, noise-free system we are investigating so far,
CSTM has to be at least 1, as the capacity C0

STM for τ = 0 is
always 1. In the lower two panels of Fig. 2, we show the
memory capacity of the reservoir as a function of the coupling
strength J0 (quandrant IV) and its relation to the covariance
dimension Dc (quadrant III). Details on parameters such as
training and test set sizes used for these results are given in the
Appendix. One can see that already the weakly coupled QRC
has a CSTM larger than one, implying an intrinsic memory ca-
pacity of the quantum network. Upon increasing the coupling
strength, the mean memory capacity grows with the negativity
and covariance dimension until it peaks around CSTM = 8 for
N = 3 and CSTM = 13 for N = 4. After the initial increase, we
observe a reduction of the memory capacity at larger values
of the negativity, covariance dimension, and J0. We explain
this behavior by two competing effects. For small values of
J0, as explained above, the dynamics of the reservoir state
between two successive inputs becomes faster, leading to a
larger dimensionality (i.e., higher rank) of the multiplexed sig-
nal that is used in the STM tasks. Above J0 � 0.33, the fading
memory effect becomes more pronounced, which we can infer
from the Lyapunov spectrum, meaning that information loss
in the QRC begins to outweigh the benefits of the quantum
effects.

VI. EFFECT OF DEPHASING ON QRC PERFORMANCE

In the context of Fig. 1, we have explained that writing
the input into the QRC by means of the projective measure-
ment, expressed via the CPTP map in Eq. (2) acts as an
effective dephasing mechanism that destroys both information
and entanglement in the reservoir: At each input, taking the
partial trace quarters the dimension of the generalized Bloch
vector. Any real physical system that may serve as a hardware
implementation for QRC is subject to additional degrees of
dephasing due to interaction with the environment. We inves-
tigate its effect on QRC entanglement and the corresponding
change in performance by introducing an additional pure-
dephasing mechanism, expressed by subjecting all qubits in

the QRC sequentially to the single-qubit dephasing map

ρ �→
(

1 + e−2γ�t /V

2

)
ρ +

(
1 − e−2γ�t /V

2

)
σ (i)

z ρσ (i)
z , (6)

with the dephasing rate γ . In contrast to the effective dephas-
ing induced by the input injection, this pure qubit dephasing
is applied at each step of the time evolution, emulating a
continuous interaction with the environment. The impact of
additional pure dephasing is shown in Fig. 4(a). Its strength
γ is tuned from no additional dephasing (γ = 0) to strong
dephasing (γ = 0.25). As expected, stronger dephasing hin-
ders entanglement buildup, leading to smaller values of the
mean entanglement N̄d with increasing γ . For a quantitative
analysis, Fig. 4(b) shows the relation of covariance dimension
Dc and mean entanglement N̄d for different dephasing rates γ .
We find that the relation between Dc and N̄d persists also in
the presence of pure dephasing, i.e., dephasing decreases the
mean entanglement and the covariance dimension to the same
degree. As a result, the general shape of Dc as a function of
N̄d changes only marginally, from which we infer a general
functional dependence, the origin of which poses an open
question for future work.

When investigating the linear short-term memory capacity
for varying dephasing strengths, we observe an interesting
effect: for most coupling strengths up to about J0 = 0.4, a
weak, but nonzero dephasing rate is found to increase CSTM, as
can be seen in Fig. 4(c). While at the largest coupling strength,
the effect is only marginal, it gets more pronounced for weaker
coupling strengths, leading to a more than 20 % increase of
the memory capacity at J0 = 0.2. For such weak couplings,
the STM performance of the QRC benefits even from higher
dephasing rates. We conclude that stronger coupling and, with
it, stronger mean entanglement and more occupied phase-
space dimensions lead to better memory performance in the
analyzed coupling strength interval for a fixed value of the
dephasing rate.

VII. CONCLUSION

We provide results that relate the “quantumness” of a
physical system to its performance as a QRC. We show
that, indeed, stronger mean entanglement and more occupied
phase-space dimension are beneficial to its STM performance.
We find that tuning the local coupling strength within the
quantum network enables one to control performance, but a
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limitation is set by the balance between the speed of infor-
mation spread within the QRC and the effective dephasing
caused by input injection. In real physical implementations,
small but nonzero additional pure dephasing can even yield a
performance increase, contrasting the common perception in
gate-based quantum computing and quantum machine learn-
ing that dephasing is always detrimental.

The connection between strictly quantum properties of the
reservoir and their role in QRC performance stir hope for us-
ing quantum-mechanical systems in analog machine learning.
For QRC to become a relevant near-term technology, we must
develop a clear understanding of its potential and limitations.
Future investigations will have to go beyond idealized systems
and focus on actual NISQ implementations, such as ANNs
based on photonic lattices or coupled-cavity arrays.
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APPENDIX A: ISOMETRY OF DENSITY MATRIX
VECTOR SPACE TO Rd

For efficient evaluation and analysis of the reservoir dy-
namics we do not solve the equation of motion for the density
matrix directly. Instead, we apply a transformation to the
system’s density matrix ρ of N qubits that translates it into a
real vector x ∈ Rd with d = 4N . This is well defined because
the real vector space of Hermitian 2N × 2N matrices with the
metric induced by the Frobenius norm ‖ρ‖F = (Tr[ρ†ρ])1/2

is isomorphic to the Euclidian metric space Rd with d = 4N .
We can see this by projecting the matrix ρ onto a generalized
Pauli basis {Pk}4N

k=1 = {1, σx, σy, σz}⊗N [6]:

xk = Tr[ρPk], ρ = 1

2N

∑
k

xkPk, (A1)

where xk are the real components of the aforementioned vector
x. Indeed, we can count the degrees of freedom in ρ and find
2N real numbers on the diagonal and 2N (2N − 1)/2 nondiag-
onal complex entries resulting in 2N + 2N (2N − 1) = 4N real
degrees of freedom, which is exactly the number of elements
in x. The maximum 4N − 1 effective dimensions are a result
of the condition Tr ρ = 1. An isometry of the different spaces
is established by

‖ρ‖2
F = Tr[ρ2] = 1

22N

∑
i j

xix j Tr[PiPj] = 1

2N

∑
i

x2
i ,

(A2)

i.e., the Frobenius norm on Hermitian matrices is (up to a nor-
malization factor) equivalent to the euclidean norm in Rd . In
Eq. (A2) we used the fact that the generalized Pauli matrices,
which form the Pauli basis, fulfill the orthogonality relation
Tr[PiPj]/2N = δi j .

For density matrices representing physical states, normal-
ization and positivity must be assured. After projection onto
the Pauli basis, the vector component x0 = 1 ensures normal-
ization of the trace of the qubit state, while the components
xk�1 can be interpreted as a N-qubit analog to the Bloch
vector, which generalizes some, but not all properties of the
Bloch sphere that is known from the single-qubit case. In
particular, the fact that all physical pure states have a gen-
eralized Bloch vector of maximal length ‖x‖ = 2N/2 provides
only a necessary condition because there are maximal-length
vectors that do not correspond to a physical state [37] and,
thus, the intuitive picture of a Bloch ball in a higher dimension
with a surface representing all pure N-qubit states breaks
down. The vector x not only contains the Bloch vectors of the
reduced single-qubit states, but also correlations of the form
〈σ (i)

x σ
( j)
x · · ·〉, 〈σ (i)

x σ
( j)
y · · ·〉, ..., 〈σ (i)

z σ
( j)
z · · ·〉.

The description of the system’s state in terms of the
generalized Pauli basis can also be extended to any linear
superoperator D : ρ �→ D(ρ) acting on a state ρ. The super-
operator is projected onto the Pauli basis via

Di j = 1

2N
Tr[PiD(Pj )], (A3)

such that x is transformed under the action of the superopera-
tor via x′ = Dx, with D = (Di j ). In particular, this includes
the dynamics of the system under unitary evolution ρ �→
e−iHtρeiHt which translates to the linear vector transformation
x′ �→ Dt x with Dt

i j = Tr[Pie−iHt PjeiHt ]/2N .

APPENDIX B: TRAINING OF THE RESERVOIR SYSTEM

Here, we give further technical details on the QRC training
and testing procedures that we use to obtain the short-term
memory capacity CSTM. The physical output nodes of the
reservoir are given by the expectation values 〈σ (i)

z 〉. Multi-
plexing is achieved by an additional sampling of the physical
nodes at intermediate time intervals �t/V between two suc-
cessive inputs sk and sk+1 at times k�t and (k + 1)�t ,
respectively. Figure 5 visualizes the multiplexing scheme
for N = 3 physical nodes and V = 4. Multiplexed samples
are defined as xi, j

k = 〈σ (i)
z 〉(k�t + j�t/V ), with k ∈ N, i ∈

[1, N] and j ∈ [1,V ]. Input-injection times are indicated by
vertical lines (gray). The resulting N · V = 12 virtual nodes
are obtained by regrouping the subsampled physical nodes as
indicated in the figure. The output of the reservoir is formed
by the linear combination of all virtual nodes and a constant
bias term w0 as

yk = w0 +
N ·V∑
l=1

wl x
l
k, (B1)

where we define the index l ∈ [1, N · V ] as a combination of
i and j.

The reservoir is trained on an input sequence of length
Ntr for a particular task by optimizing the read-out weights
W = (w0,w1, . . .)ᵀ such that the mean square error with the
training sequence ŷ is minimized, i.e.,

W = arg min(w0,w1,...)
1

Ntr

∑
k

[yk (W) − ŷk]2. (B2)
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FIG. 5. Visualization of the reservoir node multiplexing. (left) Subsampling of N = 3 true nodes at intervals �t/V between successive
input steps with V = 4. (right) The N · V = 12 virtual nodes are formed by regrouping the subsamples. The multiplexed samples of the
physical nodes are given by xi, j

k = 〈σ (i)
z 〉(k�t + j�t/V ). Gray vertical lines indicate successive inputs sk .

For evaluation of the STM task in the paper we initially
synchronize the QRC by a random input sequence of length
200 such that it becomes independent on any initial condition.
Training and evaluation of the model are each performed on
random input sequences of length 1000.

APPENDIX C: DERIVATION OF
THE NORMALIZED NEGATIVITY

We show that the normalized negativity [28] introduced in
the main text,

Nd (ρ) = ‖ρTA‖1 − 1

d − 1
, (C1)

is constructed in such a way that the maximal value of Nd (ρ)
is bounded by 1 independent of the system size and the bipar-
tition used. It is well known that any bipartite pure quantum
state |ψ〉 has a Schmidt decomposition

|ψ〉 =
d∑

i=1

λi |iA〉 |iB〉, (C2)

where d = min{dim(HA), dim(HB)} and the states {|iA〉} and
{|iB〉} are some orthonormal basis on the Hilbert spaces HA

and HB of the bipartition [38]. The Schmidt coefficients sat-
isfy λi > 0 and

∑d
i=1 λ2

i = 1. Conventionally, the negativity is
defined as the absolute value of the sum of the negative eigen-
values of the partial transpose ρTA . These can be calculated as

a function of the Schmidt coefficients. From

|ψ〉 〈ψ | =
d∑

i=1

d∑
j=1

λiλ j |iA〉 |iB〉 〈 jA| 〈 jB| (C3)

we calculate the partial transpose

(|ψ〉 〈ψ |)TA =
d∑

i=1

d∑
j=1

λiλ j | jA〉 |iB〉 〈iA| 〈 jB| (C4)

=
d∑

i=1

λ2
i |iA〉 |iB〉 〈iA| 〈iB|

+
d∑

i< j

λiλ j (|iA〉 | jB〉 〈 jA| 〈iB|

+ | jA〉 |iB〉 〈iA| 〈 jB|). (C5)

In the last step, we split diagonal and off-diagonal contribu-
tions to reveal a block-diagonal form when projected onto the
basis given by {|iA〉 | jB〉}. The first sum constitutes a diagonal
block with eigenvalues λ2

i , while each term in the second sum
represents an off-diagonal 2 × 2-block of the form

λiλ j

(
0 1
1 0

)

with eigenvalues ±λiλ j . Gathering all resulting negative
eigenvalues shows that the unnormalized negativity is
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FIG. 6. (a) Principal component distribution for a single, exemplary cluster in the trajectory of a three-qubit QRC during a STM task.
The magenta line indicates the cutoff threshold (εc = 10−6) relative to the largest eigenvalue c0 in the shown distribution. (b) Distribution of
single-cluster covariance dimensions dc for 1000 different clusters in the same data as in panel (a).

given by

N (ρ) =
d∑

i< j

λiλ j, (C6)

where the sum runs over d (d − 1)/2 individual terms. It is
easy to see that under the assumption λi > 0, the maximum
value is found when all Schmidt coefficients are equal, i.e.,
λi = 1/

√
d ∀ i, which corresponds to a maximally entangled

state with respect to the considered bipartition. Therefore, the
maximum negativity is given by (d − 1)/2. From this we can
define the normalized negativity Nd (ρ) = 2

d−1N (ρ), which
is equivalent to Eq. (C1). The upper bound of 1 is easily
extended to mixed states by the convexity of Nd , i.e., for any
number of pure states ρi,

Nd

(∑
i

piρi

)
�

∑
i

piNd (ρi ), with
∑

i

pi = 1, (C7)

which quickly follows from the triangle inequality of the trace
norm ‖ · ‖1. We note that the result for the upper bound and the
normalized negativity can be found elsewhere in the literature
but we hope that our formulation provides a clear picture of
the derivation.

APPENDIX D: ESTIMATION OF THE
COVARIANCE DIMENSION

In the following we provide detailed information on the
covariance dimension Dc that we introduce to the field of
QRC in order to quantify the percentage of the theoretically
available Hilbert-space dimension that is effectively utilized
by the reservoir dynamics. We note that similar approaches are
well known, e.g., from dynamical systems analysis [34] and
also from classical reservoir computing [32]. For this work
we have adapted the technique for our purpose.

In Appendix A we explained how the description of the
quantum system in terms of the density matrix is translated
into an equivalent picture in terms of a real state vector x ∈ Rd

with dimension d = 4N . Accordingly, the quantum dynamics
of the system corresponds to a trajectory in the space Rd .
The covariance dimension is determined by the following
procedure: Let the signal X = (x0, x1, . . .) be the matrix with
columns xi representing points in Rd along the trajectory of

the system sampled at time intervals �t/V . We choose an
index point xi0 randomly and determine a cluster of at least
d + 1 nearest neighbors that are combined into a matrix Xi0 .
The covariance matrix of the cluster is then given by

CXi0
= 1

Nd − 1

(
Xi0 − X̄i0

)(
Xi0 − X̄i0

)ᵀ
, (D1)

where Nd is the number of points in the cluster and X̄i0
indicates the mean of the cluster. The covariance dimension
dc(i0) of each particular cluster is found by performing a prin-
cipal components analysis (PCA), where we sort the principal
components ci in decreasing order c0 > c1 > · · · . The single-
cluster covariance dimension dc(i0) is defined as the number
of principal components ci of CXi0

that pass the cutoff thresh-
old ci/c0 > εc with c0 being the largest principle component.
In general, the cutoff threshold represents the signal-to-noise
ratio that we assume in the reservoir dynamics and that has an
influence on the detectable covariance dimension. Here, we
choose a value of εc = 10−6. The covariance dimension of the
whole signal is found by averaging over many random index
points i0, i.e.,

Dc = 1

NI

∑
i0∈I

dc(i0), (D2)

where I is the set of random indices and NI is the number
of elements in this set. The procedure of determining the
covariance dimension is illustrated in Fig. 3 in the main text
for a reservoir signal confined to a Möbius strip as an ex-
ample. In this example the signal (cyan dots) is embedded
in a three-dimensional space while the principal component
analysis (PCA) of each cluster (magenta) would reveal the two
dimensions of the submanifold the signal is confined to.

To provide more insight to the underlying statistics, we
show typical exemplary data for these processes in Fig. 6. To
obtain the data, we let a three-qubit QRC solve an arbitrary
STM task and recorded the state trajectory during training
and validation. In Fig. 6(a), the distribution of the principal
components of a typical cluster of nearest neighbors in the tra-
jectory is shown. The cutoff threshold is shown as a magenta
vertical line. It represents the division below which we neglect
the contributions of the cluster to the covariance dimension.
As mentioned above, in an experimental realization the
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FIG. 7. Alternative representation of the data given in Fig. 2 of the main text. Characteristic QRC properties as a function of coupling
strength J0 for N = 3, 4 qubits averaged over 20 random QRC realizations with standard deviations given by the shaded areas. (a) Mean
negativity N̄d , (b) covariance dimension Dc (given as a fraction of the theoretically available dimension Dmax), and (c) linear short-term
memory capacity CSTM.

cutoff threshold is related to the signal-to-noise ratio. Sta-
tistical noise in the reservoir signal will generally lead to an
increased background in the principal components. Thus, an
appropriate threshold to filter out the background leading to a
meaningful value of the covariance dimension will depend on
the specific QRC implementation.

Determining the covariance dimension Dc of the whole
trajectory X is done by averaging over many single-cluster
covariance dimensions dc, the distribution of which is shown
in Fig. 6(b) for 1000 clusters. The small width of the

distribution of dc for individual clusters shows the consistency
of our approach.

APPENDIX E: ALTERNATIVE REPRESENTATION OF
QUANTUM RESERVOIR COMPUTING PROPERTIES

In Fig. 7 we provide an alternative representation of the
results shown in Fig. 2 in the main text. Clearly visible is the
near-linear dependence of the covariance dimension Dc when
increasing the coupling strength J0.
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