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Closing loopholes of measurement-device-independent nonlinear entanglement witnesses
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The concept of entanglement witnesses forms a useful technique to detect entanglement in realistic quantum
devices. Measurement-device-independent nonlinear entanglement witnesses (MDI-NEWs) are a kind of entan-
glement witness that eliminates dependence on the correct alignments of measurement devices for guaranteeing
the existence of entanglement and also detects more entangled states than its linear counterparts. While this
method guarantees entanglement independent of measurement alignments, it is still prone to serving wrong
results due to other loopholes. Here, we study the response of MDI-NEWs to two categories of faults occurring
in experiments. In the first category, the detection loophole, characterized by lost and additional events of
outcomes of measurements, is investigated, and bounds which guarantee entanglement are obtained in terms
of the efficiency of measurement being performed. In the second category, we study noise associated with the
sets of additional quantum inputs required in MDI-NEW scenarios. In this case, a type of noise is identified
which still allows the MDI-NEWs to guarantee entanglement. We also show that MDI-NEWs are less or equally
robust in comparison to their linear counterparts under the same noise in additional quantum inputs, although
the former group detects a larger volume of entangled states in the noiseless scenario than their linear cousins.
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I. INTRODUCTION

Entanglement [1–3] is one of the most interesting and use-
ful characteristics of quantum states. After its first recognition
as a property of shared physical entities [4], entanglement
has received a significant amount of attention. In particu-
lar, entanglement acts as a resource in a variety of quantum
mechanical protocols, including quantum teleportation [5],
quantum dense coding [6], and entanglement-based quantum
cryptography [7].

Consequently, various methods for detection of entangle-
ment have been discovered and analyzed. The range criterion
[8,9], positive partial transpose (PPT) criterion [10,11], en-
tropic criterion [12,13], and entanglement witnesses (EWs)
[11,14,15] are some examples. Among these different meth-
ods of detecting entanglement, the (linear) entanglement
witnesses method has received a lot of attention due to it being
easier to implement in experiments than the other methods
and its usability in cases in which the state is only partially
unknown. Since the set of separable (unentangled) quantum
states of shared systems is convex and closed, one can in-
voke the Hahn-Banach theorem [16,17] and be always able
to draw a hyperplane to “separate” any entangled state from
the set of all separable states. This is the idea in the concept
of linear entanglement witnesses, and the expectation value
of a linear operator acts as the hyperplane for the detection of
entangled states. Entanglement witnesses have been utilized
for detecting entanglement in many experiments [18–23].

The instruments available in laboratories do not op-
erate ideally and are not perfectly efficient. Thus, the
process of implementing an EW in real situations faces var-
ious imperfections—for example, the “wrong measurement
loophole” and the “detection loophole” [24–29]. If the mea-
surement settings get altered during the evaluation of the

expectation value of an EW, then due to the incorrectness
in the obtained information, a separable state may appear as
entangled. This is called the wrong measurement loophole.
Similar complications may also happen due to the detection
loophole, where one or more events get lost or falsely ap-
pear in the measurement procedure. In the context of Bell
inequality, the significance of the detection loophole has been
discussed in some detail [30–38], and the related experi-
ments performed include Refs. [39–44]. To avoid the wrong
measurement loophole present in the detection of entan-
gled states via entanglement witnesses, measurement-device-
independent entanglement witnesses (MDI-EWs) were intro-
duced in Ref. [45] based on a semiquantum nonlocal game
[46]. Nevertheless, the detection loophole was present in
MDI-EW. The effect of the detection loophole, and the path
for bypassing it, was analyzed in Ref. [47]. Further works on
MDI-EWs include Refs. [48–51].

Detection of entangled states using MDI-EWs requires
additional quantum states as inputs. From therein arises the
“noisy quantum input loophole” in the process of detection of
entangled states using MDI-EWs [51], that is, when the input
states themselves become faulty.

There is as yet no efficient way to detect all the entangled
states of a shared Hilbert space of an arbitrary dimension.
This is the well-known separability problem. The method
of detecting entanglement by linear entanglement witnesses
is also not an exception: no single linear EW can detect
all entangled states. However, one can construct better en-
tanglement witnesses than the linear ones by “bending” the
linear EWs toward negativity so that it still has semipositive
values for all separable states. Such entanglement witnesses,
due to their nonlinear nature, are called nonlinear entan-
glement witnesses (NEWs) [52–67]. Nonlinear entanglement
witnesses, due to their construction, can detect more entangled
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states than their linear counterparts. However, the construction
of a nonlinear witness, which can detect all the entangled
states, that is, the (necessarily nonlinear) operator forming
the boundary surface that separates the set of separable states
from the set of entangled states, which will then solve the
separability problem, is still open. The method of detecting
entangled states using nonlinear witnesses also encounters
the wrong measurement and detection loopholes. It was re-
cently shown that measurement-device-independent nonlinear
entanglement witnesses (MDI-NEWs) that are better than
MDI-EWs can also be constructed [68].

In this article, we explore the effects of detection and noisy
quantum input loopholes in MDI-NEWs. In the case of the
detection loophole, we consider three different scenarios, with
the first and second being those of additional events but no lost
events in the detection process, and the opposite. The third is
the most general scenario, where events can get lost as well as
there can be unwanted excess events. Considering these three
scenarios separately, we determine modified conditions on the
MDI-NEWs such that no false occurrence of entangled states
happens in any of these circumstances. We next show that
the MDI-NEWs never depict a separable state as entangled
even in the presence of certain types of noise in the set of
input states. Strangely, we realize that if, due to any noise in
input states, MDI-EWs provide an incorrect result, then the
corresponding MDI-NEWs will do the same.

The rest of the paper is organized as follows: in Sec. II,
we will recapitulate formal definitions of EWs, MDI-EWs,
and MDI-NEWs, which will also help to set the notations. In
Sec. III, we will discuss how the detection loophole can have
an impact on MDI-NEWs and how it can be avoided if the
apparatus’s efficiencies are known. The consequence of the
noisy quantum input loophole will be discussed in Sec. IV.
We present a conclusion in Sec. V.

II. PREREQUISITES

In this section, we will briefly review some topics which
will be needed in the remaining part of the paper.

A. Entanglement witnesses

Consider a composite Hilbert space, HA ⊗ HB. The con-
cept of linear entanglement witnesses consists in choosing a
Hermitian operator W acting on HA ⊗ HB such that tr(W σ ) �
0 for all separable states σ on HA ⊗ HB, and tr(W ρ) < 0
for at least one entangled state ρ on HA ⊗ HB. Therefore,
if we know that for a Hermitian operator W , tr(W σ ) � 0
for all separable states σ , and find that tr(W ρ) < 0 for a
given ρ, then the state ρ must be entangled. For example,
consider a nonpositive partial transpose (NPT) bipartite state
ρ̃ acting on the Hilbert space HA ⊗ HB. According to the
definition of NPT states, the operator ρ̃TB will have at least one
negative eigenvalue, where TB denotes transposition on the
second Hilbert space HB. An NPT state is always an entangled
state [10,11]. Let us denote the eigenvector corresponding
to any one of the negative eigenvalues of ρ̃TB by |φ̃〉. Then,
the operator Wφ̃ = (|φ̃〉 〈φ̃|)TB is a valid linear entanglement
witness operator which can successfully detect the entangled
state ρ̃ [2].

Measurement-device-independent entanglement witnesses:
Let us now briefly discuss the concept of MDI-EWs. Any
entanglement witness operator W can be decomposed in terms
of density matrices as

W =
∑
s,t

αstτ
T
s ⊗ ωT

t , (1)

where τs and ωt are sets of density matrices, acting on the
individual Hilbert spaces, HA and HB, respectively, and αst

are real numbers. Consider a particular scenario where Alice
and Bob share the state ρ, which acts on the same composite
Hilbert space, HA ⊗ HB, and they want to find out if the state
ρ is entangled. The states τs (ωt ) are available to Alice (Bob),
and are called the input states. Now, Alice (Bob) applies a
positive operator-valued measurement (POVM) on the state
τs (ωt ) and her (his) part of the state ρ. Each of the POVMs on
Alice’s and Bob’s sides has only two distinct outcomes, say, 0
and 1. Let the POVM operators corresponding to outcome 1 be
A1 and B1 for Alice’s and Bob’s measurements, respectively.
The probability that each of them will get outcome 1 when the
input states utilized are τs and ωt is given by

Pst
11(ρ) = tr[(τs ⊗ ρ ⊗ ωt )(A1 ⊗ B1)].

The MDI-EW Iα is thus defined as [45]

Iα (Pρ ) =
∑
s,t

αst P
st
11(ρ), (2)

so that Iα (Pσ ) � 0 for all separable states σ and for
any dichotomic POVMs. Since the nonnegativity of Iα (Pσ )
is independent of the choice of POVMs, the witness is
called measurement device independent. On the other hand,
when A1 and B1 are taken to be the maximally entangled
states, i.e., |�A〉 〈�A| = 1

dA

∑
i, j |ii〉 〈 j j| and |�B〉 〈�B| =

1
dB

∑
i, j |ii〉 〈 j j|, respectively, Eq. (2) reduces to Iα (Pρ ) =

tr(W ρ)
dAdB

, where dA and dB are, respectively, the dimensions of
HA and HB. Thus, for this particular set of POVMs, the
MDI-EW can detect all the states that the usual measurement-
device-dependent EW W can detect.

B. Nonlinear entanglement witnesses

Consider the witness operator Wφ̃ , an arbitrary state |ψ〉
acting on HA ⊗ HB, and a corresponding operator X =
|φ̃〉 〈ψ |. Then, using these operators and states, a nonlinear
operator can be constructed as [52]

Fφ̃ (ρ) = 〈Wφ̃〉 − 1

s(X )
(〈X TB〉〈(X TB )†〉),

where the expectation values are taken over the state ρ. We
denote the square of the largest Schmidt decomposition coef-
ficient of |ψ〉 by s(X ). The operator, Fφ̃ (σ ), is nonnegative for
all separable states σ . But the second term in Fφ̃ will always
have a nonpositive value, so that Fφ̃ (ρ) � Wφ̃ . Therefore,
Fφ̃ (σ ) can be defined as a nonlinear entanglement witness that
can detect more entangled states than Wφ̃ [52].

Measurement-device-independent nonlinear entanglement
witnesses: It is also possible to design nonlinear witnesses
in a measurement-device-independent way [68]. The basic
detection procedure is the same as the MDI-EWs, with the
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only difference being that in this case, Alice and Bob require
the maximally mixed states, mA and mB, also as inputs. We
denote the probability of obtaining the outcomes a and b when
the “input states” are mA and mB as PAB

ab .
Any operator can be decomposed as a sum of Hermitian

and anti-Hermitian operators. Thus, we can write X TB = H1 +
iH2, where H1 and H2 are Hermitian operators. Again both
of the Hermitian operators, H1 and H2, can be decomposed
in terms of the same local density matrices, τs and ωt , as in

Eq. (1), as

H1 =
∑
s,t

βstτ
T
s ⊗ ωT

t , H2 =
∑
s,t

γstτ
T
s ⊗ ωT

t . (3)

An MDI-NEW Nφ̃ can be defined in terms of the decomposi-
tion coefficients of the Hermitian operators, Wφ̃ , H1, and H2,
given in Eqs. (1) and (3), as

Nφ̃ (P) = Iα (P) − 1

s(X )dAdBPAB
11

⎡
⎢⎣

⎛
⎝∑

s,t

βst P
st
11

⎞
⎠

2

+
⎛
⎝∑

s,t

γst P
st
11

⎞
⎠

2
⎤
⎥⎦. (4)

Let Alice and Bob share a separable state, σ = ∑
i piσ

i
A ⊗ σ i

B. In such a situation Eq. (4) reduces to

Nφ̃ (Pσ ) = tr

[∑
i

piA
i
1 ⊗ Bi

1Wφ̃

]
− 1

s(X )tr
[∑

i piAi
1 ⊗ Bi

1

]
⎡
⎣(

tr

[∑
i

piA
i
1 ⊗ Bi

1H1

])2

+
(

tr

[∑
i

piA
i
1 ⊗ Bi

1H2

])2
⎤
⎦. (5)

Here, Ai
1 = (trA[A1(IA ⊗ σ i

A)])T and Bi
1 =

(trB[B1(σ i
B ⊗ IB)])T . Thus, it can be seen that

Nφ̃ (Pσ ) = TQFφ̃ (Q), where TQ = ∑
i pitr[Ai

1 ⊗ Bi
1] and

Q = ∑
i piAi

1 ⊗ Bi
1/TQ. Since Ai

1 and Bi
1 are effective POVMs

acting on Alice’s and Bob’s Hilbert spaces, respectively, and
Q is a separable state, we have TQ � 0 and Fφ̃ (Q) � 0. Thus,
it confirms that the nonlinear witness function Nφ̃ is positive
for any joint dichotomic measurement applied by Alice and
Bob on separable states. If Alice and Bob choose the joint
POVM operators, A1 and B1, to be maximally entangled
states, then the expression in Eq. (4) reduces to Nφ̃ (ρ) = Fφ̃

dAdB
.

Therefore, in this case, Nφ̃ is equally effective as Fφ̃ for the
detection of entangled states.

III. EFFECTS OF DETECTION LOOPHOLE ON
ENTANGLEMENT DETECTION VIA MDI-NEW

Even though the wrong measurement loophole can be ig-
nored while using MDI-EWs, the detection loophole can still
be present, as shown in Ref. [47]. The detection loophole
arises in experiments due to lost or/and additional events
during the implementation of measurements. It may hamper
the determination of probabilities of outcomes of measure-
ments, which in turn may cause a wrong certification of an
entangled state. In this section, we want to determine how
this loophole may affect the entangled state detection process
using MDI-NEWs.

In the presence of the detection loophole, the measured
value of the probability of an outcome (a, b), when the input
states are τs and ωt , is (Pst

ab)m = (nst
ab)m

(Nst )m
, where (nst

ab)m and
(Nst )m denote the number of times the experimentalist got the
outcome (a, b) and the total number of outcomes, respectively.
We can write

(
Pst

ab

)
m =

(
nst

ab

)
i + εst

+ab − εst
−ab∑

a,b

[(
nst

ab

)
i + εst

+ab − εst
−ab

] ,

where (nst
ab)i, εst

+ab, and εst
−ab denote the number of times the

outcome (a, b) should have clicked in the ideal case, and the
corresponding number of additional and lost events, respec-
tively. A similar relation is also valid when the input states are
mA and mB. For demonstration, we assume that the number of
additional or lost events does not depend on the input states,
and also is independent of the output, so that we set εst

+ab = ε+
and εst

−ab = ε−. Moreover, total number of outputs in the ideal
case, (Nst )i = ∑

ab(nst
ab)i, when input states are τs and ωt ,

is also assumed to be fixed for all input states, and we set
(Nst )i = N̄ .

Keeping in mind the two types of undesirable events, two
corresponding efficiencies are defined: the “additional event
efficiency,” η+ = N̄

N̄+E+
, and the “lost event efficiency,” η− =

N̄−E−
N̄ , where E± = ∑

a,b ε±.
We will now consider the following three types of scenar-

ios separately.
Case 1: In this case, we restrict the additional event ef-

ficiency to unity: η+ = 1, but the lost event efficiency η− ∈
[0, 1].

Case 2: This is exactly opposite to the previous case, i.e.,
η+ ∈ [0, 1], whereas η− = 1.

Case 3: In this case, we consider the general situation.
Here, both the efficiencies are arbitrary, i.e., η+ ∈ [0, 1] and
η− ∈ [0, 1].

We want to find the modified bound on the measured values
of nonlinear witnesses, (Nφ̃ )m, so that no separable state show
up as entangled. In the following subsections, we will discuss
the three cases individually and will find the corresponding
bound on (Nφ̃ )m for each case.

A. Arbitrary lost event efficiency

Since Alice and Bob apply dichotomic POVMs, there are
four possible outcomes, viz., (0,0), (0,1), (1,0), (1,1), among
which we are interested in the outcome (1,1) only. The mea-
sured value of the probability of an outcome (1,1), when the
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apparatus has unit additional event efficiency, is

(
Pst

11

)
m

=
(
nst

11

)
i − ε−∑

a,b

(
nst

ab

)
i − 4ε−

=
(
Pst

11

)
i

η−
− 1 − η−

4η−
. (6)

A similar relation is also true for (PAB
11 )m. We will be using

the following notations:

(Ic)m/i =
∑
s,t

cs,t
(
Pst

11

)
m/i and K = s(X )dAdB,

where c can be α, β, or γ . The measured value of Ic is given
by

(Ic)m = (Ic)i

η−
− 1 − η−

4η−

∑
s,t

cst = (Ic)i

η−
+ Pc, (7)

where Pc = η−−1
4η−

∑
s,t cst . Therefore, the measured value of

the nonlinear witness is

(Nφ̃ )m = (Iα )m − 1

K
(
PAB

11

)
m

[
(Iβ )2

m + (Iγ )2
m

]
. (8)

Using Eqs. (7) and (8), we can get a relation between the
measured and true values of the nonlinear witness operator:

(Nφ̃ )m = 1

η−

[
(Nφ̃ )i + (Iβ )2

i + (Iγ )2
i

K
(
PAB

11

)
i

]
− (Iβ )2

m + (Iγ )2
m

K
(
PAB

11

)
m

+ Pα.

If the state is entangled and the corresponding ideal value of
the nonlinear witness operator is negative, i.e., if (Nφ̃ )i < 0,
then the measured value of the operator will satisfy the in-
equality

(Nφ̃ )m <
1

η−

(Iβ )2
i + (Iγ )2

i

K
(
PAB

11

)
i

− (Iβ )2
m + (Iγ )2

m

K
(
PAB

11

)
m

+ Pα. (9)

Using Eqs. (6), (7), and (9), we finally get the bound on (Nφ̃ )m

for detection of entangled states correctly:

(Nφ̃ )m <
η−

K
{
η−(PAB

11 )m + 1−η−
4

} [{(Iβ )m − Pβ}2 + {(Iγ )m − Pγ }2] − 1

K
(
PAB

11

)
m

{
(Iβ )2

m + (Iγ )2
m

} + Pα. (10)

This inequality reports that even if (Nφ̃ )m < 0 for a bipartite state, unless the state satisfies (10), the state may not be entangled.
For η− = 1 we have Pα = Pβ = Pγ = 0, and in that case, the inequality (10) reduces to the condition for detection of entangled
state in the ideal case.

B. Arbitrary additional event efficiency

Now we proceed to the next situation, where the additional event efficiency is nonunit but the lost event efficiency η− = 1. In
this case, the measured value of probability of the output (1,1), when the input states are fixed to be τs and ωt , is

(
Pst

11

)
m =

(
nst

11

)
i
+ ε+∑

a,b

(
nst

ab

)
i + 4ε+

= η+

{(
Pst

11

)
i + 1 − η+

4η+

}
.

A similar transformation holds for the input states mA and mB. Therefore, in this case, we have (Ic)m = η+(Ic)i + Qc, where
Qc = 1−η+

4

∑
s,t cs,t . Following the same path of calculations as in the preceding case, we find that when the ideal value of the

nonlinear witness operator (Nφ̃ )i is less than zero, the corresponding measured value of the operator will satisfy

(Nφ̃ )m <
1

K
[(

PAB
11

)
m − 1−η+

4

] [{(Iβ )m − Qβ}2 + {(Iγ )m − Qγ }2] − 1

K
(
PAB

11

)
m

[
(Iβ )2

m + (Iγ )2
m

] + Qα.

C. Arbitrary additional and lost event efficiency

In this part, we consider the general case, that is, η± � 1. Here, the measured value of Pst
11 is

(
Pst

11

)
m =

(
η− + 1

η+
− 1

)−1[(
Pst

11

)
t + 1

4

(
η− + 1

η+
− 2

)]
.

In such a situation, the bound on the measured value of the nonlinear witness for detection of entangled states is given by

(Nφ )m <
1

K
[(

PAB
11

)
m − 1−C

4

] [{(Iβ )m − Rβ}2 + {(Iγ )m − Rγ }2] − 1

K
(
PAB

11

)
m

[
(Iβ )2

m + (Iγ )2
m

] + Rα,

where C = (η− + 1
η+

− 1)−1 and Rc =
∑

s,t cs,t

4 (1 − C).

IV. CONSEQUENCES OF NOISY
QUANTUM INPUTS OF MDI-NEW

The MDI variety of entanglement witnesses, while clearing
away the wrong measurement loophole, actually brings in

another loophole, the so-called “noisy quantum input” loop-
hole [51]. In realistic situations, the input states τs, ωt , mA, and
mB can get affected by any noise present in the apparatuses or
other parts of the environment. Such noise may not always be
insignificant, and it can affect the validity of the detection of
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entangled states. The noisy quantum inputs are �st (τs ⊗ ωt )
and �AB(mA ⊗ mB), where � is the noise map. An important
class of noise is what is referred to as “uniform” noise. For
any noise from that class, the noise map acts uniformly on all
the inputs, i.e., �st (�AB) does not have any dependence on s
or t (A or B).

There are situations when, due to uniform noise in the
instruments and the environment, a lesser number of entan-
gled states might get detected by the MDI-NEW, but no
separable state will erroneously be pointed out as entangled.
In the following subsection, we will discuss some implica-
tions of uniform noise on MDI-NEWs. And in the subsection

following that, we provide a comparison between MDI-NEWs
and MDI-EWs.

A. When uniform noise is resilient to noisy
quantum input loophole

We want to identify a set of noise maps within the class
of uniform noise maps that still guarantee entanglement
measurement device independently, i.e., they still give semi-
positive values for all separable states, measurement device
independently. Let Alice and Bob share the separable state,
σ = ∑

i piσ
i
A ⊗ σ i

B. The MDI-NEW for this state, with the
quantum inputs affected by the uniform noise �, is given by

N�
φ̃

(Pσ ) =
∑
s,t

αst tr
[
G′

1�
(
τ T

s ⊗ ωT
t

)] − 1

s(X )tr[G′
1�(IAB)]

⎡
⎢⎣

⎛
⎝∑

s,t

βst tr
[
G′

1�
(
τ T

s ⊗ ωT
t

)]⎞⎠
2

+
⎛
⎝∑

s,t

γst tr
[
G′

1�
(
τ T

s ⊗ ωT
t

)]⎞⎠
2
⎤
⎥⎦,

where G′
1 = ∑

i piAi
1 ⊗ Bi

1.

Let us denote the adjoint of the map � by �+.
Then according to the definition of adjoint maps,
tr[

∑
i piAi

1 ⊗ Bi
1�(τ T

s ⊗ ωT
t )] = tr[�+(

∑
i piAi

1 ⊗ Bi
1)τ T

s ⊗
ωT

t ]. Let us now consider the special case where the adjoint
of the noise maps the set of separable positive semidefinite
operators to operators of the same set. We denote the noise
maps from this set as � and thus,

�+
(∑

i

piA
i
1 ⊗ Bi

1

)
=

∑
k

C′
k ⊗ D′

k, (11)

where A′
1, B′

1, C′
k , and D′

k are positive semidefinite operators.
Then, the expression of the nonlinear MDI-EW reduces to

N�
φ̃

(Pσ ) = TQ′Fφ̃ (Q′),

where Q′ = ∑
k

C′
k⊗D′

k
TQ′ and TQ′ = ∑

k tr[C′
k ⊗ D′

k] � 0. Hence,

we have N�
φ̃

(Pσ ) � 0 for all separable states. We can thus state
the following result.

Theorem 1. The MDI-NEW will never erroneously indi-
cate any separable state as entangled if the adjoint of the
uniform noisy map over the quantum inputs maps the set of
separable positive semidefinite operators to operators of the
same set.

Consider a subset of uniform noise maps, viz., lo-
cal uniform noise maps, such that for an arbitrary el-
ement of that subset, �l , we have �l = �1 ⊗ �2, so
that �l (τs ⊗ ωt ) = �1(τs) ⊗ �2(ωt ) and �l (mA ⊗ mB) =
�1(mA) ⊗ �2(mB). Notice that the map �l takes the set of
separable operators onto the same set. This leads us to the
following corollary.

Corollary 1.1. The MDI-NEW will not indicate a separa-
ble state as entangled in the presence of local uniform noise if
the adjoints of the local noise maps keep semipositivity.

B. Comparison of MDI-EW and MDI-NEW in presence of noise

Experimental implementation of nonlinear MDI-EWs will
require more measurements than for the corresponding linear
ones. However, the former can detect more entangled states.

Another important question to ask is about the robustness
of their performances under the influence of noise, and in this
case we find that the MDI-NEW inherits a disconcert from
the corresponding MDI-EW. Precisely, we have the following
proposition in this regard.

Proposition. For the noisy quantum inputs, if the MDI-EW
mistakenly detects a separable state as entangled, then the
corresponding MDI-NEW will provide the same erroneous
result.

Proof. To construct the nonlinear witness given in Eq. (4),
we have subtracted a positive nonlinear term from the linear
witness. It is therefore straightforward that the MDI-NEW’s
value will always be lower than or equal to the value of
the corresponding MDI-EW. Hence, if the MDI-EW has a
negative value for any separable state for any noisy quantum
inputs, then the corresponding MDI-NEW will also have a
negative value for at least that separable state. �

Remark. This phenomenon can also be understood geo-
metrically. We know that an MDI-EW can be represented by a
hyperplane in the state space which never “cuts” the separable
ball. To construct the MDI-NEW, given in Eq. (4), the hyper-
plane of the corresponding linear witness is bent towards the
separable ball. Thus, the MDI-NEW can be represented by
a curved surface whose points lie either closer to or equally
distant from the separable ball when compared to the points
on the hyperplane. Similarly, for a given set of noisy quantum
inputs, the noisy MDI-EW and the noisy MDI-NEW are rep-
resented by another hyperplane and another (corresponding)
curved surface in the state space, respectively. Again, for this
noisy case, the curved surface is closer than the hyperplane
to the separable ball. Hence, if due to imperfections, the
separable ball cuts the noisy plane, representing the noisy
MDI-EW, the closer nonlinear surface, representing the noisy
MDI-NEW, will cut at least equally. Thus, the MDI-EW is
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more robust than the corresponding MDI-NEW under noisy
inputs. To overturn this, the linear witness operator may be
bent away from the separable ball, but then one has to give up
on the advantage of MDI-NEWs over MDI-EWs, which is to
detect a larger set of entangled states.

V. CONCLUSION

The technique of EWs constitutes an efficient way to detect
entangled quantum states in laboratories. Among the gener-
alizations achieved in this area is the important progress via
the construction of NEWs out of the standard EWs, which
are linear over quantum states. They have the property of
detecting more entangled states than their linear counterparts.
For both standard EWs and NEWs, entanglement detection
is guaranteed only when the measurements performed in ex-
periments are ideal. The concept of MDI-EWs—which was
then generalized for NEWs—was developed to overcome this
limitation. The idea is to use a set of trusted quantum states
as inputs, “quantum inputs,” by local observers to detect the
present entanglement in a shared state, whereby the witness
becomes immune to misalignment in the measurement appa-
ratuses, in the sense that separable states are not erroneously
declared as entangled.

In this article, we investigated the performance of
MDI-NEWs under two categories of noise—unrelated to
misalignments—that may creep into an experiment. In the
first category, we studied the effect of the detection loophole

in the outcomes of the measurements on MDI-NEWs. We
considered three cases within this category, viz., detection
loophole due to lost events, the same due to additional
events, and the same where both lost and additional events
are possible. For each case, we provided the bounds which
will guarantee entanglement in spite of the presence of the
wrong events. These bounds depend on the efficiencies of the
measurement devices and are defined in terms of the lost, ad-
ditional, and total events of the outcomes while performing the
relevant measurements. In the second category, we considered
the instance of noise present in the quantum inputs required
for performing an experiment corresponding to a MDI wit-
ness. We identified a category of noise for which MDI-NEWs
still guarantees entanglement measurement device indepen-
dently. We also compared the performance of MDI-EWs and
MDI-NEWs for noise in quantum inputs. It is shown that
MDI-NEWs are less or equally robust in comparison to the
corresponding MDI-EWs in the presence of noise in quantum
inputs, even though the nonlinear ones detect a larger volume
of entangled states than their linear kin.
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