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Limits of fault tolerance on resource-constrained quantum circuits for classical problems
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Existing lower bounds on redundancy in fault-tolerant quantum circuits are applicable when both the input
and the intended output are quantum states. These bounds may not necessarily hold, however, when the intended
outputs are classical bits, as in Shor’s or Grover’s algorithms. Here we show that, indeed, noise thresholds
obtained from existing bounds do not apply to a simple fault-tolerant implementation of the quantum phase
estimation algorithm where the output quantum state suffers from noise before the measurement. Then we obtain
a nonasymptotic lower bound on the minimum required redundancy for fault-tolerant quantum circuits with
classical inputs and outputs. Further, recent results show that, due to physical resource constraints in quantum
circuits, increasing redundancy can increase noise, which in turn may render many fault-tolerance schemes
useless. So it is of both practical and theoretical interest to characterize the effect of resource constraints on the
fundamental limits of fault-tolerant quantum circuits. As an application of our lower bound, we characterize the
fundamental limit of fault-tolerant quantum circuits with classical inputs and outputs under resource-constraint-
induced noise models.
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I. INTRODUCTION

Advantages of quantum computing over classical comput-
ing [1,2], especially when demonstrated mathematically [3,4],
have spurred considerable interest.. However, noise in quan-
tum circuits heavily restricts the class of problems that can be
solved using quantum hardware. Indeed, the formal term noisy
intermediate scale quantum (NISQ) has been introduced to
describe the current era where quantum processors are noise
limited [5].

To limit the corruption of quantum states due to noise,
pursuing fault-tolerant quantum circuits has led to a large liter-
ature in quantum error correction. Early papers demonstrated
one can achieve arbitrary computational accuracy when phys-
ical noise is below a certain threshold. Achievability of any
desired fault tolerance required a polylogarithmic redundancy
with respect to the size of the quantum circuit in these initial
works [6–9]. More recent works extend such threshold theo-
rems to require only a constant overhead [10,11], reminiscent
of work in classical fault-tolerant computing [12,13].

In this direction, there are fundamental lower bounds
on redundancy for arbitrarily accurate computation [14–18].
However, all of these lower bounds are for quantum input
and output, rather than classical input and output which is
common for a large class of algorithms, such as those due
to Deutsch-Jozsa [4], Shor [19], and Grover [20]. The bounds
in [15,16] can be extended to classical input and output, but
under restrictive assumptions on the final measurement. Here,
we demonstrate by example that such lower bounds in quan-
tum fault tolerance are not applicable for shallow quantum
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circuits with classical input and output, and prove a general
alternate nonasymptotic bound.

The effects of noise on computational accuracy of quantum
circuits are typically studied assuming the noise per physi-
cal qubit is constant with respect to the size of the circuit.
Unfortunately, this is not true in many quantum devices to-
day. Often due to limited physical resources such as energy
[21], volume [22], or available bandwidth [23], they have
physical noise levels that grow as the quantum computer
grows [24]. Fellous-Asiani et al. [24] introduce physical mod-
els of such scale-dependent noise and also aim to extend
threshold theorems to this setting. However, the character-
ization of computational error (per logical qubit error) is
restricted to concatenated codes and does not apply to more
general fault-tolerant schemes [10,11]. As our lower bound is
nonasymptotic, it is also applicable to scale-dependent noise.
Using our lower bound and tools from optimization theory, we
characterize the limits of scale dependence on fault-tolerant
quantum circuits with classical input and output, applicable to
any fault-tolerance scheme.

The two motivations for the present paper are therefore to
obtain lower bounds on the required redundancy of a quantum
circuit for computation with classical input and output, and to
investigate the effect of resource constraints (like energy or
volume) on this bound.

The experimental finding that noise increases with more
redundancy under resource constraints implies that sim-
ple per (logical) qubit redundancy cannot achieve arbitrary
computational accuracy even if noise per physical qubit is
below the fault-tolerance threshold, in contrast to conven-
tional threshold theorems [24]. This is due to two opposing
forces: improvement in accuracy due to increased redun-
dancy and worse overall noise with redundancy due to scale
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FIG. 1. Phase estimation algorithm in the presence of noise.

dependence. In this regard, we find the sweet spot on redun-
dancy for a desired computational accuracy using techniques
from resource-limited (finite blocklength) quantum informa-
tion theory.

The remainder of the paper is organized as follows. Sec-
tion II gives a counterexample to illustrate the need for a
new redundancy lower bound. Section III gives mathematical
models of computation, noise, and resource constraints that
form the basis of our analysis. Then, the primary contribu-
tions follow. Section IV proves a nonasymptotic converse
bound on redundancy required for classical computation on
quantum circuits, drawing on one-shot capacity of classical-
quantum channels (Theorem 2). Section V analyzes the limits
of scale dependence for fault-tolerant computation, including
closed-form and numerical solutions for some canonical noise
models. Finally, Sec. VII concludes.

II. WHY IS A NEW BOUND NEEDED?

In this section, we shall demonstrate the need for a new
redundancy lower bound for quantum circuits with classical
inputs and outputs with the help of a simple noisy compu-
tational model of a quantum phase estimation circuit. The
quantum phase estimation algorithm is crucial to many im-
portant problems like discrete log and factoring. It is used
to estimate the n-bit phase φ (with φ1φ2 . . . φn as the binary
representation) of the eigenvalue e j2πφ of a unitary operator
Uφ , given the corresponding eigenvector |u〉 and a controlled
Uφ [25].

Consider a simple noisy computation model (in Fig. 1),
where the qubits coming from a phase estimation circuit are
corrupted independently by depolarizing (or erasure) noise
before the final measurement (please refer to Appendix A for
the definition of depolarizing and erasure channels).

Indeed, the noise model considered is a simplistic one,
since it does not capture the noise in individual gates involved
in quantum phase estimation. However, the existing bounds
on quantum noise thresholds (e.g., [14]) for general purpose
quantum computation are applicable to this model. In fact, the
noisy computation model in Fig. 1 conforms to the model in
[14] Sec. 1.1 with the entire quantum phase estimation circuit
as a single layer quantum circuit followed by a layer of noise
acting on each qubit independently. The sole purpose of this
simplistic noise model and also of this section is to exhibit
that the bounds for general purpose quantum computation
are vacuous in the special but important case considered in
this paper, i.e., classical inputs and outputs. We serve this
purpose by showing that for a range of noise in this simplistic
model where the existing bounds rule out any possibility of
reasonably accurate computation, a simple fault-tolerant

scheme can achieve arbitrarily high accuracy. Note that the
fault-tolerant scheme proposed here for this simplistic noise
model may not be useful in other settings.

When the output of noiseless quantum phase estimation
circuit |φ〉 undergoes depolarizing noise, each qubit is re-
placed by a maximally mixed state with probability p, which
results in each classical bit being flipped with probability p

2 in-
dependently upon measurement. In the case of erasure noise,
each qubit (before measurement) flips to an orthogonal state
|e〉 with probability p. Now, consider the following simple
modification.

(1) Run quantum phase estimation algorithm, shown in
Fig. 1, T times.

(2) Perform T independent measurements on each of the
n noisy output qubits N⊗n(|φ〉〈φ|). For erasure noise, declare
the ith bit as 0 (or 1) if the measurement outcomes for the
corresponding qubit were φ̂i = 0 (or 1) at least once in T runs,
and for the depolarizing channel declare the ith bit as 0 (or 1) if
the measurement outcomes for the corresponding qubit were
φ̂i = 0 (or 1) in more than T/2 runs.

The above scheme can be seen as a fault-tolerant scheme
against the noise in Fig. 1 with redundancy of size T , i.e.,
using a larger circuit with the algorithm repeated at most T
times. We have the following guarantee on the performance
of this simple fault-tolerant scheme for any p < 1.

Theorem 1. For a quantum phase estimation circuit that is
corrupted by noise before the final measurement, (1) for de-
polarizing noise with probability p, if we choose T � 2 ln(n/ε)

(1−p)2 ,
and (2) for erasure noise with probability p, if we choose
T � | ln(ε/n)

ln p |, then the modified circuit discussed above cor-
rectly outputs φ with probability at least 1 − ε.

Proof. (1) Depolarizing noise: When a qubit |φi〉 ∈
{|0〉, |1〉} is subject to a depolarizing noise with parameter p,
then probability of error in detecting φi (in a single run) is

P{φi �= φ̂i} = Tr(N (|φi〉〈φi|)|φi〉〈φi|) = p

2
,

where φ̂i is the outcome of measurement in the computational
basis, and Tr(·) is the trace operation. Now, the probability of
error in estimating the n-bit phase (after T runs), denoted by
Pe, is given by

Pe = P
{∪n

i=1 Error in ith bit
}
,

� nP{Error in one bit}.
The last inequality is due to the symmetry of noise across
qubits and union bound. Since we run the algorithm T times
and assign the majority to be the estimate,

P{Error in one bit} = P{φi �= φ̂i in � T/2 runs},
which is the tail of the binomial distribution with probability
p
2 . Applying Hoeffding’s inequality the probability of error is
bounded as

P{Error in one bit} � exp

(
− 2

(
1 − p

2

)2

T

)
,

Pe � n exp

(
− 2

(
1 − p

2

)2

T

)
� ε.
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Choosing the number of runs to be at least

T �
∣∣2 ln n

ε

∣∣
(1 − p)2

yields Pe � ε for any p ∈ [0, 1).
(2) Erasure noise: For erasure noise with probability of

erasure p and input |φi〉 ∈ {|0〉, |1〉}, the probability of error
in detecting φi is

P
{
φi �= φ̂i

} = Tr(N (|φi〉〈φi|)|φi〉〈φi|) = p.

The probability of error in estimating the n-bit phase (after T
runs) is bounded above as

Pe = P
{∪n

i=1 Error in ith bit
}

� nP{Error in one bit}.
For erasure noise, error in estimating a bit occurs when the
corresponding qubit is erased in all T runs. Therefore,

P{Error in one bit}
= P{|φi〉 flips to |e〉 in all T runs, |φi〉 = |1〉}

+ P{|φi〉 flips to |e〉 in all T runs, |φi〉 = |0〉}
= P{|φi〉 flips to |e〉 in all T runs | |φi〉 = |1〉} = pT .

Therefore, the probability of error is bounded as

Pe � npT .

Choosing the number of runs

T �
∣∣∣∣ ln ε

n

ln p

∣∣∣∣,
we can achieve Pe � ε for any p ∈ [0, 1). �

The well-known threshold theorems [14–18] imply that
when the noise strength, p, is above a threshold, no fault-
tolerant scheme with finite redundancy can compute a
quantum state within reasonable accuracy. This is because the
lower bound on redundancy is given by n/Q(N ), where n
is the number of physical qubits and Q(N ) is the quantum
capacity of channel N [14]. For the shallow noisy quantum
computational model for phase estimation discussed above,
the best-known threshold for depolarizing [14,16,18] and era-
sure [14,18] noise are 1

3 and 1
2 , respectively (since quantum

capacity vanishes above this threshold). However, through a
noisy quantum phase estimation example, we have shown that
when the inputs or outputs are classical with the performance
criterion as the probability of error, it is indeed possible to
achieve an arbitrarily small probability of error. Thus, Theo-
rem 1 shows that the known redundancy lower bounds do not
hold for quantum computation with classical input and output.
This highlights the need for a bound which holds for classical
inputs or outputs. A similar argument can be developed for
the Deutsch-Jozsa algorithm and other well-known algorithms
like discrete logarithms in the presence of noise.

Note that these do not imply that prior bounds on re-
dundancy are incorrect; the apparent contradiction is due to
differences in the definition of accuracy. Prior works use a
notion of distance (or similarity) between the output quantum
states of noiseless and noisy circuits to quantify accuracy.
This requirement is too stringent when input and output are

FIG. 2. CQC model of computation: classical input, quantum
computation, and classical output.

classical bits and error probability is a more suitable perfor-
mance criterion [26,27]. As such, we obtain a lower bound on
the redundancy under the error probability criterion and then
study the effect of resource constraints.

III. MODEL

In this section, we discuss the model of computation, the
relevant accuracy criteria, and the noise model.

A. Model of computation

Consider the quantum circuit with classical inputs and clas-
sical outputs model in Fig. 2, which is a standard model for
gate-based quantum computation. This is denoted by CQC :
{0, 1}n → {0, 1}n or equivalently CQC(x) for x ∈ {0, 1}n,
where n is the input size. The goal of the circuit is to realize a
function f : {0, 1}n → {0, 1}n.

The circuit consists of l layers. The first layer takes n clas-
sical inputs (x) as orthogonal quantum states |0〉 and |1〉 along
with N − n ancillas. It maps the input to a density operator
of dimension 2N . Any subsequent layer i, for 2 � i � l − 1,
takes the output of the previous layer (layer i − 1) as input.
The output of any layer i, 1 � i � l − 1, is a density operator
of dimension 2N . The final layer (layer l) performs a positive
operator-valued measurement (POVM) and obtains classical
output CQC(x).

Each layer i, with i ∈ {1, 2, . . . , l − 1} is a noisy quantum
operation. This is modeled as a noiseless quantum operation
Li on density operators of dimensions 2N followed by N
independent and identically distributed (i.i.d.) quantum chan-
nels N (Fig. 2). Finally, the last layer, layer l , performs a
measurement (POVM), which yields a classical output. Thus
the quantum circuit can be represented as a composition
of quantum operations as CQC(x) = Ll ◦ N⊗N ◦ Ll−1 ◦ · · · ◦
L2 ◦ N⊗N ◦ L1(x), where ◦ has the usual meaning of func-
tion composition. Next, we present the ε-accuracy criteria for
computations with classical input and output, taken from the
seminal work by von Neumann [26].

Definition 1 (ε-accuracy criteria). Suppose f (·) is a clas-
sical function realized by a quantum circuit CQC(·) as defined
in Sec. III. Then the ε accuracy is

P {CQC(x) �= f (x)} < ε, for all x ∈ {0, 1}n.

In oracle-based algorithms like phase estimation and
Deutsch-Jozsa, there is no explicit input to the first layer,
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rather the classical parameters of the oracle are implicit clas-
sical inputs to the circuit. The results presented in this paper
are directly applicable to that scenario as well.

B. Noise model

Here, we consider only Holevo-additive channels charac-
terized by a single parameter p ∈ [0, 1] and whose Holevo
capacity is monotonically decreasing in p.. The channels
we specifically study are (i) p-erasure, (ii) p-depolarizing,
and (iii) symmetric generalized amplitude damping channels
(GADCs), i.e., GADC(p, 1

2 ).
In [24], it was shown that resource constraints can lead

to an increase in noise with increase in redundancy, scale-
dependent noise. A few models of scale-dependent noise,
such as linear, polynomial, and exponential models, have been
studied in [24]. Let k � N/n � 1 be the redundancy and p(k)
be the noise strength when the redundancy is k. In the poly-
nomial model, p(k) = min(p0[1 + α(k − 1)]γ , 1), and in the
exponential model p(k) = min(p0 exp(α(k − 1)γ ), 1) [24].
Here, p0 ∈ [0, 1] is the noise strength in the absence of any
redundancy, i.e., k = 1, and α and γ are positive parameters.

Intuitively, p0 is the original noise strength of the par-
ticular quantum technology. As redundancy increases, more
and more physical qubits have to share the same resource,
which leads to increased interactions with the environment
and among each other. These undesired interactions result in
increased noise, which is captured by the models proposed
in [24]. In the interest of potentially wider applicability, we
consider the following generic scale-dependent noise model,
which includes the special cases discussed above.

Definition 2. Noise Np is parametrized by a single pa-
rameter p ∈ [0, 1] and the Holevo information χ (Np) is
nonincreasing in p. The parameter p is a function of redun-
dancy k, given by p(k) � min(p(k; p0, θ), 1), where θ is a
tuple of non-negative parameters, and (i) p0 = p(1; p0, θ) for
all θ and, (ii) for any k � 1, p(k; p0, θ) is nondecreasing in
any component of θ and in p0, given the other parameters are
fixed.

Here, p0 represents the noise without redundancy, i.e., the
initial noise without any resource constraint arising due to
redundancy. Clearly, the polynomial and exponential models
are special cases with θ = (α, γ ).

The threshold for p0, i.e., the minimum p0 beyond which
reliable quantum computation is not possible, was studied
in [24] assuming concatenated codes for error correction.
Here, we obtain a universal threshold for all fault-tolerance
schemes.

IV. NONASYMPTOTIC LOWER BOUND
ON REDUNDANCY

We obtain the lower bound by forming a mathematical
relationship between the problem of ε-accurate classical com-
putation on a noisy quantum circuit and the problem of
classical communication over a finite number of i.i.d. uses of
a quantum channel. Our approach builds on the following two
simple observations.

First, a lower bound on redundancy obtained on a com-
putational and noise model that have more capability would

FIG. 3. Reduction of the noisy computation model in Fig. 2 to a
noisy communication problem.

also be a lower bound for the original model. Second, a lower
bound obtained under more relaxed accuracy criteria also
applies to the original accuracy criteria.

Following the first observation, we obtain a redundancy
bound for a model where there is no noise in layers
1, 2, . . . , l − 1, and noise only at the last layer. Following the
second observation, we use the following relaxation of the
ε-accuracy criteria.

Let the cardinality of the range of f be R f , and
x(1), x(2), . . . , x(R f ) ∈ {0, 1}n be such that |{ f (x(i) ) : 1 � i �
R f }| = R f . Then, we use the following accuracy criterion: for
all i = 1, 2, . . . , R f

P {CQC(x(i) ) �= f (x(i) )} < ε. (1)

Clearly, this accuracy criterion is strictly weaker than the ε-
accuracy criteria when f is not bijective. Further, suppose we
have access to a hypothetically perfect (quantum or classical)
circuit C(·) that can invert f on the set { f (x(i) ) : 1 � i � R f },
where f is bijective. Then, the relaxed accuracy criterion in
(1) becomes equivalent to

P {C[CQC(x(i) )] �= x(i)} < ε, for all i = 1, 2, . . . , R f

for the circuit shown in Fig. 3. This relaxed criterion can
then be seen as the criterion for classical communication of
R f messages with the maximum probability of error ε over a
finite number of independent uses of a channel.

Using results from one-shot classical communication over
a quantum channel ([28] Sec. 7.1.2) and using Holevo addi-
tivity, we obtain the following lower bound on redundancy.

Theorem 2. For ε-accurate computation of any n-bit
Boolean function f using a quantum circuit in the presence
of noise in Definition 2, the required redundancy is

k >
c(ε, R f , n)

χ (Np(k) )
, (2)

where c(ε, R f , n) � (1 − ε) log2 R f

n + ε log2 ε+(1−ε) log2(1−ε)
n , and

p(k) = min(p(k; p0, θ), 1).
Proof. For any additive quantum channel N , an upper

bound for classical communication over a quantum channel
using an (M, N, ε) code is ([28] Sec. 7.1.2)

log2(|M|) � χ (N⊗N ) + h2(ε)

1 − ε
,
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FIG. 4. Solid and dashed lines are for erasure noise with p(k) =
p0 and p(k) = min(p0[1 + α(k − 1)]γ , 1), respectively.

where M is the message alphabet and h2(.) is the binary
entropy function. Assigning |M| = R f yields

ε > Pe � 1 − χ (N⊗N ) + h2(Pe)

log2 R f

� 1 − χ (N⊗N ) + h2(ε)

log2 R f
.

The last inequality holds, since h2(·) is increasing in [0, 1
2 ].

Rearranging, we obtain

χ (N⊗N ) > (1 − ε) log2 R f − h2(ε).

Noting that Holevo information is additive,

Nχ (N ) > (1 − ε) log2 R f − h2(ε),

N >
(1 − ε) log2 R f − h2(ε)

χ (N )
.

Dividing both sides of the inequality by n, we obtain

k � N

n
>

(1 − ε) log2 R f

n − h2(ε)
n

χ (Np(k) )
.

�
Unlike existing lower bounds on redundancy, this is a

nonasymptotic bound and hence is applicable to quantum
computers of any size (including the NISQ regime) and to
any fault-tolerance scheme. A potential limitation is that our
bound may be loose since we have reduced our noisy model
to consist of only one layer of noise in our derivation.

Note that the above bound is applicable for any Holevo-
additive noise with a single parameter p, even when p is a
function of k. Thus, this bound can be used for understanding
the limits of scale-dependent noise, as in the next section.

V. SCALE-DEPENDENT NOISE: NEW THRESHOLDS

The terms in (2) can be rearranged to obtain ε, a lower
bound on the probability of error, over all fault-tolerant
schemes, for different redundancy k. In Fig. 4, the thin dashed
lines plot the same for erasure noise with p(k) = p0. This
shows that there may exist a fault-tolerant scheme that can

take the probability of error arbitrarily close to zero by
increasing k.

In contrast, the curves are significantly different for scale-
dependent noise, i.e., when p changes with k. In Fig. 4, we
plot this for erasure p(k) = min(p0[1 + α(k − 1)]γ , 1). First,
observe that there is a certain value of p0 (p0 = 0.3 in this
case) beyond which an increase in redundancy actually hurts
performance. Second, observe that for each p0 there is a
minimum ε below which no fault-tolerant scheme can reach.

These two observations lead to two interesting thresholds
for initial noise p0. The first threshold is the value of p0

beyond which redundancy only hurts accuracy. The second
threshold of interest is p0 beyond which the ε-accuracy cri-
teria cannot be achieved using any fault-tolerance scheme for
a given ε > 0. Clearly, both these thresholds depend on the
model of the scale-dependent noise and the parameters, e.g.,
α and γ therein. However, while the second threshold depends
on ε, the first threshold does not.

The first threshold is similar to the threshold in [24], but
notably, their threshold calculation is limited to concatenated
codes, whereas the threshold obtained here applies to any
fault-tolerance scheme. The threshold is obtained using a
derivative-based approach similar to [24]. For brevity, we omit
details to focus on the second threshold. Please note that since
both the noise thresholds are obtained using a genie-aided
redundancy lower bound in Theorem 2, they are only (upper)
bounds of the actual noise threshold, and the bounds could
potentially be loose.

For a given θ and p(k; p0, θ), the second threshold pth(θ, ε)
is the minimum p0 beyond which ε-accurate computation is
not possible. Thus, using Theorem 2, in particular, using (2),
pth(θ, ε) is the minimum p0 beyond which the criterion in
Definition 1 is not satisfied by any k � 1. Thus, pth(θ, ε) is
obtained by solving the following optimization problem:

minimize p0 s.t. min
k�1, 0�p(k)�1

gθ (k, p0) � 0, (3)

where gθ (k, p0) = c(ε,R f ,n)
k − χ (Np(k) ).

Consider the following optimization problem:

PL : min
k�1, 0�p(k)�1

gθ (k, p0).

Clearly, (3) has the optimization problem PL, which we re-
fer to as the lower-level optimization problem, as a constraint.
Thus, (3) is a bilevel optimization problem. For a given set of
θ the solution to PL is a function of p0, which we denote as
g∗

θ (p0). Thus, the bilevel optimization problem in (3) can also
be written as

min p0 s.t. g∗
θ (p0) � 0. (4)

In general, to compute the threshold pth(θ, ε) one needs to
solve (3). However, for erasure noise and some special classes
of p(k; p0, θ), gθ (k, p0) is convex in k for all p0. Hence, the
minimum of the constraint in (3) for a given p0 can be derived
in closed form. Then, solving for the smallest p0 for which
that minimum is non-negative gives the following theorem.

Theorem 3. For erasure noise, thresholds for a fixed accu-
racy requirement ε > 0 are as follows.
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(1) If p(k; p0, α) = p0[1 + α(k − 1)], then

pth(θ, ε) =
⎧⎨
⎩

1 − c, if α � c
1−c , and

(
√

cα−√
cα−α+1)2

(α−1)2 , otherwise.

(2) If p(k; p0, γ ) = p0kγ , then

pth(θ, ε) =
⎧⎨
⎩

1 − c, if γ � c
1−c , and

( γ

c )γ

(γ+1)γ+1 , otherwise.

Here c = c(ε, R f , n) as defined in Theorem 2.
Proof. Consider the following procedure to find a closed-

form expression for pth(θ, ε).
(1) Minimize gθ (k, p0) over k. Since p(k; p0, θ) is nonde-

creasing in k, it is enough to minimize gθ (k, p0) over [1, kmax],
where kmax = max{k | p(k; p0, θ) � 1}. The minimum occurs
at either k = 1, k = kmax, or a stationary point of gθ (k, p0) in
(1, kmax).

(2) Substitute the minimizer k into gθ (k, p0) � 0, which
yields an equation in p0, θ.

(3) Solving the equation for p0 yields a closed-form ex-
pression for pth(θ, ε).

The derivation of pth(θ, ε) for corresponding p(k; p0, θ) is
given in Appendix B. �

Depending on the scale-dependent noise model, the opti-
mization problem in the constraint of (3) may or may not be
convex. In both cases, we develop algorithms that can solve
the problem for all noise models in Definition 2.

For a general p(k; p0, θ), a closed-form expression for
pth(θ, ε) in terms of θ cannot be obtained, and therefore,
pth(θ, ε) must be computed numerically.

We develop Algorithm 1 to obtain pth(θ, ε) by solving
bilevel optimization problem (3). In Algorithm 1, we solve the
alternate formulation (4) using the bisection method, while
assuming access to an oracle that computes g∗

θ (p0) for any
p0. Later, we also develop efficient algorithms that solve PL

and obtain g∗
θ (p0) for any p0. The proof of convergence of

Algorithm 1 is given in Appendix C.
Algorithm 1 computes the threshold pth(θ, ε) (up to an

error of δp0 ), for a predetermined set of θ (denoted by 	 of
finite cardinality). Lines 4–17 describe the bisection method
to compute pth(θ, ε). Depending on whether PL is convex or
nonconvex, Algorithm 1 or Algorithm 3 is used to compute
g∗

θ (p0), respectively.
Obtaining g∗

θ (·) requires solving PL. Next, we present
efficient algorithms for solving PL for erasure, depolariz-
ing, and symmetric generalized amplitude damping channels
(GADCs), and numerically obtain the converse surface for
those noise models.

A. Threshold for erasure

In this section, we derive necessary conditions for ε-
accurate computation when the source of corruption of
quantum states is erasure. Substituting for the classical capac-
ity of quantum erasure channel (QEC) from (A1) in (2) yields

gθ (k, p0) = c(ε, η, n)

k
+ p(k) − 1 < 0. (5)

Algorithm 1: Algorithm to obtain pth (θ, ε) or 	̄s numerically.

Remark 1. One can equivalently solve PL by re-
stricting the range of k to [1, kmax], where kmax =
max{k | p(k; p0, θ) � 1}. Also, kmax is finite and hence
[1, kmax] is compact, which makes it convenient to
solve (3). Therefore, one can replace line 8 with
g∗

θ (p0) = mink∈[1,kmax] gθ (k, p0) to obtain the same value
of threshold pth(θ, ε). Please refer to Appendix F1 for more
details.

1. Physical noise p(k; p0, θ) convex in redundancy k

For the erasure channel, if p(k; p0, θ) is convex, then
gθ (k, p0) is convex in [1, kmax], since the Holevo information
χ (Np) is affine in p. Therefore, the problem PL in (3) is
convex, and from Remark 1 the feasible set is compact.

Algorithm 2: Projected gradient descent routine.
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Algorithm 3: Line search algorithm to find mink�1 gθ (k, p0),
when gθ (k, p0) is nonconvex w.r.t. k.

A convex function over a compact set can be optimized
using a gradient projection method given in [29]. There
are many algorithms to solve general gradient projection
problems such as sequential quadratic programming and
augmented Lagrangian methods that can be directly applied
to solve PL. Since, our problem is a one-dimensional convex
problem (with only a Lipschitz gradient constraint) over a
finite range [1, kmax], we provide a simple constant step-size
gradient projection algorithm (Algorithm 1). The algorithm
starts from kin = 1 when gθ (·, p0) is convex [without loss of
generality (w.l.o.g.)].

Algorithm 1 solves PL optimally if step size (ξ ) and
stopping criterion (ζ ) are chosen appropriately. Sufficient
conditions for convergence are (1) ξ ∈ (0, 1

L ], if g′
θ (k, p0) �

∂
∂k gθ (k, p0) is L Lipschitz over [1, kmax], and (2) the stopping
criterion provided in Definition 3. In all our computations, we
choose ξ = 1

L as the step size for fast convergence.
Definition 3. Stopping criterion 1: Let {k j} be the iterates

generated by the projected gradient descent algorithm (Al-
gorithm 1); we use the following stopping criterion for the
projected gradient descent algorithm:

|gθ (k j, p0) − gθ (k j+1, p0)| <
δ2

2Lk2
max

=: ζ . (6)

Then, it follows from the convexity and L-Lipschitz prop-
erty of gθ (·, p0) that stopping criterion (6) is a sufficient
condition for convergence, which is gθ (k j+1, p0) − g∗

θ (p0) �
δ. The proof of convergence of Algorithm 1 and deriva-
tion of the Lipschitz constant for erasure noise are given in
Appendix D.

2. Physical noise p(k; p0, θ) nonconvex in redundancy k

Suppose p(k) is nonconvex; then gθ (k; θ, ε) is also noncon-
vex. Hence, the lower-level problem PL cannot be solved using
Algorithm 1 (ProjGD). Therefore, we provide a line-search
algorithm (Algorithm 3) to compute solution for a nonconvex
problem PL.

In Algorithm 3, the compact set [1, kmax] is traversed by
successive gradient descent (or ascent) and perturbation over a
one-dimensional nonconvex function using an iterate starting
from k = 1 (w.l.o.g.) and moving in the positive k direc-
tion. Lines 3–7 include one iteration of Algorithm 3, which
contains calls to ProjGD and Perturb as subroutines. The
variable g̃ keeps track of the minimum value of gθ (·, p0)
encountered thus far with an error of δ > 0.

In Algorithm 3 we reuse the ProjGD routine for gradient
ascent or descent but with a different (more relaxed) stopping
criterion than in Definition 3.

Definition 4. Stopping criterion 2: Let {k j} be the iterates
generated by the projected gradient descent algorithm (Al-
gorithm 1). We use the following stopping criterion for the
projected gradient descent algorithm:

|gθ (k j, p0) − gθ (k j+1, p0)| < δ =: ζ .

Definition 5. Stopping criterion for Perturb: Let {k j} be
a sequence generated by the Perturb routine:

|gθ (k j, p0) − gθ (k′
j, p0)| � δ.

where k′
j = min{kmax, k + ξ |g′

θ (k j, p0)|} in line 14 of Algo-

rithm 3, and g′
θ (z, p0) = ∂g′

θ (k,p0 )
∂k |k=z.

Note that the stopping criterion for Perturb is similar
to Definition 4, but with the inequality reversed. Since the
stopping criteria of ProjGD and Perturb are complementary,
only one of the routines will be active during the execution
of Algorithm 3. The proof of convergence of Algorithm 3 is
given in Appendix E.

B. Threshold for the symmetric GADC
and the depolarizing channel

1. Symmetric GADC

Let us compute converse regions when quantum states are
corrupted by GADCs. We only consider the symmetric GADC
(with μ = 1/2), since its classical capacity is additive; for
μ �= 1/2, the additivity of classical capacity is not known.
Substituting the classical capacity of the symmetric GADC
from (A3) in the necessary condition for ε accuracy in (2)
yields

gθ (k, p0) = c(ε, η, n)

k
− 1 + h2

(
1 − √

1 − p(k)

2

)
� 0.

(7)

In (7), the last term is monotonic (increasing) in p, and
p(k; p0, θ) is monotonic (increasing) in θ. Therefore, Corol-
lary 1 also holds for the symmetric GADC. Therefore, for a
given θ, the threshold pth(θ, ε) can be computed by solving
bilevel optimization problem (3). However, we cannot obtain
closed-form expressions like for the erasure channel due to
the challenge from the binary entropy term in (7); therefore,
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the threshold pth(θ, ε) must be computed numerically. Since
the symmetric GADC is additive, and scale-dependent noise
p(k; p0, θ) is monotonic in θ componentwise, the threshold
pth(θ, ε) can be computed using Algorithm 1 (Theorem 4
holds).

However, since Holevo information of the symmetric
GADC is concave in p, even if p(k; p0, θ) is convex in k,
unlike the erasure case, gθ (k, p0) is not convex in k. Therefore,
the lower-level problem PL must be solved numerically using
Algorithm 3 to obtain the threshold pth(θ, ε) for a given θ.
For a polynomial noise model described in Sec. V, we can
compute Lipschitz constant L in closed form for a given θ

(refer to Appendix F2a for the derivation).

2. Depolarizing channel

In this section, we compute the converse region when
computational states are corrupted by depolarizing noise. Sub-
stituting for the classical capacity of the depolarizing channel
from (A3) in (2), we obtain

gθ (k, p0) = h2

(
p(k)

2

)
− 1 + c(ε, η, n)

k
� 0. (8)

Similar to the symmetric GADC, the first term is increas-
ing in p, and p(k; p0, θ) is nondecreasing in θ. Therefore,
Corollary 1 and computation of threshold pth(θ, ε) by solving
bilevel optimization problem (3) also hold. Also, similar to the
symmetric GADC, since obtaining closed-form expressions
for pth(θ, ε) is not possible, it can be computed using Algo-
rithm 1. Since gθ (k, p0) is nonconvex [due to h2(·) in (8) being
concave], the threshold pth(θ, ε) can be computed using line
search (Algorithm 3). Again, similar to the symmetric GADC,
Lipschitz constant L can be computed in closed form for a
given θ (refer to Appendix F2b for the derivation).

VI. CONVERSE REGION

Beyond the notion of a scalar threshold pth(θ, ε), there
exists a more general notion of the converse region, which
extends the concept of threshold to multiple parameters si-
multaneously. We specifically aim to characterize the set of
(p0, θ) for which ε-accurate computation is not possible. The
following corollary to Theorem 2 provides a converse in terms
of (p0, θ).

Corollary 1. Suppose we have

	̄ � {(p0, θ)|min
k�1

gθ (k, p0) � 0},

where

gθ (k, p0) � c(ε, R f , n)

k
− χ (Np(k) ).

Then ε-accurate computation is not possible for (p0, θ) ∈ 	̄.
Also, if (p0, θ) ∈ 	̄ then (p′

0, θ
′) ∈ 	̄ if (p′

0, θ
′) � (p0, θ) in

a componentwise sense.
Proof. From Definition 1, we must prove that if Pe < ε,

then (p0, θ) /∈ 	̄. From Theorem 2, we have if Pe < ε, then

k >
c(ε, R f , n)

χ (Np(k) )
,

gθ (k, p0) = c(ε, R f , n)

k
− χ (Np(k) ) < 0. (9)

FIG. 5. Comparison of converse regions (surfaces) for erasure,
depolarizing, and symmetric GADC with ε = 0.1, log2 Rf = n =
128. The probability of error per physical qubit is assumed to scale
with redundancy k as p(k; p0, θ) = p0[1 + α(k − 1)]γ .

For any θ, (9) is satisfied only if

min
k�1

gθ (k, p0) < 0.

In other words, (p0, θ) /∈ 	̄.
As χ (Np) is nonincreasing in p and p(k; p0, θ) is nonde-

creasing in each component, (p′
0, θ

′) � (p0, θ) in a compo-
nentwise sense implies (p′

0, θ
′) ∈ 	̄ whenever (p0, θ) ∈ 	̄. �

We refer to 	̄ as the converse region since ε-accurate
classical computation on quantum circuits is not possible if
the parameters of the scale-dependent noise are in 	̄. As
any fault-tolerant implementation has to avoid this region,
characterizing 	̄ is of particular interest. By Corollary 1, for
characterizing 	̄, it is enough to find the minimum p0 for each
θ such that (p0, θ) ∈ 	̄.

Figure 5 shows the converse regions when quantum com-
putation is affected by erasure, depolarizing, and generalized
amplitude damping noise. These are obtained by solving (3)
for ε = 0.1 using the aforementioned provably accurate al-
gorithms. For a given θ = (α, γ ) the thresholds are related
as pth(θ, ε)(e) � pth(θ, ε)(g) � pth(θ, ε)(d ) (pointwise), where
the superscripts stand for the erasure channel, symmetric
GADC, and depolarizing channel, respectively. This relation
is expected since Holevo information of the channels is related
for a given p ∈ (0, 1) as χ (e)(Np) � χ (g)(Np) � χ (d )(Np)
(pointwise).

The converse region only indicates that achieving ε-
accurate computation is not possible for the scaling param-
eters within that specific region. However, it does not imply
that ε-accurate computation is automatically feasible outside
this region. It is important to note that using the bound only
shrinks the size of the converse region compared to the actual
impossibility region. The actual impossibility region could
potentially be larger and also subsume the converse region.
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VII. CONCLUSION

We considered a model of quantum circuits where inputs
and outputs are classical, which includes a large class of
algorithms due to Deutsch-Jozsa, Grover, and Shor. Using the
example of the phase estimation circuit, we demonstrated that
the currently best-known redundancy lower bounds for quan-
tum computation are not applicable for quantum circuits with
classical input and output. Then, we considered the scenario
where quantum states are corrupted by i.i.d. (Holevo) addi-
tive quantum noise. We established a connection between the
problem of noisy computation and noisy classical communi-
cation over a quantum channel and obtained a nonasymptotic
lower bound on redundancy.

Using this bound we studied fault-tolerant quantum com-
putation under scale-dependent noise, where noise increases
with added redundancy due to sharing of the limited physical
resource. This led to two interesting thresholds on the original
noise p0, beyond which (i) redundancy impacts only adversely
and (ii) no fault-tolerant scheme can achieve ε accuracy for a
given ε, respectively. The first threshold is similar to the one
studied in [24] for concatenated codes; however, it is applica-
ble to all fault-tolerant schemes. For the second threshold, we
derived closed-form expressions whenever possible, and for
other cases, we used optimization techniques for numerical
characterizations.

In our derivation of the redundancy lower bound, certain
relaxations were introduced to the noisy computation model.
As a result, a potential limitation of our approach may be that
the bound is not tight. In this paper, we have not explored
the tightness of the bound, leaving it as a potential area for
future research extensions. Future work could focus on either
tightening the redundancy lower bound or establishing an
achievability bound (redundancy upper bound) and charac-
terizing the gap between the two, and its implications on the
noise threshold.
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APPENDIX A: HOLEVO CAPACITIES OF THE ERASURE
CHANNEL, DEPOLARIZING CHANNEL, AND GADC

Here, we consider only Holevo-additive channels charac-
terized by a single parameter p ∈ [0, 1] and whose Holevo
capacity is monotonically decreasing in p. The candidate
channels that we specifically study are (i) p-erasure, (ii)
p-depolarizing, and (iii) symmetric generalized amplitude
damping channels, i.e., GADC(p, 1

2 ).

1. Erasure channel

In a QEC, each qubit flips to |e〉〈e|, which is orthogonal to
every ρ ∈ L(Cd ), with probability p. Therefore, whenever a

qubit gets corrupted, the location of corruption is known:

Np(ρ) = (1 − p)ρ + pTr[ρ]|e〉〈e|.
The classical capacity is [28]

χ (Np) = 1 − p. (A1)

2. Depolarizing channel

When a qubit undergoes depolarizing noise, it is replaced
by a maximally mixed state I/2 with probability p [28]:

Np(ρ) = (1 − p)ρ + p

2
I.

In contrast to the erasure channel, the receiver (or the decoder)
is not aware of the location of the error. The Holevo informa-
tion of the depolarizing channel is

χ (Np) = 1 − h2

( p

2

)
, (A2)

where h2(·) is the binary entropy function. Note that the
Holevo information is similar to the capacity of a binary
symmetric channel with crossover probability p/2.

3. GADC

Amplitude damping channels model the transformation of
an excited atom to ground state by spontaneous emission of
photons. The changes are expressed using |0〉 for the ground
(no photon) state and |1〉 for the excited state. If the initial
state of the environment |0〉〈0| is replaced by the state θμ �
(1 − μ)|0〉〈0| + μ|1〉〈1|, μ ∈ [0, 1] where μ is thermal noise,
we get the generalized amplitude damping channel described
using the following four Kraus operators [28]:

A1 =
√

1 − μ

[
1 0

0
√

1 − p

]
, A2 =

√
1 − μ

[
0

√
p

0 0

]
,

A3 = √
μ

[√
1 − p 0

0 1

]
, A4 = √

μ

[
0 0

√
p 0

]
.

The GADC is not additive in general (for arbitrary μ). How-
ever, in the special case of symmetric generalized amplitude
damping, i.e., generalized amplitude damping with μ = 1/2,
it is a Holevo additive channel. The classical capacity of the
symmetric GADC (μ = 1/2) is [30]

χ (Np) = 1 − h2

(
1 − √

1 − p

2

)
, (A3)

where p is the probability that an atom decays from excited to
ground state.

Remark 2. Note that we have used p to describe different
impairments in different channels, so p must be interpreted
appropriately based on context.

APPENDIX B: PROOF OF THEOREM 3

The Holevo capacity of the erasure channel is χ (Np(k) ) =
1 − p(k). Therefore,

gθ (k, p0) = c(ε, R f , n)

k
+ p(k) − 1. (B1)
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If θ ∈ 	̄ (converse region), then from Theorem 1 the follow-
ing holds:

gθ (k, p0) = c(ε, R f , n)

k
+ p(k) − 1 � 0, ∀k � 1. (B2)

Differentiating with respect to k and equating to zero (to find
the stationary point),

g′
θ (k, p0) = −c(ε, R f , n)

k2
+ p′(k; p0, θ) = 0. (B3)

Henceforth, we shall use c = c(ε, R f , n) for brevity. For a
fixed θ = α and γ (respectively), the thresholds pth(θ, ε) are
derived for some well-behaved p(k; p0, θ) as follows.

(1) p(k; p0, θ) = p0[1 + α(k − 1)]: Suppose (B2) holds
for some p0, then

gθ (k, p0) � 0, for k = 1,

c + p0 − 1 � 0,

p0 � 1 − c. (B4)

Note that kmax = 1 + α−1[(p0)−1 − 1], obtained by solving
for k in p(k; p0, θ) = 1. Also since p(·; p0, θ) is linear,
gθ (., p0) is convex in [1, kmax]. Therefore, gθ (k, p0) is mini-
mized at any one of k = 1, k = kmax, or a stationary point in
(1, kmax). Substituting p′(k; p0, θ) = p0α in (B3), the station-
ary point is

k =
√

c

p0α
. (B5)

(a) Note that for k ∈ (1, kmax) to be the minimum,
g′(k, p0, θ, ε)|k=1 < 0. Also, noting that p0 � 1 − c [from
(B4)], we obtain

(1 − c)α � p0α < c.

Therefore, α < c
1−c . Substituting (B5) in (B2),

p0 � (
√

cα − √
cα − α + 1)2

(α − 1)2
,

pth(θ, ε) = (
√

cα − √
cα − α + 1)2

(α − 1)2
.

Note that since α < c
1−c , the second term in the numerator,

cα − α + 1 = 1 − c � 0. Therefore, the threshold pth(θ, ε)
exists.

(b) If α � c
1−c , then

k =
√

c

p0α
�

√
1 − c

p0
; k � 1,

p0 � 1 − c.

However, p0 � 1 − c from (B4). Therefore, pth(θ, ε) = 1 − c.
(2) p(k; p0, θ) = p0kγ : Here, θ = γ . The value of k ranges

from 1 � k � ( 1
p0

)
1
γ . For the choice of pth(θ, ε), (B2) must

hold for all k in this range. Similar to the linear case, for
this choice of p(k) and range of k, (B2) is convex. Hence for

pth(θ, ε),

gθ (k, p0) |k=1 � 0,

c + p0 − 1 � 0,

p0 � 1 − c. (B6)

Substituting p′(k; p0, θ) = p0γ kγ−1 in (B3), we obtain the
stationary point as

k =
(

c

p0γ

) 1
γ+1

. (B7)

Similar to linear p(k; p0, θ), there are two cases.
(a) If γ < c

1−c , substituting the stationary point computed
in (B7) in (B2), the threshold pth(θ, ε) can be computed as

p0 �
(

γ

c

)γ

(γ + 1)γ+1 ,

pth(θ, ε) =
(

γ

c

)γ

(γ + 1)γ+1 .

(b) If γ � c
1−c , then

k =
(

c

p0γ

) 1
γ+1

�
(

1 − c

p0

) 1
γ+1

; k � 1,

p0 � 1 − c.

However, p0 � 1 − c from (B6). Therefore, pth(θ, ε) = 1 − c.

APPENDIX C: PROOF OF CONVERGENCE
OF ALGORITHM 1

The following theorem provides a proof of global conver-
gence of Algorithm 1, with only a monotonicity assumption
in θ (note that continuity in θ is not needed).

Theorem 4. Suppose a quantum circuit is corrupted by
a scale-dependent noise per physical qubit, p(k; θ), that is
monotonic in θ. Then for any given θ, the sequence {p0i} gen-
erated using Algorithm 1 converges to the threshold pth(θ, ε).

Proof. Algorithm 1 generates a nonincreasing sequence
{p+

0i
} and a nondecreasing sequence {p−

0i
}, which at every it-

eration yields g∗(p+
0i

) � 0 and g∗(p−
0i

) < 0, with p0i = p+
0i

+p−
0i

2 .
Since the bisection method halves the difference between p+

0i

and p−
0i

at every iteration (i.e., p+
0i+1

− p−
0i+1

= p+
0i

−p−
0i

2 ), we have
that for all ε > 0, there exists an i0 such that for all i � i0,
we get p+

0i
− p−

0i
< ε. Also, since both {p+

0i
} and {p−

0i
} are

bounded, they converge, and since for all i � i0, p+
0i

− p−
0i

<

ε, they converge to a common limit point (say p∗). Due to the
monotonicity of g∗

θ (p0) (nondecreasing with p0), the follow-
ing inequality holds: g∗

θ (p−
0i

) � g∗
θ (p∗

0) � g∗
θ (p+

0i
). Therefore,

g∗
θ (p0) < 0, for all p0 < p∗, and g∗

θ (p0) � 0, for all p0 > p∗,
which is by definition p∗ = pth(θ, ε). �

APPENDIX D: PROOF OF CONVERGENCE
OF ALGORITHM 1

The following theorem provides proof of convergence of
Algorithm 1. For better readability, the associated lemmas
used in the proof are included in Appendix F3.

052425-10



LIMITS OF FAULT TOLERANCE ON … PHYSICAL REVIEW A 108, 052425 (2023)

Theorem 5. Convergence of Algorithm 1: Suppose
g∗

θ (p0) = min
k�1

gθ (k, p0), which is convex in k. Then

Algorithm 1 yields g̃ arbitrarily close to g∗
θ (p0), i.e., for

any predetermined δ > 0, |g̃ − g∗
θ (p0)| � δ.

Proof. Let {1, . . . , kl} be a sequence generated by pro-
jected gradient descent, ProjGD, where kl satisfies the
stopping criterion. Note that ProjGD does not cross any sta-
tionary point if the step size ξ � 1

L (from Lemma 6). So,
kl = 1 if and only if g̃ = g∗

θ (p0) = gθ (1, p0), and similarly
kl = kmax if and only if g̃ = g∗

θ (p0) = gθ (kmax, p0). Otherwise
kl ∈ (1, kmax) and gθ (1, p0) < 0, which implies from Lemma
6 that gθ (kl , p0) � 0. From Lemmas 4 and 5, kl satisfying the
stopping criterion in Definition 3 is sufficient for convergence,
i.e., g̃ = gθ (kl , p0) and |g̃ − g∗

θ (p0)| � δ. �
The following lemma shows g′

θ (k, p0) is indeed L Lipschitz
over [1, kmax] for a general polynomial noise model and gives
a closed-form expression for L.

Lemma 1. Computing Lipschitz constant L: g′
θ (k, p0) is

L Lipschitz over [1, kmax] for scale-dependent erasure noise
p(k; p0, θ) = p0[1 + α(k − 1)]γ with γ � 0 where, for c =
c(ε, η, n),

L = 2c + α2γ |γ − 1|pmin {1, 2
γ }

0 .

Proof. Let g′
θ and g′′

θ denote the partial derivatives
∂
∂k gθ (k, p0) and ∂2

∂k2 gθ (k, p0), respectively. The magnitude of
the second-order partial derivative is bounded above as

|g′′
θ| � sup

k

∣∣∣∣2c

k3

∣∣∣∣ + sup
k

|p′′(k; p0, θ)|,

where the inequality follows from triangle inequality and by
maximizing each summand. Observe that the first summand
is maximized when k = 1, and the second term is bounded
above as

p′′(k; p0, θ) �
{

α2γ |γ − 1| p0, 0 � γ < 2, k = 1, and

α2γ |γ − 1| p2/γ

0 , γ � 2, k = kmax,

� α2γ |γ − 1|pmin {1, 2
γ }

0 , γ � 0,

where kmax = 1 + α−1(p−(1/γ )
0 − 1). Therefore,

g′′
θ � 2c + α2γ |γ − 1| p

min {1, 2
γ }

0 =: L.

�

APPENDIX E: PROOF OF CONVERGENCE OF
ALGORITHM 3

Theorem 6 proves convergence of Algorithm 3. Required
lemmas are in Sec. F4.

Theorem 6. Proof of convergence of Algorithm 3: Al-
gorithm 3 yields g̃, which is arbitrarily close to g∗ =
mink∈[1,kmax]gθ (k, p0), i.e., |g̃ − g∗| � δ, for a pre-determined
δ > 0.

Proof. Suppose {. . . , ki, k−
i , ki+1, k−

i+1, . . .} is the sequence
generated by Algorithm 3. From Lemma 6 there are no sta-
tionary points in (ki, k−

i ). Then, the Perturb routine keeps
track of the minimum value of gθ (·, p0) in [k−

i , ki+1] at dis-
crete increments: ĝi = mink∈{k−

i ,k−
i +�k,...,ki+1}gθ (k, p0). This is

followed by executing ProjGD again from ki+1 to k−
i+1, and so

on. In every call to the Perturb routine, g̃ tracks the minimum
of ĝi until the ith iteration. From Lemma 8, ĝi differs from
mink∈[k−

i ,ki+1]gθ (k, p0) by at most δ. In line 2 of Algorithm
3, g̃ is initialized with the minimum at boundary points k =
{1, kmax}. Therefore, g̃ − g∗ � δ. Finally, from Corollary 3,
Lemma 8, and Lemma 9, Algorithm 3 terminates in finite
steps when k j = kmax or k−

j = kmax for some j � i + 1. �

APPENDIX F: LEMMAS FOR CONVERGENCE
OF ALGORITHMS

1. Restriction of the feasible set of PL to [1, kmax]

Let kmax = max{k | p(k; p0, θ) � 1}. If kmax = ∞, then
solving (3) yields pth(θ, ε) = 1. Therefore, (3) is nontriv-
ial only if kmax is finite. Let g1(p0) = mink�1 gθ (k, p0) and
g2(p0) = mink∈[1,kmax] gθ (k, p0). From (5), it can be observed
that g1(p0) = 0 whenever g2(p0) > 0, and g1(p0) = g2(p0)
whenever g2(p0) � 0. Hence, the threshold pth(θ, ε) ob-
tained using g1(·) and that obtained using g2(·) as a solution
to PL in (3) are identical. Therefore, (3) can be equiva-
lently solved by restricting the domain of gθ (·, p0) in PL to
[1, kmax]. In other words, one can replace line 8 with g∗

θ (p0) =
mink∈[1,kmax] gθ (k, p0) to obtain the same value of threshold
pth(θ, ε). Additionally, this restriction makes the feasible set
compact. Moreover, notice that the restriction and equivalence
hold for all channels (not just erasure) as long as χ (Np(k) ) = 0
whenever p(k) = 1.

2. Derivation of Lipschitz constants for the symmetric GADC
and depolarizing channel

a. Symmetric GADC

Lemma 2. Computing Lipschitz constant L: g′
θ (k, p0)

is L Lipschitz over [1, kmax] for a polynomial scale-
dependent symmetric generalized amplitude damping noise
p(k; p0, θ) = p0[1 + α(k − 1)]γ , where

L := 2c + α2γ

2 ln 2

(
|γ − 1| + γ

3

)
.

Proof. Denote q(p) = q[p(k)] = 1−√
1−p(k)
2 , and

p = p(k; p0, θ) (for brevity); the magnitude of the
second-order derivative of gθ (k, p0) is bounded above
as

|g′′
θ| � sup

k

∣∣∣∣2c

k3

∣∣∣∣ + sup
k

|h′′
2[q(k)]|

� 2c + sup
k

{|h′′
2 (q)q′(p)2 p′2

+ h′
2(q)q′′(p)p′2|} + sup

k
{|h′

2(q)q′(p)p′′|}.

The last two terms on the right-hand side of the inequality
are maximized when k = kmax. The second term and the third
term are bounded above as

|h′′
2 (q)q′(p)2 p′2 + h′

2(q)q′′(p)p′2|

� α2γ 2

∣∣∣∣∣ p/(1 − p)

4 ln 2
ln

[
1

e

(
1 − q(p)

q(p)

) p
2
√

1−p

]∣∣∣∣∣ � α2γ 2

6 ln 2

052425-11



G., NAYAK, CHATTERJEE, AND VARSHNEY PHYSICAL REVIEW A 108, 052425 (2023)

and

h′
2(q)q′(p)p′′ � α2γ |γ − 1|

4
√

1 − p
log2

(
1 − q(p)

q(p)

)

� α2γ |γ − 1|
2 ln 2

,

respectively. The last inequalities in both the terms are ob-
tained by allowing p → 1 (i.e., k → kmax). Therefore,

|g′′
θ| � 2c + α2γ

2 ln 2

(
|γ − 1| + γ

3

)
=: L.

�

b. Depolarizing channel

Lemma 3. Computing Lipschitz constant L: g′
θ (k, p0) is

L Lipschitz over [1, kmax] for a polynomial scale-dependent
depolarizing noise p(k; p0, θ) = p0[1 + α(k − 1)]γ , where

L = 2c + α2γ

2 ln 2

[
2γ

p0(2 − p0)
+ |γ − 1| ln

(
2 − p0

p0

)]
.

Proof. The second-order derivative of gθ (k, p0) is bounded
above as

|g′′
θ| � sup

k

∣∣∣∣2c

k3

∣∣∣∣ + sup
k

|h′′
2 (p(k)/2)|,

|g′′
θ| � 2c + sup

k

{
1

4
|h′′

2 (z)|p′(k; p0, θ)2+1

2
h′(z)p′′(k; p0, θ)

}
,

where z = p(k; p0, θ)/2. Noting that the |h′′
2 (z)| and h′(z) are

maximized when p(k; p0, θ) = p0, we obtain

|g′′
θ| � 2c+ α2γ

2 ln 2

[
2γ

p0(2 − p0)
+|γ−1| ln

(
2 − p0

p0

)]
=: L.

�

3. Lemmas: Projected gradient descent

Definition 6. In Appendices F3 and F4, we consider g(·)
to be of the following form: g : [1, kmax] → R : k �→ g(k),
where g′(·) is L Lipschitz.

Lemma 4. Stopping criterion and bounded gradient: Sup-
pose a pair of iterates (k j, k j+1), which lie in the interior
(1, kmax), generated by ProjGD satisfies the stopping crite-
rion |g(k j ) − g(k j+1)| < δ2

2Lk2
max

, then the first-order derivative

is bounded above as |g′(k j )| < δ
kmax

.
Proof. Applying the descent lemma to k j, k j+1, we get

g(k j+1, p0) � g(k j, p0) + g′(k j, p0)(k j+1 − k j )

+ 1
2 L|k j+1 − k j |2. (F1)

Substituting k j+1 − k j = −ξg′
θ (k j ) in (F1),

ξ

(
1 − ξL

2

)
|g′(k j )|2 � g(k j ) − g(k j+1).

Choosing ξ = 1
L , we obtain

1

2L
|g′(k j )|2 � g(k j ) − g(k j+1) <

δ2

2Lk2
max

.

Therefore,

|g′(k j )| <
δ

kmax
.

�
Lemma 5. Suppose g(·) is convex, and g∗ =

mink∈[1,kmax] g(k). If |g′(k j )| < δ/kmax, then |g(k j ) − g∗| � δ,
for any k j ∈ [1, kmax].

Proof. From the convexity of g(·), we have g(k) �
g′(k j )(k − k j ) + g(k j ), for any k, k j ∈ [1, kmax]. If g′(k j ) < 0,
then

g(k) − g(k j ) � g′(k j )(kmax − k j ) � g′(k j )(kmax − 1),∀k.

Therefore,

g(k j ) − g∗ � |g′(k j )|(kmax − 1) � |g′(k j )|kmax � δ.

On the other hand, if g′(k j ) � 0, then

g(k) − g(k j ) � g′(k j )(k − k j ) � g′(k j )(1 − k j ),∀k,

g(k j ) − g∗ � g′(k j )(kmax − 1) � g′(k j )kmax � δ.

Therefore, combining both cases, if |g′(k j )| � δ
kmax

, then
|g(k j ) − g∗| � δ. �

Lemma 6. Projected gradient descent ( ProjGD ) does not
cross any stationary point: Let k j and k j+1 be the successive
iterates generated by the ProjGD routine for g(·). Suppose the
step size ξ ∈ (0, 1

L ], then g′(k j )g′(k j+1) � 0.
Proof. From the definition of the Lipschitz gradient, we

have |g′(k j ) − g′(k j+1)| � L|k j − k j+1| = Lξ |g′(k j )|, where
the last equality holds, since k j+1 is generated from the
ProjGD routine. Suppose, g′(k j ) � 0, then the following in-
equalities hold:

−Lξg′(k j ) � g′(k j ) − g′(k j+1) � Lξg′(k j ),

−Lξg′(k j ) � g′(k j+1) − g′(k j ) � Lξg′(k j ),

(1 − Lξ )g′(k j ) � g′(k j+1) � (1 + Lξ )g′(k j ).

For ξ � 1
L , we obtain

g′(k j+1) � g′(k j )(1 − Lξ ) � 0.

Symmetrically, if g′(k j ) � 0, then g′(k j+1) � 0. Combining
both cases, we obtain g′(k j )g′(k j+1) � 0. �

Lemma 7. Least difference between the successive iterates
of ProjGD: Let k j and k j+1 be the successive iterates generated
by the ProjGD routine for g(·), with a step size ξ = 1

L . If

|g(k j ) − g(k j+1)| > ζ , then |k j − k j+1| >

√
2ζ

5L .
Proof. From the definition of the Lipschitz gradient, we

have

|g′(k j+1) − g′(k j )| � L|k j+1 − k j |,
|g′(k j+1)| � |g′(k j )| + L|k j+1 − k j |

= |k j+1 − k j |
ξ

+ L|k j+1 − k j |.

Substituting ξ = 1
L we obtain

|g′(k j+1)| � 2L|k j − k j+1|. (F2)
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Suppose g(k j ) � g(k j+1), then using descent lemma [31] on
g(·) at k j and k j+1 yields

g(k j ) − g(k j+1) � g′(k j+1)(k j − k j+1) + L

2
|k j − k j+1|2

� |g′(k j+1)||(k j − k j+1)| + L

2
|k j − k j+1|2.

(F3)

Substituting (F2) in (F3) and using |g(k j ) − g(k j+1)| > ζ we
obtain

ζ < |g(k j ) − g(k j+1)| � 5L

2
|k j − k j+1|2. (F4)

It can be also verified that (F4) holds when g(k j ) < g(k j+1).
Therefore,

|k j+1 − k j | >

⎧⎪⎨
⎪⎩

√
2ζ

5L , if k j+1 < kmax,√
2

5L (g(k j ) − g(kmax)), if k j+1 = kmax.

The second case is mentioned separately since (F4) may not
hold when k j+1 = kmax. �

Corollary 2. Suppose ProjGD is used with stopping crite-
rion 1 (Definition 3). If |k j − k j+1| � δ√

5Lkmax
, then |g(k j ) −

g(k j+1)| � δ2

2Lk2
max

, when k j+1 < kmax.

Proof. The result follows by substituting ζ = δ2

2Lk2
max

in
Lemma 7. �

Corollary 3. Suppose ProjGD is used with stopping cri-
terion 2 (Definition 4). If |k j − k j+1| �

√
2δ
5L , then |g(k j ) −

g(k j+1)| � δ, when k j+1 < kmax.
Proof. The result follows by substituting ζ = δ in

Lemma 7. �

Remark 3. Corollaries 2 and 3 imply that ProjGD ter-
minates in a finite number of iterations depending on the
stopping criteria.

4. Lemmas: Perturbation

Lemma 8. The Perturb routine does not miss stationary
points: Suppose k j meets the stopping criterion 2 (Definition

4). If the perturbation �k �
√

2δ
L , then the Perturb routine

does not miss any stationary points with an error greater than
δ.

Proof. Let k j, k j+1 be any two points in [1, kmax]. Since
g′(·) is L Lipschitz, using descent lemma [31] on g(·) at k j

and k j+1, we obtain

g(k j ) − g(k j+1) � g′(k j+1)(k j − k j+1) + L

2
|k j − k j+1|2.

Let k j+1 be the closest stationary point to k j , then

|g(k j ) − g(k j+1)| � L

2
|k j − k j+1|2.

Therefore, the following condition is necessary for the stop-
ping criterion 2, i.e., |g(k j ) − g(k j+1)| � δ (Definition 4), to
hold:

�k = |k j − k j+1| �
√

2δ

L
.

�
Lemma 9. Upper bound on the number of stationary points:

Consider a set of stationary points {ks} of g(·) in [1, kmax] such
that for every ks, the adjacent stationary point ks+1, |g(ks) −
g(ks+1)| � δ. The number of such stationary points is finite
and bounded above as �kmaxL/δ�.

Proof. From the proof of Lemma 8, it follows that if
|g(ks) − g(ks+1)| � δ, then the stationary points are separated
by at least |ks − ks+1| �

√
2δ
L . Therefore, the number of sta-

tionary points in [1, kmax] is at most �kmax

√
L
2δ

�. �
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