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Detecting genuine multipartite entanglement via machine learning
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In recent years, supervised and semisupervised machine learning methods such as neural networks, support
vector machines (SVMs), and semisupervised support vector machines (S4VMs) have been widely used in
quantum entanglement and quantum steering verification problems. However, few studies have focused on
detecting genuine multipartite entanglement based on machine learning. Here, we investigate supervised and
semisupervised machine learning for detecting genuine multipartite entanglement of three-qubit states. We
randomly generate three-qubit density matrices and train an SVM for the detection of genuine multipartite
entangled states. Moreover, we improve the S4VM training method, which optimizes the grouping of prediction
samples and then performs iterative predictions. Through numerical simulation, it is confirmed that this method
can significantly improve the prediction accuracy.
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I. INTRODUCTION

Genuine multipartite entanglement (GME) is a relevant
resource in quantum information processing [1–6]. It is used
in many quantum information tasks, such as cluster states
in the one-way quantum computing model [7], Greenberger-
Horne-Zeilinger and Dicke states in quantum metrology [8,9],
or graph states in quantum error correction codes [10,11].
Consequently, the GME certification is a central task in the
field of quantum information.

There are many entanglement criteria and entanglement
measures for bipartite quantum states [1–6], such as the nega-
tivity and its extensions [12–16], the concurrence [17–22], the
G concurrence [23–26], and the geometric measure of entan-
glement [26–28]. However, for multipartite quantum systems
the situation becomes more complicated, as several different
entanglement classes exist [29–32]. Among all the multipar-
tite entanglement classes, GME can be viewed as the strongest
multipartite entanglement type. A multipartite quantum state
contains GME if and only if it cannot be expressed as a convex
combination of biseparable states with respect to any bipar-
titions. Many detection criteria and entanglement measures
have been proposed for GME [33–42].

Machine learning is an interdisciplinary field that com-
bines probability theory, statistics, computer science, and
other domains to study how computers can simulate human
learning behavior by constantly reorganizing their existing
knowledge structures. According to the learning style, it
is divided into four main categories: supervised learning,
unsupervised learning, semisupervised learning, and rein-
forcement learning. These methods have been widely used in
quantum information, particularly in quantum entanglement
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classification [43–47], quantum steering [48,49], quantum
nonlocality [50,51], spin systems [52,53], and other aspects.

Semisupervised learning classification algorithms are a
form of semisupervised learning, including the semisuper-
vised random forest algorithm [54], safe semisupervised
support vector machines (S4VMs) [55], the semisupervised
k-nearest neighbors algorithm [56], and other algorithms.
Among them, the S4VM has obvious effects on anomaly
detection [57,58] and image text classification [59–61], and
has also been applied to quantum steering classification prob-
lems [49]. By using semidefinite programming (SDP) [62–64]
to generate quantum entangled states randomly, semisuper-
vised algorithms can be applied to predict a large number
of unlabeled quantum states from a small number of labeled
states.

Recently, supervised and semisupervised machine learning
methods such as neural networks, support vector machines
(SVMs), and S4VMs have been widely used in quantum
entanglement and quantum steering verification problems.
However, to the best our knowledge, few studies have focused
on the detection of GME based on machine learning. Because
GME is much more important than bipartite entanglement in
many quantum information tasks, and machine learning is a
powerful classification tool used for bipartite entanglement,
the detection of GME via machine learning is significant and
urgent.

In this paper, the three-qubit GME detection problem is
investigated based on the SVM and S4VM, and these two
methods are improved. For the SVM, we use the method of
screening favorable support vectors to improve the accuracy
of the model while reducing the training time. For the S4VM,
based on Ref. [49], we propose a group selection method,
which can significantly improve the classification accuracy
compared with the direct grouping method. Finally, we com-
pare and analyze the results with the SVM, highlighting the
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superiority of this method. The paper is organized as follows.
Section II presents the detection of three-qubit genuine mul-
tipartite entanglement using supervised machine learning. In
Sec. III, we investigate semisupervised machine learning for
detecting the genuine multipartite entanglement of three-qubit
states. Last but not least, Sec. IV concludes the paper.

II. SUPERVISED MACHINE LEARNING

A. Methods

An arbitrary three-qubit quantum state ρ can be expressed
as

ρ = 1

8

(
1 ⊗ 1 ⊗ 1 +

3∑
i=1

riσi ⊗ 1 ⊗ 1 +
3∑

j=1

s j1 ⊗ σ j ⊗ 1

+
3∑

k=1

pk1 ⊗ 1 ⊗ σk +
3∑

i, j=1

ti jσi ⊗ σ j ⊗ 1

+
3∑

i,k=1

qikσi ⊗ 1 ⊗ σk +
3∑

j,k=1

o jk1 ⊗ σ j ⊗ σk

+
3∑

i, j,k=1

mi jkσi ⊗ σ j ⊗ σk

)
, (1)

where 1 is a 2×2 identity matrix and σi (i = 1, 2, 3) are Pauli
matrices.

Based on the entanglement witness W = Pα + QTα
α for bi-

partition α|ᾱ with positive operators Pα and Qα , Ref. [64]
defined an entanglement monotone to quantify GME, i.e., the
genuine multipartite negativity (GMN), which can be easily
computed via SDP. Moreover, Ref. [65] proposed a renormal-
ized version of the GMN. For a three-qubit state ρABC , the
renormalized GMN Ng(ρABC ) is given by

Ng(ρABC ) = − inf Tr(W ρABC )

subject to W = Pα + QTα

α ,

0 � Pα,

0 � Qα � 1 for all bipartitions α|ᾱ,

(2)

where α runs over all possible subsystems in {A, B,C}, and
Tα is the partial transpose for subsystem α. Notably, the
renormalized GMN is equal to a mixed-state convex roof of
bipartite negativity:

Ng(�) = inf
pα,�α

∑
α

pαNα (�α ), (3)

where the summation runs over all possible decompositions
α|α of the system and the minimization is performed over all
mixed-state decompositions of the state � = ∑

α pα�α .
Using SDP (2), we can randomly generate three-qubit

quantum states and obtain their renormalized GMN. If the
renormalized GMN value is positive, we consider the quantum
state to be genuinely entangled and label it as −1. If the
target value is nonpositive, we label it as +1. To balance the
data, we created 55 000 quantum states with +1 labels and
55 000 quantum states with −1 labels, randomly classified
all quantum states, and finally took 44 000 quantum states

with +1 labels and 44 000 quantum states with −1 labels as
the training set, and 11 000 quantum states with +1 labels
and 11 000 quantum states with −1 labels as the test set to
generate a three-qubit quantum entanglement classifier.

The built-in algorithm we used for this quantum classi-
fier is the SVM algorithm, which is an efficient supervised
learning method that classifies data by looking for a clas-
sification line between two types of data differences. The
SVM algorithm was first developed by Cortes and Vapnik
in 1995 [66]. The basic principle is that if the training data
are points distributed on a two-dimensional plane, they are
clustered into different regions according to their classifi-
cation. The classification algorithm based on classification
boundaries determines the boundary between these classifi-
cations by training various data points, and then obtains the
corresponding fitting curve. For many N-dimensional data,
it can be thought of as points in N-dimensional space, and
the classification boundary is a polygon in N-dimensional
space, called a hypersurface (hypersurfaces are one dimension
smaller than N-dimensional space).

Linear classifiers use the boundaries of hyperplane types,
whereas nonlinear classifiers use hypersurfaces. Suppose we
have a part of the original data to classify: (x11, x12, . . . ,

x1n, y1), . . . , (xm1, xm2, . . . , xmn, ym), where x1, . . . , xn repre-
sents the feature size of the data in different dimensions, and
ym represents the category of this set of data, assuming it is
a two classification problem, that is, +1 or −1. The target
hyperplane is

ωT x + b = 0. (4)

For the optimal ω and b, the distance between any point in the
space (x1, x2, . . . , xn) to the target hyperplane is

r =
∣∣ωT x + b

∣∣
‖ω‖ . (5)

We use the marking method as follows:

ωT xi + b � 1, yi = +1

ωT xi + b � −1, yi = −1 (6)

with the target being

min
ω

1
2ωT ω such that yi(ωxi + b) � 1. (7)

For nonlinear classifiers, the kernel function method is
used. The basic idea is to map the data into a high-dimensional
space through a nonlinear transformation (kernel function),
make the data linear in it, and finally apply a simple linear
SVM for classification. There are many kinds of Kernel func-
tions, such as linear kernels, polynomial kernels, Gaussian
kernels, Laplace kernels, and Sigmoid kernels. Here, we used
the following Gaussian kernels:

κ (xi, x j ) = ϕ(xi )ϕ(x j ) = e−γ ‖xi−x j‖2
. (8)

After introducing relaxation variables ξi and kernel functions
κ ,

min
ω,b,ξ

1

2
ωT ω + C

n∑
i=1

ξi such that yi(ωϕ(x j ) + b)

� 1 − ξi, ξi � 0. (9)
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FIG. 1. The accuracy and the error bar of different numbers of
support vectors.

The value C is the penalty coefficient or penalty factor,
which represents the tolerance of the model to error, and can
be understood as the weight of adjusting the preference of
the two indicators (interval size and classification accuracy)
in the optimization direction, that is, the tolerance of error.
The higher C, the more intolerant the error is, so it is easy to
overfit the model; the smaller C, the easier it is to underfit,
so whether C is too large or too small, the generalization
ability will be worse. γ parameters implicitly determine the
distribution of the data after mapping to a new feature space.
Similarly, being too large or too small reduces classification
accuracy. Therefore, when using the SVM algorithm, the se-
lection of parameters C and γ is very important, and the
choice directly affects the quality of the final result classifica-
tion. In this paper, fivefold cross-verification and grid search
are adopted to search for optimal values of C and γ (we
obtained C = 3.5 and γ = −1.8 by searching), and the search
can effectively reduce the training time and avoid finding the
local optimal solution.

B. Improved SVM and numerical results

In the numerical simulation, to meet the needs of our ex-
periment, we first generated a large number of manipulable
three-qubit quantum state samples, and obtained the positive
and nonpositive renormalized GMN values of these quantum
state samples through the SDP algorithm, labeled +1 and −1,
respectively. The stretching subsystem stretches the random
density matrix, puts it into the SVM as a feature vector for
training, and obtains the prediction accuracy of the corre-
sponding quantum state. Taking a three-qubit quantum state
as an example, its density matrix is 8×8, stretched to 64,
corresponding to the support vector of the SVM. Support vec-
tors that are not conducive to classification are found through
traversal search. Thus, the accuracy of SVM classification
can be effectively improved. In Fig. 1, different numbers of
support vectors are used to obtain the accuracy of unlabeled
samples.

TABLE I. Classification accuracy of the support vector machine
before and after filtering dimensions.

Number SVM (%) After dimension reduction (%)

110 000 86.80 87.67

Through the traversal search, it is found that the 23rd, 36th,
51st, 54th, 55th, 57th, and 63rd dimensions in support vectors
of three-qubit quantum states can be reduced for accuracy. In
Table I, it is found that the accuracy after filtering the above
dimensions is approximately 1% higher than before. From
these results, it can be observed that not all support vectors of
quantum states are conducive to the classification of genuinely
entangled states. This opens up the possibility of choosing
suitable support vectors and finding the rules between them
in future research.

III. SEMISUPERVISED MACHINE LEARNING

A. Methods

In real life, the vast majority of data do not have category
labels, and data with category labels are only a small part.
In this case, supervised machine learning often does not pre-
dict unlabeled data well, because there are too few labeled
data in training. Thus, the SVM cannot accurately delineate
classification boundaries and can easily affect the accuracy of
training. At the same time, supervised methods rely on strong
human intervention, and the cost of manual labeling is very
high, resulting in the scarcity of manually labeled samples,
and a large amount of unlabeled data does not participate in
training, making supervised machine learning not highly prac-
tical in practical applications. Subsequently, semisupervised
machine learning was developed based on supervised machine
learning, which can better solve this problem. Semisupervised
machine learning uses a small number of labeled samples to
train a large number of unlabeled samples, which can max-
imize the use of all data, ensure classification accuracy, and
reduce the cost of training.

A semisupervised support vector machine (S3VM) [66] is
an early semisupervised learning method that attempts to nor-
malize and adjust decision boundaries by exploring unlabeled
data based on clustering assumptions. However, the objective
function of the S3VM algorithm is not convex, but has multi-
ple local optimal solutions. To solve the specific problem of a
certain aspect of the S3VM, many derivative algorithms have
been produced. The mean S3VM [67] algorithm is proposed
to improve the efficiency of the S3VM, the S4VM [68] algo-
rithm is proposed to focus on multiple possible low-density
demarcations at the same time, and the CS4VM [69] algo-
rithm is proposed to improve the cost-sensitive problem.

In our paper, the S4VM algorithm is used to classify the
entanglement of quantum states and some improvements over
the traditional S3VM are achieved. The traditional S3VM is
based on the low-density hypothesis, which attempts to find
a low-density dividing line, i.e., a low-density region that
prefers to make decisions that the boundary passes through
the feature space. As we know, in semisupervised machine
learning, there are fewer label data and multiple classification
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FIG. 2. Selected the S4VM method with m = 2, where m de-
notes that we divide all data points into m groups. Blue points are
the first group of prediction data points, and orange points are the
second group of prediction data points.

boundaries, and it is impossible to determine which works
best. The S3VM focuses on an optimal low-density dividing
line, and sometimes the results are not good, while the S4VM
focuses on multiple possible low-density dividing lines at
the same time, considering more comprehensively than the
S3VM.

The S4VM algorithm is

min
{ωt ,bt ,ŷt ∈B}T

t=1

T∑
t=1

⎛
⎝1

2
ωT

t ωt + C1

l∑
i=1

ξi + C2

l∑
j=1

ξ̂ j

⎞
⎠

+ G
∑

1�t �=t̃�T

δ

(
ŷ′

t ŷt̃

u
� 1 − ς

)
,

such that yi(ω
′
tϕ(xi ) + bt ) � 1 − ξi, ξi � 0,

ŷt, j (ω
′
tϕ(x̂ j ) + bt ) � 1 − ξ̂ j, ξ̂ j � 0,

∀i = 1, . . . , l, ∀ j = 1, . . . , u, ∀t = 1, . . . , T .

Through the recent work Ref. [49], it can be found that
the method of group prediction is adopted for the S4VM
algorithm to improve the prediction accuracy. If there are 4000
unlabeled quantum states, they are divided into M groups,
and predicted sequentially. One can treat the results of each
prediction as true labels, and retrain the predictions. This
method has a higher accuracy than the S4VM algorithm, and
the average accuracies of the S4VM for m = 4 and 8 on the
bipartite steering are 0.969 and 0.979, respectively.

We improved the SVM-S4VM algorithm in Ref. [49],
named the renewal SVM-S4VM, to make predictions for un-
labeled quantum states after selectively grouping. As shown
in Fig. 2, the accuracy of the predictions can be significantly
improved when the data set is far from the other side of the
fitted curve. Therefore, we first use the S4VM to sort the
distribution of all unlabeled data points, and then group them
to make predictions from outside to inside.

The S4VM program used is the MATLAB program of the
Institute of Machine Learning and Data Mining of Nanjing
University, and the effect of the paper has been achieved
after corresponding rewriting. C1, C2, and γ in the S4VM

model are obtained through a grid search and fivefold cross-
validation.

Before running the selective S4VM algorithm, l/2 three-
qubit quantum states with +1 labels and l/2 three-qubit
quantum states with −1 labels should be prepared by SDP,
which are considered as the labeled data. In addition, 1000
quantum states with +1 labels and 1000 quantum states with
−1 labels are divided into two groups (m = 2), which are
treated as unlabeled data for testing (actually these 2000 states
are labeled, and we treat them as unlabeled data for testing the
algorithm).

(1) The S4VM algorithm was applied to 2000 unlabeled
quantum states with l labeled quantum states, and the fitted
value size of each quantum state was obtained after obtain-
ing the best cross-verification accuracy and hyperparameters,
reflecting the degree of entanglement. The data points are
arranged from the largest to the smallest, and finally 500
positive maximum data and 500 negative maximum data are
taken into the first group, and the rest are taken into the second
group.

(2) Taking the l labeled data as the training set, we predict
the first set of 1000 data, obtaining the best cross-validation
accuracy and the best hyperparameters, and treat the predic-
tion results as correct labels.

(3) l raw data and the first set of 1000 labeled data were
used as the training set, and the second group of 1000 data
was predicted to obtain the best cross-validation accuracy and
hyperparameters.

(4) The average accuracy of the two groups of unlabeled
quantum states is regarded as the classification accuracy of
the unlabeled quantum states.

B. Numerical results

In the numerical simulation, we generated quantum state
samples and manipulated quantum states using MATLAB, and
determined whether they were entangled states through SDP
algorithms and marked them. To balance the number of sam-
ples, we randomly generated the same numbers of “+1” and
“−1” labeled three-qubit quantum states, where 20 “+1”
labels and 20 “−1” labels were used as known samples of
the S4VM, SVM-S4VM, and renewal SVM-S4VM semisu-
pervised learning; 1000 “+1” labels and 1000 “−1” labels
were used as prediction samples; and prediction accuracies of
n = 2, 4, 8, and 16 were obtained. These steps were repeated
to obtain six sets of training systems consisting of different
known labels.

When m = 1 in this paper, the S4VM, SVM-S4VM, and
renewal SVM-S4VM methods are not substantially different
because they do not use the above grouping prediction meth-
ods. Based on this, this paper compares the advantages and
disadvantages of the three methods for the different cases of
m = 2, 4, 8, and 16.

In Fig. 3, we use six different groups of 40 labeled quantum
states to implement the SVM-S4VM and renewal SVM-
S4VM; obtain the classification accuracy of 2000 unlabeled
quantum states in the case of m = 2, 4, 8, and 16; and compare
it with the direct prediction results of the S4VM without group
prediction. It can be observed from Fig. 3 that in the four
cases, the SVM-S4VM and renewal SVM-S4VM are larger
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FIG. 3. When m = 2, 4, 8, 16, average accuracy (%) of three
algorithms under different m for 40 labeled quantum states. The
accuracies by the renewal SVM-S4VM are represented by red lines
with pentagram, the accuracies by the SVM-S4VM are represented
by blue lines with circle, and the accuracies by the S4VM are repre-
sented by green lines with square, respectively.

than the S4VM, and the prediction accuracy of the renewal
SVM-S4VM is greater than that of the SVM-S4VM on the
whole. It is obvious that the improvement in the renewal
SVM-S4VM prediction accuracy on the SVM-S4VM is more
obvious when m = 8 and 16, followed by m = 4, and the
improvement is the smallest at m = 2. Except for the sixth
group m = 4 and 8, the fourth group m = 8 and 16, etc.,
the SVM-S4VM will hardly improve as m increases, and
the prediction accuracy of most SVM-S4VMs and renewal
SVM-S4VMs will increase with the increase of m. In Fig. 4,
we use six different groups of 60 labeled quantum states to
implement the SVM-S4VM and renewal SVM-S4VM; obtain
the classification accuracy of 2000 unlabeled quantum states
in the case of m = 2, 4, 8 and 16; and compare it with the
direct prediction results of the S4VM without group predic-
tion. As shown in Fig. 4, the situation is approximately the
same as that of the 40 labeled quantum states. In all four
cases, the SVM-S4VM and renewal SVM-S4VM were greater
than the S4VM, and the prediction accuracy of the renewal
SVM-S4VM was greater than that of the SVM-S4VM. It is
obvious that the improvement in the renewal SVM-S4VM
prediction accuracy on the SVM-S4VM is more obvious when
m = 8 and 16, and the improvement is smaller at m = 2 and 4.
Except for the fourth group of m = 8 and 16, the SVM-S4VM
hardly improves as m increases, and the prediction accuracy of
most SVM-S4VMs and renewal SVM-S4VMs increases with
the increase of m.

In Fig. 5, we use six different groups of 80 labeled quan-
tum states, resulting in a similar result to the previous l =
40 and 60, so it can be seen that the renewal SVM-S4VM
has strong universality and can effectively adapt to predict a
large number of unlabeled states for a small number of labeled
states.

FIG. 4. When m = 2, 4, 8, 16, average accuracy (%) of three
algorithms under different m for 60 labeled quantum states. The
accuracies by the renewal SVM-S4VM are represented by red lines
with pentagram, the accuracies by the SVM-S4VM are represented
by blue lines with circle, and the accuracies by the S4VM are repre-
sented by green lines with square, respectively.

In Fig. 6, as the number of unlabeled quantum states in-
creases, so does the classification accuracy. Considering that
in actual use, the time required and capital cost of labeling
continue to increase, but the effect improvement is small and

FIG. 5. When m = 2, 4, 8, 16, average accuracy (%) of three
algorithms under different m for 80 labeled quantum states. The
accuracies by the renewal SVM-S4VM are represented by red lines
with pentagram, the accuracies by the SVM-S4VM are represented
by blue lines with circle, and the accuracies by the S4VM are repre-
sented by green lines with square, respectively.
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FIG. 6. Average accuracy (%) of three algorithms under different
l for 40, 60, and 80 labeled quantum states. The accuracies by the
renewal SVM-S4VM are represented by red lines with pentagram,
the accuracies by the SVM-S4VM are represented by blue lines with
circle, and the accuracies by the S4VM are represented by green lines
with square, respectively.

the efficiency is not high, this paper will not continue to add
more corresponding cases of labeling quantum states.

In Table II, when l is 40, the average maximum prediction
accuracy of the renewal SVM-S4VM is 86.16%, which is
approximately 4% higher than that of the SVM-S4VM. The
average maximum prediction accuracy of the renewal SVM-
S4VM was 89.72% when l was 60, which was 4.25% higher
for the same l . In summary, the accuracy of the renewal SVM-
S4VM is higher than that of the SVM-S4VM, which can
effectively improve the entanglement classification accuracy
in three-qubit quantum states.

In Fig. 7, when m = 2, 4, 8, and 16, the renewal SVM-
S4VM has far more data points than the SVM-S4VM, which
is why the renewal SVM-S4VM is more accurate than the
SVM-S4VM. Moreover, the prediction accuracy of the first
group of the renewal SVM-S4VM was higher than that of the
SVM-S4VM, while the prediction accuracy of the last group
was lower than that of the SVM-S4VM. This is because the
renewal SVM-S4VM predicts from the outside to the inside.
The earliest data are distributed far from the fitting line, which
is easy to classify and predict. During the iterative process,
the data distribution is close to the fitting line. In contrast, it
is more difficult to distinguish than the SVM-S4VM, which
randomly shuffles the data group, resulting in a decrease in
classification accuracy. It is also observed that during the iter-
ative prediction process, the classification accuracy increases
circuitously, which is related to the increase in the training
group.

TABLE II. The average maximum prediction accuracy of the
S4VM, SVM-S4VM, and renewal SVM-S4VM methods with l = 40,
60, and 80.

l S4VM (%) SVM-S4VM (%) Renewal SVM-S4VM (%)

40 78.76 82.17 86.16
60 82.30 85.47 89.72
80 82.80 85.91 90.52

Compared with supervised learning, the accuracy of
semisupervised learning is approximately close to the accu-
racy of supervised learning, and even exceeds that at n = 8
and 16. This shows that the renewal SVM-S4VM semisu-
pervised learning can be well applied to three-dimensional
entangled state discrimination problems, which can not only
reduce the training time, but also maintain good accuracy. We
believe that this method can be applied for more bit entangle-
ment discrimination of quantum states.

IV. DISCUSSION AND CONCLUSION

Semisupervised machine learning makes good use of and
extends the existing quantum state samples to guide the mod-
eling process, and further improves the modeling performance
of quantum entanglement state prediction based on supervised
machine learning. In this paper, two semisupervised learning
methods, the S4VM and renewal S4VM, are used to verify
the renewal SVM-S4VM algorithm based on numerical sim-
ulation data, which highlights the superiority of the proposed
method. The goal of future research is to train more complex
states, combine multiple quantum state entanglement deter-
mination methods, and achieve a more efficient and stable
semisupervised method.

To improve prediction accuracy, we propose a method that
uses active learning [70–72] to select the most informative 60
labeled data points from the original random set. We assume
that we have 2000 labeled data points in total, and we calculate
the average trace distance between each point and the rest of
the points. We sort the points by their average trace distance in
ascending order and pick the top 60. The idea is to choose the
points that are closest to the center of the data distribution, so

FIG. 7. When m = 2, 4, 8, 16, average accuracy (%) of three algorithms under different m. The accuracies by the renewal SVM-S4VM
are represented by red lines with square, and the accuracies by the SVM-S4VM are represented by blue lines with circle. (a) The prediction
accuracy of each group at l = 40. (b) The prediction accuracy of each group at l = 60. (c) The prediction accuracy of each group at l = 80.
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FIG. 8. The average accuracy of the three algorithms under l =
60. The accuracies of the renewal SVM-S4VM combined with active
learning are represented by pink lines with rhombus, the accuracies
by the renewal SVM-S4VM are represented by red lines with square,
and the accuracies by the SVM-S4VM are represented by blue lines
with circle.

that the S4VM model can better distinguish the two classes of
data, as shown in Fig. 8. We find that our method can achieve
a maximum accuracy of 97.62%. However, this also requires
more labeled data. In future work, we can use generative
models to augment the scarce labeled data set and meet the
data demand.

Machine learning can be used to detect entangled states,
but it may also misclassify nonentangled states as entangled
ones, which is undesirable. Similar problems have also been
reported in Refs. [49,73,74]. To minimize this type of error,
two possible methods can be used. The first method is to select
an appropriate cost function [75] and define a hyperplane that
separates some entangled states from all other nonentangled
and weakly entangled states. The hyperplane can be adjusted
to maximize the number of entangled states on one side. The
second method is to modify the decision threshold [73], which
can lower the error probability. Reference [73] shows that this
probability can be reduced to less than 1% by optimizing the
threshold.

In conclusion, we explored how to use supervised and
semisupervised machine learning methods to identify gen-
uine multipartite entanglement in three-qubit systems. We
randomly generated three-qubit density matrices and trained
an SVM to classify them as genuinely entangled or not. We
found that using only a subset of the support vectors im-
proved the prediction accuracy of the SVM. Furthermore,
we proposed an enhanced training algorithm for the S4VM,
which optimizes the partitioning of the unlabeled samples and
performs iterative predictions on them. Our numerical simula-
tions confirmed that this algorithm can significantly increase
the prediction accuracy of the S4VM.
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