
PHYSICAL REVIEW A 108, 052422 (2023)

Fermionic adaptive sampling theory for variational quantum eigensolvers

Marco Majland ,1,2,3 Patrick Ettenhuber ,1 and Nikolaj Thomas Zinner 1,2

1Kvantify Aps, DK-2300 Copenhagen S, Denmark
2Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

3Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 1 August 2023; accepted 23 October 2023; published 21 November 2023)

Quantum chemistry has been identified as one of the most promising areas where quantum computing can have
a tremendous impact. For current noisy intermediate-scale quantum (NISQ) devices, one of the best available
methods to prepare approximate wave functions on quantum computers is the adaptive derivative-assembled
pseudo-Trotter Ansatz variational quantum eigensolver (ADAPT-VQE). However, ADAPT-VQE suffers from
a significant measurement overhead when estimating the importance of operators in the wave function. In this
work, we propose fermionic adaptive sampling theory VQE (FAST-VQE), a method for selecting operators based
on importance metrics solely derived from the populations of Slater determinants in the wave function. Thus, our
method mitigates measurement overheads for ADAPT-VQE as it is only dependent on the populations of Slater
determinants which can simply be determined by measurements in the computational basis. We introduce two
heuristic importance metrics, one based on selected configuration interaction with perturbation theory and one
based on approximate gradients. In state vector and finite shot simulations, FAST-VQE using the heuristic metric
based on approximate gradients converges at the same rate or faster than ADAPT-VQE and requires dramatically
fewer shots.
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I. INTRODUCTION

Quantum chemistry has been identified as one of the
most promising areas where quantum computing can have
great impact on industrial applications [1–4]. However, cur-
rent quantum hardware is subject to noise and error and
thus algorithms such as quantum phase estimation remain
intractable for current and near-term devices [5,6]. Therefore,
the research community has focused on developing algorithms
suitable for an era of noise, error, limited qubits, and limited
quantum gates [7,8]. A promising method to approximate
electronic wave functions on quantum computers is the adap-
tive derivative-assembled pseudo-Trotter Ansatz variational
quantum eigensolver (ADAPT-VQE) algorithm, along with
its variants, which has enabled tremendous progress towards
this goal [9–14]. Other adaptive algorithms include the qubit
coupled cluster method and the iterative qubit coupled cluster
method [15,16]. The adaptive approaches for estimating elec-
tronic wave functions are in contrast to static approaches such
as unitary coupled cluster theory and its variants [17–19].

The adaptive algorithms are proven to converge to chem-
ical accuracy with fewer parameters and more compact
wave functions compared to the static algorithms. Thus,
the adaptive algorithms may be more feasible for near-term
applications. However, one of the primary challenges of
ADAPT-VQE is the large measurement overhead incurred
by estimating the importance metric for selecting relevant
operators for the wave function [9]. Even estimating a single
energy evaluation of a wave function through the sampling of
expectation values may require significant measurement re-
sources as was demonstrated in recent large-scale benchmarks
[3]. For ADAPT-VQE, the importance metric for choosing

operators from a predefined pool, A, is the gradient of the
energy. Therefore, the number of measurements necessary to
rank the operators scales with the size of the pool, i.e., O(|A|).
Since A typically contains two-body operators, the size of the
set of operators |A| scales as O(N4), where N is a measure for
the size of the chemical system.

In this work, we propose a method for selecting operators
based on the populations of Slater determinants in the wave
function in order to establish an importance metric for excita-
tion operators. This is in stark contrast to ADAPT-VQE where
the importance of operators is established using gradient mea-
surements which requires the sampling of expectation values
for each excitation operator. Sampling Slater determinants
requires only the sampling of a single operator rather than
O(N4) operators as in ADAPT-VQE. In fact, the required
quantities for evaluating the proposed metric can be extracted
from a measurement of the energy in variational quantum
eigensolver (VQE), a measurement that would in any case
have to be performed.

For selecting operators, we are considering two met-
rics, one that is related to the approximate gradient used in
ADAPT-VQE and a second one that is inspired by classi-
cal selected configuration interaction (SCI) [20]. In classical
SCI, the determinants used to diagonalize the Hamiltonian are
chosen using an importance metric typically based on a pertur-
bation method [21–25]. Here we consider selecting operators
based on second-order Epstein-Nesbet (EN) perturbation the-
ory [26,27]. The methods are compared to ADAPT-VQE by
calculating the ground state energies of two small molecules
which are typically used in benchmarks, namely H4 and LiH.
The ground state energies are calculated using state vector
(infinite shot) and finite shot simulations to investigate the
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performance of the methods both cases. An interesting appli-
cation of SCI methods in quantum computing is presented in
Ref. [28]. Using an approximate wave-function encoded in a
quantum computer, the authors present a method to sample
from the wave function to obtain a set of important Slater
determinants which is used to perform a classical diagonaliza-
tion of the Hamiltonian. Our method may be used to prepare
the approximate wave function in the initial step of their al-
gorithm. The sampling of Slater determinants may be further
improved by applying methods such as those presented in
[29].

The paper is organized as follows. In Sec. II, we provide the
theoretical background of ADAPT-VQE and SCI. In Sec. III
we provide the background for the scaling reduction in FAST-
VQE and derive the gradient-based and SCI-based metrics. In
Sec. IV, we provide a pseudo-algorithm for FAST-VQE and
provide the computational details of our calculations which
we will present and discuss in Sec. V. Finally, we conclude
with a summary and present some future research avenues in
Sec. VI.

II. BACKGROUND

In this section, we will provide the background necessary
for understanding the construction of our method in Sec. III,
starting with ADAPT-VQE and followed by SCI.

A. ADAPT-VQE

In ADAPT-VQE, an Ansatz is built by successively adding
parametrized unitary operators acting on a reference state
|�0〉, which is often taken as the Hartree-Fock (HF) ground
state determinant. Thus, the ADAPT-VQE wave function in
iteration k of the algorithm can be expressed as

|� (k)〉 =
∏

μ∈A(k)

e−θμÂμ |�0〉 , (1)

where A(k) is the set of operators in the wave function at iter-
ation k, Âμ = τ̂μ − τ̂ †

μ, with τ̂μ being an excitation operator,
and μ enumerates the excitation. The excitation operators are
chosen from a pool of operators, A = {Aμ}, based on an im-
portance metric, w(Âμ, |� (k)〉). In standard ADAPT-VQE, the
importance metric is the gradient of the energy with respect
to the parameter of the operator. The energy of the (k + 1)th
iteration may be written as

E (k+1) = 〈� (k)|eθμÂμĤe−θμÂμ |� (k)〉 (2)

such that

gμ = ∂E (k+1)

∂θμ

∣∣∣∣
θμ=0

= 〈� (k)|[Âμ, Ĥ ]|� (k)〉. (3)

To evaluate this expression, ADAPT-VQE relies on measuring
operators of the type [Âμ, Ĥ ], yielding a significant overhead
in measurements to be performed.

B. Selected CI

In SCI, determinants are selected iteratively by an impor-
tance metric in order to adaptively increase the subspace in
which the CI eigenvalue problem is solved. One possibility for

selecting determinants is based on perturbation theory [20]. In
this paper, we consider EN perturbation theory [26,27]. EN
theory weights the importance of a Slater determinant |D〉 for
extending a wave function |� (k)〉 in iteration k as

E (k)
D = |〈D|Ĥ |� (k)〉|2

E (k) − 〈D|Ĥ |D〉 =
∑

i j

cic∗
j 〈Dj |Ĥ |D〉〈D|Ĥ |Di〉
E (k) − 〈D|Ĥ |D〉 ,

(4)

where the states |Di〉 are Slater determinants and ci =
〈Di|� (k)〉 CI coefficients.

III. FAST-VQE

In this section, we present a method for selecting operators
solely based on the population of Slater determinants in the
wave function by establishing importance metrics for excita-
tion operators. This is in stark contrast to ADAPT-VQE where
the importance of operators is established by measuring the
expectation value of the non-diagonal gradient operators of
Eq. (3). We start this section with a discussion of sampling
populations of Slater determinants and diagonal Hamiltonian
measurements in Sec. III A and then build the two metrics in
Secs. III C and III B.

A. Sampling populations of Slater determinants

A population of Slater determinants may, for example, be
obtained from the energy evaluations in the VQE optimization
or as a separate measurement. For separate measurements,
given |� (k)〉, one may repeatedly perform measurements in
the computational basis to obtain a bit string representation
of determinants from |� (k)〉 in the HF basis. These measure-
ments may be collected in a multiset of determinants. The
multiset may be written as

S(k) = {|Di〉, 〈Di|� (k)〉 �= 0}, (5)

where the frequency of each determinant |Di〉 is proportional
to |ci|2 and where the restriction is fulfilled by construction.
With this set of determinants, we can build metrics suitable to
assign importance weights to operators from an operator pool
A based on the expected contribution to the wave function. In
the following sections we will introduce two such metrics.

For energy measurements, the population of Slater de-
terminants may be obtained through sampling the diagonal
elements of the Hamiltonian. In VQE, the Hamiltonian is
mapped to a qubit Hamiltonian,

Ĥ =
∑

a

haP̂a, (6)

where

P̂a =
⊗

b

σ̂ α
b , α ∈ {x, y, z}, (7)

denotes a product of Pauli operators. Consider a partitioning
of the Hamiltonian Ĥ = Ĥ z + Ĥc where Ĥ z is diagonal, then
we can express Ĥ z as Ĥ z = ∑

a haP̂z
a , where P̂z

a are products
of Pauli-z operators. We can then write an energy functional
depending on the wave function parameters θ in terms of this
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partitioned Hamiltonian as

E (k)(θ) = 〈� (k)|Ĥ z + Ĥc|� (k)〉
=

∑

a

ha〈� (k)|P̂z
a |� (k)〉 + 〈� (k)|Ĥc|� (k)〉

=
∑

ai

ha|ci|2〈Di|P̂z
a |Di〉 + 〈� (k)|Ĥc|� (k)〉

=
∑

i

hii|ci|2 + 〈� (k)|Ĥc|� (k)〉. (8)

Thus, we can perform measurements of diagonal Hamiltonian
terms in the computational basis in order to sample Slater de-
terminants |Di〉 in |� (k)〉 with a probability that is proportional
to |ci|2. Note that Eq. (8) is evaluated repeatedly in order to
optimize the wave function parameters θ, e.g., using VQE,
such that no additional cost is introduced to calculate Slater
determinant populations.

B. Heuristic gradient

To introduce the first heuristic importance metric, we start
from gμ in Eq.(3) which may be expressed as

gμ = 〈� (k)|ÂμĤ − Ĥ Âμ|� (k)〉
= −〈� (k)|Â†

μĤ + Ĥ Âμ|� (k)〉
= −2 Re(〈� (k)|Â†

μĤ |� (k)〉)

= −2
∑

i j

Re(c∗
i c j〈Di|Â†

μĤ |Dj〉). (9)

Then, dropping the off-diagonal part of the sum in Eq. (9)
yields

diag(gμ) = 2
∑

i

Re(|ci|2〈Di|Â†
μĤ |Di〉)

= 2
∑

i

|ci|2 Re(〈Di|Â†
μĤ |Di〉). (10)

The manifold into which Â†
μ excites, {〈Dj |Â†

μ, Dj ∈ S(k)}, may
be classically constructed. Such a manifold contains infor-
mation on how the diagonal is connected to off-diagonal
elements. To include that information in the final metric, a sec-
ond sum over the determinants will therefore be introduced.
In this regard, S(k) of Eq. (5) will be used directly since the
number of occurrences of a determinant |Di〉 in this multiset
is proportional to |ci|2. Additionally, the second summation is
introduced and all prefactors are removed, as the final ranking
will not be dependent on constant factors. Thus, one obtains

αμ =
∑

Di∈S(k)

∑

Dj∈S(k)

Re(〈Di|Â†
μĤ |Dj〉), (11)

which concludes the construction of the first importance met-
ric. This metric roughly corresponds to dropping the phases
and prefactors from Eq. (9). Note that this expression can
be evaluated classically once S(k) has been obtained. This
importance metric will be denoted heuristic gradient (HG) in
the following.

In contrast to ADAPT-VQE, it is necessary to remove op-
erators already used in the Ansatz, Ak , from the operator pool,

A, in order to avoid using the same operator twice. However,
to converge to the ull configuration interaction (FCI) energy,
it may be necessary to repeat operators in the Ansatz. Thus,
whenever maxμ(αμ) < ε, the operators Ak are added to the
pool again.

C. Heuristic selected CI

In order to introduce a second heuristically motivated met-
ric, SCI theory will be leveraged. In contrast to SCI theory,
which works with the determinants directly, it is required to
build a metric that relates determinants and their frequencies
in the sampling procedure to operators in order to gauge the
effect of adding them to the Ansatz. In this section, such a
metric will be constructed based on the EN criterion from
Eq. (4).

First, consider the ADAPT-VQE Ansatz in Eq. (1). The
addition of a new operator corresponds to the multiplication
of a new exponential which operates on all previous exponen-
tials and the reference wave function. Thus, the contribution
must be evaluated for all determinants already in |� (k)〉 and
appropriately weighted. The construction of the heuristic op-
erator metric based on determinants begins by noting that
〈Di|Â†

μ = 〈Dk| is just another determinant or zero, establish-
ing a connection between operators and determinants. From
this, it would be possible to evaluate the contribution of Â†

μ

by applying the EN criterion in Eq. (4) directly using Dj as
the contribution to be evaluated. However, naively sampling
the operator H |Dk〉 〈Dk| H comes at a significant cost with
a scaling of O(N8). In order to make this manageable and
to be able to evaluate this on a classical computer, the off-
diagonal elements of the sum over i and j from Eq. (4) may
be neglected. Furthermore, one must evaluate and sum such
a metric for all the determinants that an operator Â†

μ is able
to create from the determinants in |� (k)〉, i.e., for practical
implementations, all the determinants of the multiset S(k). For
representing the wave function in Eq. (4), the same approach
as used to arrive at Eq. (11) will be used, i.e., a finite shot
representation given the determinants collected in S(k) and
using only the diagonal contributions.

This concludes the construction of the heuristic importance
metric βμ, which may be written as

βμ :=
∑

Di∈S (k)

∑

Dj∈S (k)

|〈Di|Â†
μĤ |Dj〉|2

E (k) − 〈Di|Â†
μĤ Âμ|Di〉

. (12)

This importance metric will be denoted as heuristic selected
CI (HSCI). Note that also for this metric we need to remove
used operators from A, as explained in Sec. III B.

The importance metrics in Eqs. (11) and (12) both use
the operator Â†Ĥ for the evaluation of the importance of an
operator Âμ when improving the wave function in the next
iteration. From a set of determinants, it is trivial to evaluate
the expectation values for this operator on a classical com-
putational resource with polynomial scaling in the number of
electrons and orbitals.
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Algorithm 1. General pseudo-code for the adaptive algorithms.
Note that for ADAPT-VQE, we skip lines 7-10.

IV. COMPUTATIONAL DETAILS

In this section, the algorithms and computational details of
the calculations will be reviewed, starting with a description
of the algorithm in Sec. IV A, a description of the choice of
operator pool in Sec. IV B, and finally with a description of
the numerical experiments in Sec. IV C

A. Review of algorithms

The general algorithm for ADAPT-VQE and FAST-VQE
is presented in Algorithm 1. Note that the major difference
between these methods is the skipping of lines 7–10 for
ADAPT-VQE. For ADAPT-VQE, the importance metric
reads w(Âμ, |�k〉)ADAPT-VQE = gμ, while for FAST-VQE
we are using the importance metrics introduced earlier, i.e.,
w(Âμ, |� (k)〉)HG = αμ and w(Âμ, |� (k)〉)HSCI = βμ.

Note that modifications for ADAPT-VQE, for example
TETRIS-ADAPT-VQE [13], which adds more than one oper-
ator per iteration, are also applicable to FAST-VQE. However,
we do not expect the relative performance of the algorithms
to differ when using these types of improvements since the
importance metrics are identical for the operators despite
adding more than one operator per iteration. Thus, stan-
dard implementations for ADAPT-VQE and FAST-VQE are
used.

B. Choice of operator pools

In general, any type of operator pool may be utilized.
However, one-body and two-body excitation operators are
enough to parametrize an FCI wave function [30]. Since the
quantum gates required for implementing N-body excitation
operators increase rapidly with N , operator pools are typically
restricted to one-body and two-body excitation operators. Ac-
cording to Ref. [30] all possible many-body operators may be
decomposed as one-body and two-body excitation operators,

specifically as infinite sequences of one- and two-body
particle-hole operators. Particle-hole excitation operators are
excitation operators which annihilate electrons in occupied
spin orbitals in the HF reference state and create electrons
in virtual spin-orbitals of the HF reference. In the original
formulation of ADAPT-VQE, the operator pool consisted of
general excitations (particle-hole excitations and excitations
within the pure virtual-virtual or occupied-occupied blocks)
in the Jordan-Wigner (JW) encoding [31]. The resulting op-
erator pools determine the scaling and convergence of the
procedures. Additionally, rather than using these physically
motivated operator pools, one can build operator pools that
are computationally motivated. For example, several approxi-
mations have been suggested such as qubit excitation based
ADAPT-VQE (QEB-ADAPT-VQE) [11] and spin-adapted
ADAPT-VQE [32]. Recently, operator pools which consider
qubit-space operators were suggested [10]. In this article,
we will use particle-hole excitation operators in the QEB-
ADAPT-VQE encoding since the primary task of this paper
is to investigate importance metrics and not the operators
themselves.

C. Systems and details

Benchmarks of the algorithms are performed by calcu-
lating the ground state energies for H4 and LiH, which
are typically used to benchmark ADAPT-VQE algorithms
[9,16,17]. In these calculations, the STO-3G basis set was
used. The molecular integrals were obtained using PYSCF.
The optimization of the wave-function parameters in VQE
is calculated with the L-BFGS-B method as implemented in
QISKIT [33]. For all molecules, four types of calculations were
performed: one state vector simulation and three simulations
with finite sampling (100, 500, and 1000 shots per expectation
value estimation). The optimization of the wave function in
the VQE was performed using state-vector simulations since
we are restricting our study to the evaluation of importance
measures for operators. Thus, the method for reusing VQE
optimization measurements for FAST-VQE was not used such
that finite shot simulations were performed to estimate popu-
lation of Slater determinants. Since the identical number of
operators must be sampled in the VQE optimization for each
algorithm, we do not expect the relative comparison between
the ADAPT-VQE and FAST-VQE to differ in terms of VQE
optimization. The state vector and finite shot calculations
were performed in QISKIT. The state vector simulation serves
as a benchmark for infinite shots. All quantum simulations
are compared to an FCI calculation for the same molecule–
basis-set combination in PYSCF. These results are presented in
Sec. V.

V. RESULTS

In this section, the results from the setup described in
Sec. IV are presented. We will conclude this section with a
discussion of the results.

A. H4

In Fig. 1, we present the ground state calculations us-
ing ADAPT-VQE and FAST-VQE with both importance
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FIG. 1. Convergence of ADAPT-VQE (dashed), HSCI (full), and HG (dotted) with respect to the number of parameters (left), CNOT gates
(middle), and the total number of shots (right) at a given precision of the obtained wave function for a linear H4 chain at 1.5 Å separation
between subsequent atoms. The upper horizontal line corresponds to the HF energy. The blue shaded region corresponds to chemical precision
(1 kcal/mol ≈ 1.59 mhartree).

metrics, HSCI and HG, for a linear chain of H4 in terms
of the error relative to the FCI ground state energy. To
an error of above 10−3 hartree with respect to FCI, the
convergence in terms of the number of operators (param-
eters) added to the Ansatz is very similar for all methods
and numbers of shots per operator evaluation. Beyond that
point, the fastest convergence is observed for the state vector
simulation for ADAPT-VQE closely followed by the state
vector for HSCI and HG and finite shot simulations for
HG. HSCI converges slower for finite shot simulations. The
slowest convergence with the number of operators added is
observed for finite shot simulations for ADAPT-VQE. While
HG calculations with a finite amount of shots are converged
with about 25 parameters to an error of 10−9 hartree, the
precision for finite shot calculations using ADAPT-VQE is
orders of magnitudes lower, at about 10−3 hartree at the same
point.

With respect to the resulting Ansatz depth, we observe that
Ansätze constructed with the order of operators resulting from
state vector simulations using the ADAPT-VQE metric result
in the most compact circuits, followed by HG and HSCI.
Ansätze constructed with finite shot simulations for ADAPT-
VQE are the least compact.

The total amounts of shots for ADAPT-VQE and FAST-
VQE are very different. Both HSCI and HG converge with a
total number of shots about two orders of magnitude lower
than the number of shots required for finite shot simulations
using ADAPT-VQE. HG requires fewer shots to obtain a given
precision compared to HSCI.

B. LiH

Similar observations as for H4 also hold true for the LiH
calculations presented in Fig. 2, even though the overall
convergence is slower. There are some other features to be
observed in the convergence for this system. For example,
the finite shot simulations for ADAPT-VQE with 100 and 500
shots per operator evaluation showed no sign of convergence
and remained on the level of the HF reference state. The
finite shot simulation with 1000 shots per operator evaluation
shows early signs of convergence but is not able to go much
below an energy difference of 10−2 hartree. The ADAPT-VQE
state vector simulation, and all simulations for HG and HSCI
converge to an energy difference of 10−3 hartree at roughly
the same rate; here the HG convergence flattens out, while
the remaining calculations continue to converge at a similar
rate. Beyond the addition of roughly 30 parameters HG gets
a dramatic increase in precision while the other calculations
start flattening out, displaying an unintuitive and seemingly
erratic behavior of convergence. It is notable that HG con-
verges below the ADAPT-VQE state vector simulation.

With respect to Ansatz compactness and the number of
shots required, similar conclusions hold true, displaying the
same overall tendencies as observed for H4 including the
specific features described for the energy evaluation above.

C. Discussion

The dramatic difference in the number of shots between
FAST-VQE and ADAPT-VQE is due to the excessive amount
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FIG. 2. Convergence of ADAPT-VQE (dashed), HSCI (full), and HG (dotted) with respect to the number of parameters (left), CNOT gates
(middle), and the total number of shots (right) at a given precision of the obtained wave function for a linear LiH molecule with 1.5 Å separation
between the atoms. The numbers for the finite shot simulations for ADAPT-VQE with 100 and 500 shots are not shown as the energy remained
on the HF level. The upper horizontal line corresponds to the HF energy. The blue shaded region corresponds to chemical precision (1 kcal/mol
≈ 1.59 mhartree).

of shots necessary to measure the gradients of the operator
pool, A, of ADAPT-VQE. We can write the total amount of
shots as iterations times shots for FAST-VQE whereas for
ADAPT-VQE it reads iterations times shots times |A|. Such
a fact also provides another reason for the slow convergence
of ADAPT-VQE when using a finite amount of shots, as the
evaluation of the gradient in Eq. (3) is prone to sampling error.
In contrast, Eqs. (12) and (11) for HSCI and HG are evaluated
on a classical computer from states that are generated by the
measurement of the energy. However, note that sampling error
also effects HSCI and HG, as these methods are dependent
on a representation of the weights of the determinants in the
current wave function |� (k)〉. For ADAPT-VQE, more precise
measurements of the gradients are required in order to im-
prove convergence, while more precise sampling of the Slater
determinants (diagonal elements of the Hamiltonian) becomes
necessary for FAST-VQE. This is especially important when
the electronic structure becomes more correlated; i.e., when
many determinants are required to describe the chemical sys-
tem accurately, the necessary sampling depth may become a
challenge.

It must also be noted that none of the proposed metrics
for selecting the next operator is optimal and that there is
room for improvement. For example, despite being the overall
most competitive metric, HG seems to select some suboptimal
operators for LiH below 10−3 hartree, yet it converges at an
order of magnitude below the error which the ADAPT-VQE
state vector simulation achieves beyond 60 parameters; HSCI

does not exhibit the same behavior. Additionally, for LiH with
the HSCI metric the finite shot simulations with fewer shots
achieve higher precisions, indicating that this metric does not
capture some important correlations in this particular system.

The results shown here suggest that for practical purposes
the introduced heuristic metrics are good enough, since they
converge at a similar rate as the ADAPT-VQE state vector
simulations using a finite amount of shots. However, the sys-
tems shown here are rather small and the basis sets are limited.
With the two different systems investigated, we have observed
quite different detailed behaviors of convergence with no clear
indication for why the ordering behaves so differently with
different metrics. A better theoretical understanding of the
limits of this method and a more rigorous derivation of metrics
could make the convergence more robust across many systems
and ensure that a similar convergence rate is retained for more
complicated molecules and larger basis sets.

VI. CONCLUSION

In this work, we have presented FAST-VQE, a method
for selecting operators based on the populations of Slater
determinants in the wave function. We have introduced two
different importance metrics HG and HSCI and compared
them to ADAPT-VQE in terms of the convergence to the
FCI ground state energy. As was demonstrated, FAST-VQE
mitigates the significant measurement overhead for ADAPT-
VQE by utilizing information about the population of Slater
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determinants in the wave function, whereas ADAPT-VQE
must evaluate the expectation value of gradient operators. For
infinite shots, ADAPT-VQE provides the most compact wave
function in terms of CNOT gates but with equal amounts of
parameters compared to FAST-VQE. For finite shot simula-
tions, FAST-VQE yields more compact wave functions with
dramatically reduced execution times. Of the two introduced
importance metrics HG converged most rapidly and resulted
in more compact circuits compared to HSCI. However, we
expect that a more systematic construction of importance
metrics may improve the performance and eliminate some
erratic features seen, e.g., for LiH. It remains to be seen how
this method performs on real quantum hardware and in com-
bination with other operator pools and other improvements

available for ADAPT-VQE. This will be the topic of future
investigations.
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