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Closed systems refuting quantum-speed-limit hypotheses
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Many quantum speed limits for isolated systems can be generalized to also apply to closed systems. This
is, for example, the case with the well-known Mandelstam-Tamm quantum speed limit. Margolus and Levitin
derived an equally well-known and ostensibly related quantum speed limit, and it seems to be widely believed
that the Margolus-Levitin quantum speed limit can be similarly generalized to closed systems. However, a
recent geometrical examination of this limit reveals that it differs significantly from most known quantum speed
limits. In this paper, we show that, contrary to the common belief, the Margolus-Levitin quantum speed limit
does not extend to closed systems in an obvious way. More precisely, we show that for every hypothetical
bound of Margolus-Levitin type, there are closed systems that evolve with a conserved normalized expected
energy between states with any given fidelity in a time shorter than the bound. We also show that for isolated
systems, the Mandelstam-Tamm quantum speed limit and a slightly weakened version of this limit that we call
the Bhatia-Davies quantum speed limit always saturate simultaneously. Both of these evolution time estimates
extend straightforwardly to closed systems. We demonstrate that there are closed systems that saturate the
Mandelstam-Tamm but not the Bhatia-Davies quantum speed limit.
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I. INTRODUCTION

Many quantum speed limits (QSLs) for isolated systems
can be generalized to also apply to closed systems [1–3]. By
an isolated system we mean one whose Hamiltonian does not
change over time, while a closed system may have a time-
varying Hamiltonian. The famous Mandelstam-Tamm QSL is
of this kind [4,5]. The Mandelstam-Tamm QSL states that it
takes at least the time

τMT = π

2�H
(1)

for an isolated system to evolve between two fully distin-
guishable states.1,2 Here, �H is the energy uncertainty. More
generally, it takes at least the time

τMT(δ) = arccos
√

δ

�H
(2)
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1“State” will always refer to a pure quantum state, that is, a state
that can be represented by a density operator of rank 1. Two states ρ1

and ρ2 are fully distinguishable if their fidelity vanishes.
2All quantities are expressed in units such that h̄ = 1.

for an isolated system to evolve between two states with
fidelity δ.3 The originators of the estimate τMT(δ) are also
Mandelstam and Tamm, but it was rediscovered and formu-
lated in a more concise way in Ref. [6].

The Mandelstam-Tamm QSL can be extended to closed
systems by replacing the denominator in (2) with the corre-
sponding time average. Thus, the evolution time of a closed
system evolving between two states with fidelity δ is bounded
from below by

τ̄MT(δ) = arccos
√

δ

〈〈�Ht 〉〉 , (3)

with 〈〈�Ht 〉〉 being the time average of the energy uncertainty.
Since the Fubini-Study distance between two states with fi-
delity δ is arccos

√
δ, and the Fubini-Study speed with which

a state evolves is �Ht [5], the Mandelstam-Tamm QSL is sat-
urated if and only if the state follows a Fubini-Study geodesic
in the projective Hilbert space. Mandelstam and Tamm’s QSL
has also been extended to systems in mixed states [7–9].

Margolus and Levitin [10] derived a seemingly similar evo-
lution time estimate. The Margolus-Levitin QSL states that
the time it takes for an isolated system to evolve between two
fully distinguishable states is greater than or equal to

τML = π

2〈H − εmin〉 , (4)

3The fidelity between two states ρ1 and ρ2 is tr(ρ1ρ2).
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where 〈H − εmin〉 is the expected energy 〈H〉 shifted by the
smallest occupied energy εmin.4 The quantity 〈H − εmin〉 is
hereafter referred to as the normalized expected energy. A
more general result states that the time it takes for an isolated
system to evolve between two states with fidelity δ is lower
bounded by

τML(δ) = α(δ)

〈H − εmin〉 , (5)

where

α(δ) = min
z2�δ

{
1 + z

2
arccos

(
2δ − 1 − z2

1 − z2

)}
. (6)

As τMT(δ), the bound τML(δ) is tight, and τML(0) = τML. The
bound τML(δ) was established numerically in Ref. [11] and de-
rived analytically in Ref. [12]. Reference [12] also contains a
geometric interpretation of τML(δ) and a complete description
of the systems that reach the bound.

A natural guess is that the Margolus-Levitin QSL is also
valid for closed systems provided the time average of the
normalized expected energy is placed in the denominator.
More generally, one might expect that there is a QSL for
closed systems of the form L(δ)/〈〈Ht − εmin;t 〉〉 where L is
some non-negative function that depends only on the fidelity
δ between the initial and final states and 〈〈Ht − εmin;t 〉〉 is the
time average of the instantaneous normalized expected en-
ergy.5 It has been argued that one can take L(δ) = arccos

√
δ

[13–15]. However, for 0 < δ < 1, such a hypothetical QSL is
violated by an isolated system that evolves between two states
with fidelity δ in time τML(δ). This is because α(δ) is strictly
smaller than arccos

√
δ for 0 < δ < 1 [11,12]. For δ = 0, such

a hypothetical QSL can be violated by a closed system in the
family of systems constructed in the next section.6 It has also
been argued that one can take L(δ) = sin2(arccos

√
δ)/2 =

(1 − δ)/2 [14]. Nor is that possible as we show below.
The main result of this paper is as follows: For each state

ρ, each fidelity δ, and each positive L(δ), there exists a
time-dependent Hamiltonian Ht that evolves ρ to a state with
fidelity δ relative to ρ in a time less than L(δ)/〈〈Ht − εmin;t 〉〉.
The Hamiltonian can be chosen such that the normalized
expected energy remains fixed at an arbitrary predetermined
value.

Lui et al. [17] used the Bhatia-Davies inequality to trans-
form the Mandelstam-Tamm QSL into an upper bound for
an operationally defined QSL [18]. This upper bound is a
new QSL that we call the Bhatia-Davies QSL, although we
should rightly attribute it to the authors of Ref. [17]. The
Bhatia-Davies QSL states that the time it takes for an isolated
system to evolve between two states with fidelity δ is bounded

4An energy ε is occupied by ρ if 〈ε|ρ|ε〉 > 0 for an energy eigen-
state |ε〉 with eigenvalue ε.

5To be interesting, L in such a hypothetical QSL should satisfy
L(1) = 0 and L(δ) > 0 for 0 � δ < 1.

6Reference [13] has been criticized before [16]. However, the mod-
ified Margolus-Levitin estimate in Ref. [16] is also incorrect because
it is violated by any isolated system that evolves between two states
with fidelity 0 < δ < 1 in time τML(δ) [12].

from below by

τBD(δ) = arccos
√

δ√〈εmax − H〉〈H − εmin〉
, (7)

where εmax is the largest and εmin is the smallest occupied en-
ergy. The Bhatia-Davies QSL also extends straightforwardly
to closed systems:

τ̄BD(δ) = arccos
√

δ

〈〈√〈εmax;t − Ht 〉〈Ht − εmin;t 〉 〉〉 . (8)

The Bhatia-Davies QSL is weaker than that of Mandelstam
and Tamm in the sense that τ̄MT(δ) � τ̄BD(δ) with a strict
inequality in general for both isolated and closed systems. We
show that the Mandelstam-Tamm and the Bhatia-Davies QSLs
are always saturated simultaneously for isolated systems, but
that this need not be the case for closed systems: We give ex-
amples of closed systems that saturate the Mandelstam-Tamm
QSL but not the Bhatia-Davies QSL.

II. TIME-DEPENDENT SYSTEMS THAT DISPROVE
COMMON BELIEF

One obtains a relatively simple type of time-dependent
Hamiltonian if one conjugates a time-independent Hermitian
operator H with a one-parameter group of unitaries generated
by a Hermitian operator A:

Ht = e−iAt HeiAt . (9)

Such a group action will preserve the eigenvalues but rotate
the eigenvectors of H . If a state ρ evolves under the influence
of Ht , that is, if

ρ̇t = −i[Ht , ρt ], ρ0 = ρ, (10)

the state in the rotating frame picture,

ρRF
t = eiAtρt e

−iAt , (11)

evolves as if H − A governs the dynamics:

ρ̇RF
t = −i

[
H − A, ρRF

t

]
, ρRF

0 = ρ. (12)

As a consequence, in the Schrödinger picture,

ρt = e−iAt e−i(H−A)tρei(H−A)t eiAt . (13)

The behavior of ρt can be quite complex even though Ht

has a relatively simple time dependence. However, Eq. (13)
tells us that if the initial state ρ commutes with H − A, the
evolving state will behave as if the time-independent “effec-
tive Hamiltonian” A generates it:

ρt = e−iAtρeiAt . (14)

This observation will be of central importance below.
The eigenvectors of Ht will also evolve with A as an ef-

fective Hamiltonian: If | j〉 is an eigenvector of H with the
eigenvalue ε j , then | j; t〉 = e−iAt | j〉 is an eigenvector of Ht

with the eigenvalue ε j . As a result, the occupations of the
energy levels are constant over time:

〈 j; t |ρt | j; t〉 = 〈 j|ρ| j〉. (15)

This means that the expected energy 〈Ht 〉, the energy un-
certainty �Ht , the normalized expected energy 〈Ht − εmin;t 〉,

052421-2



CLOSED SYSTEMS REFUTING QUANTUM-SPEED-LIMIT … PHYSICAL REVIEW A 108, 052421 (2023)

and the “dual” normalized expected energy 〈εmax;t − Ht 〉 are
conserved quantities; see Refs. [12,19] for a QSL involving
the dual of the normalized expected energy.

Another important fact is that if the initial state ρ sat-
isfies Aρ + ρA = A, the evolving state ρt is a Fubini-Study
geodesic; see Appendix A in Ref. [7]. If such is the case, the
Mandelstam-Tamm QSL is saturated, and the system evolves
between two states with fidelity δ in time τ̄MT(δ). Interestingly,
given any initial state ρ and any Hermitian operator H , there
is an elegant way to construct an A such that [H − A, ρ] = 0
and Aρ + ρA = A: Write ρ = |u〉〈u| and define

A = (H − 〈u|H |u〉)|u〉〈u| + |u〉〈u|(H − 〈u|H |u〉). (16)

In the following, we show how to disprove two hypotheses
about QSLs with appropriate choices of ρ and H , and A
defined as in (16).

A. The nonexistence of a time-dependent Margolus-Levitin QSL

The Mandelstam-Tamm and Margolus-Levitin QSLs tell
us that an isolated system with large energy uncertainty that
evolves along a Fubini-Study geodesic has a correspondingly
large normalized expected energy [12]. Interestingly, this
need not hold for systems with time-dependent Hamiltonians.
Below we give an example of a family of closed systems
evolving along geodesics, whose normalized expected ener-
gies are conserved with an arbitrary common predetermined
value and whose energy uncertainties are conserved and form
an unbounded set.

Fix an E > 0 and consider a quantum system in a state
ρ = |u〉〈u|. Let Hθ be a Hermitian operator, to be specified,
and define Aθ as in Eq. (16):

Aθ = (Hθ − 〈u|Hθ |u〉)|u〉〈u| + |u〉〈u|(Hθ − 〈u|Hθ |u〉). (17)

Furthermore, let Hθ ;t = e−iAθ t HθeiAθ t and let ρθ ;t be the state
at time t generated from ρ by Hθ ;t . Then ρθ ;t is a Fubini-Study
geodesic. To specify Hθ let |v〉 be a unit vector perpendicular
to |u〉 and define the Pauli operators X and Z as

X = |u〉〈u| − |v〉〈v|, (18)

Z = |u〉〈v| + |v〉〈u|. (19)

Let μ(θ ) = E/(1 − cos θ ) for 0 < θ < π , and define

Hθ = μ(θ )(sin θZ − cos θX ). (20)

The largest and the smallest eigenvalues of Hθ , and thus of
Hθ ;t , are μ(θ ) and −μ(θ ), respectively, both of which are oc-
cupied by ρθ ;t . Furthermore, the normalized expected energy
and the energy uncertainty are

〈Hθ ;t − εmin,θ ;t 〉 = μ(θ )(1 − cos θ ) = E , (21)

�Hθ ;t = μ(θ ) sin θ = E cot(θ/2). (22)

The blue graph in Fig. 1 illustrates how the energy uncertainty
depends on θ , and the red graph accentuates that the normal-
ized expected energy does not depend on θ . Note that both
quantities are independent of t .

Next, fix a fidelity 0 � δ < 1 (for δ = 1 there is nothing
to prove), let L(δ) be any positive number representing the

θ

ΔHθ;t

〈Hθ;t − εmin,θ;t〉
E

FIG. 1. Graphs illustrating the dependence of the energy uncer-
tainty (blue) and the normalized expected energy (red) on the angle
θ . The requirement that the normalized expected energy be constant
forces the energy uncertainty to grow toward infinity with decreasing
angle.

numerator in a hypothetical extension of the Margolus-Levitin
QSL, and choose θ such that

cot(θ/2) >
arccos

√
δ

L(δ)
. (23)

Furthermore, let τ (δ) be the first time t the fidelity between
ρθ ;t and ρ is δ.7 Since the state follows a Fubini-Study
geodesic, the Mandelstam-Tamm QSL is saturated: τ (δ) =
τ̄MT(δ). According to Eqs. (21)–(23),

τ (δ) = arccos
√

δ

E cot(θ/2)
<

L(δ)

E
= L(δ)

〈〈Hθ ;t − εmin,θ ;t 〉〉 . (24)

We conclude that for each state ρ and each fidelity δ, there is
a time-dependent Hamiltonian that evolves ρ to a state with
fidelity δ relative to ρ in a time less than a hypothetical QSL
of the form given by the rightmost expression in (24). Thus,
the Margolus-Levitin QSL does not straightforwardly extend
to closed systems.

In Fig. 2 we have represented Hθ , Aθ , and ρ as Rabi and
Bloch vectors relative to X , Y , and Z , with Y = i(|u〉〈v| −
|v〉〈u|). The angle between Hθ and the negative x axis is θ .
As time passes, the state and the Hamiltonian rotate around
the z axis with the same angular speed. Note that ρθ ;t moves
along the equator in the Bloch sphere and thus is a Fubini-
Study geodesic. The dotted vectors represent the state and the
Hamiltonian at a time t > 0.

The purple circle formed by intersecting the Bloch sphere
with a plane perpendicular to the extension of the vector
representing Hθ represents the expected energy level to which
ρ belongs. This circle rotates together with Hθ ;t and always
lies in a plane perpendicular to the vector representing Hθ ;t .
The key observation is that this circle corresponds to the
normalized expected energy E irrespective of the value of
angle θ , and ρθ ;t will evolve together with that circle.

Most initial states will not evolve in such a well-behaved
manner as those located on the x axis of the Bloch sphere. In
Fig. 3 we have drawn the evolution curve of a state not on the

7Since ρθ,t is a geodesic, the fidelity between ρθ,t and ρ will sooner
or later be δ.
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x y

z

θ θ

Aθ

HθHθ;t

ρ ρθ;t

FIG. 2. Rabi and Bloch vector representations of Hθ , Aθ , and
ρ. The vector representing ρ points along the positive x axis, and
the vector representing Hθ makes the angle θ with the negative x
axis. The purple circle represents the expected energy level to which
ρ belongs. As time passes, the state and the Hamiltonian rotate
around the z axis with the same angular velocity. The dashed vectors
represent Hθ ;t and ρθ ;t at a time t > 0. The expected energy level
rotates with the state.

x axis. In the rotating frame picture (12), the evolution curve
forms a circle around the x axis. This is since Hθ − Aθ ∝ X .

B. The Bhatia-Davies QSL

In the previous section, we exploited that for some mem-
bers of a family of closed systems with a common conserved
normalized expected energy, the energy uncertainty is large
enough for the evolution time to violate any hypothetical
straightforward extension of the Margolus-Levitin QSL. For
the systems in the family, we allowed for an arbitrary width
of the energy spectrum. If we require that the spectral width

FIG. 3. An evolution curve starting from a state not on the
equator of the Bloch sphere. Here, θ = 30◦ and E = 1. The left
figure shows the evolution curve in the Schrödinger picture, and
the right figure shows the same curve in the rotating frame picture.
The warmer colors indicate more recent times, and the blue arrow
represents the state at the final time.

does not exceed a given value, the evolution time will be
uniformly bounded from below by a positive constant. This
is because the energy uncertainty cannot exceed the spectral
width.

The Bhatia-Davies inequality [20] provides a tighter bound
on the energy uncertainty than the spectral width. The Bhatia-
Davies inequality states that the variance of any observable B
is bounded from above according to

�2B � 〈bmax − B〉〈B − bmin〉, (25)

with bmax and bmin being the largest and the smallest occu-
pied eigenvalue of B. Consequently, the evolution time of an
isolated system is bounded by τBD(δ) defined in (7), and the
evolution time of a closed system is bounded by τ̄BD(δ) defined
in (8).

Equality holds in the Bhatia-Davies inequality if and only
if the state occupies at most two eigenvalues of B. Since
the state of an isolated system saturating the Mandelstam-
Tamm QSL occupies only two energy levels [7,21], the
Mandelstam-Tamm and Bhatia-Davies QSLs are always satu-
rated simultaneously for isolated systems.

The Mandelstam-Tamm and Bhatia-Davies QSLs gen-
eralize to closed systems as in (3) and (8), respectively,
and a natural guess would be that also these QSLs are al-
ways saturated simultaneously. However, as we will see, a
time-dependent Hamiltonian can evolve a state at a con-
stant speed along a Fubini-Study geodesic in such a way
that the state during the entire evolution occupies more
than two energy levels. Such an evolution will saturate the
Mandelstam-Tamm QSL but not the Bhatia-Davies QSL.
This is because the Bhatia-Davies inequality will be strict
over the entire evolution time interval, which means that the
denominator in (8) is strictly greater than the denominator
in (3).

C. A nonsaturation of the Bhatia-Davies QSL

Let H be a Hermitian operator with at least three distinct
eigenvalues, and let ρ = |u〉〈u| be any state occupying at least
three of those. Define A as in (16), let Ht = e−iAt HeiAt , and let
ρt be the state at time t generated from ρ by Ht . Since [H −
A, ρ] = 0 and Aρ + ρA = A, the system evolves between two
states with fidelity δ in time τ̄MT(δ). Furthermore, according to
(15), ρt always occupies at least three different energy levels.
Therefore,

�2Ht < 〈εmax;t − Ht 〉〈Ht − εmin;t 〉, (26)

and τ̄MT(δ) > τ̄BD(δ). We conclude that the Mandelstam-
Tamm QSL is saturated but not the Bhatia-Davies QSL.

III. SUMMARY

A common view is that the Margolus-Levitin quantum
speed limit extends to an evolution time estimate for closed
systems of the form L(δ)/〈〈Ht − εmin;t 〉〉, where L is a positive
function that depends only on the fidelity δ between the initial
and final states and 〈〈Ht − εmin;t 〉〉 is the time average of the
normalized expected energy. We have shown that this is not
the case. More precisely, for any fidelity δ and any positive
numbers E and L(δ), we have constructed a closed system

052421-4



CLOSED SYSTEMS REFUTING QUANTUM-SPEED-LIMIT … PHYSICAL REVIEW A 108, 052421 (2023)

with a conserved normalized expected energy E that evolves
between two states with fidelity δ in a time strictly less than
L(δ)/E .

We have also considered a QSL for isolated systems called
the Bhatia-Davies QSL. This QSL extends straightforwardly
to closed systems. We have shown that the Bhatia-Davies

and Mandelstam-Tamm QSLs are always simultaneously sat-
urated for isolated systems but that this need not be the case
for closed systems. The state of a closed system that saturates
the Mandelstam-Tamm QSL but not the Bhatia-Davies QSL
must, at some instant, occupy at least three different energy
levels.
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