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Strong quantum entanglement based on two-mode photon-subtracted squeezed vacuum states
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We present a strong quantum entanglement generation protocol based on two-mode photon-subtracted
squeezed vacuum (TMPSSV) states. The generated entanglement shows higher entropy than those based on
quantum catalysis, quantum scissors, photon-subtracted two-mode squeezed vacuum (PSTMSV) states, nonlocal
PSTMSV states, and two-mode squeezed vacuum (TMSV) states in the ideal case. The impacts of experimental
imperfections such as losses in the squeezed vacuum states and detection efficiency of single-photon detectors on
the generated entanglement based on TMPSSV states are analyzed. When practical experimental imperfections
are considered, higher logarithmic negativity than those of ideal PSTMSV states and ideal TMSV states are
obtained for low initial squeezing level. Enhancement factor over 2 is obtained when the entanglement generated
from imperfect non-Gaussian states passes through two lossy quantum channels in low initial squeezing level.
Strong correlation is kept in lossy channels, which shows good robustness of the entanglement generation
protocol based on TMPSSV states.
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I. INTRODUCTION

Quantum entanglement is the nonlocal quantum
correlation between two or more particles at a distance,
which is originated from the Einstein, Podolsky, and Rosen
(EPR) paradox [1]. Such nonlocal correlation has been
created in both discrete and continuous variables (CV),
which have been utilized for the test of Bell inequality
violation [2–4], quantum teleportation [5–7], quantum dense
coding [8,9], quantum computation [10], as well as quantum
sensing [11]. Two-mode squeezed vacuum (TMSV) states are
typical CV entangled states, which have been experimentally
generated by combining two single-mode squeezed vacuum
states with orthogonal squeezed quadratures via a balanced
beam splitter as shown in Fig. 1(a) both in free space and
on chips, and have been applied in quantum teleportation
[7,12]. The performance of CV quantum information systems
is determined by the quantum correlation between entangled
particles. However, entanglement is easily degraded due to
the decoherence caused by the losses in the communication
channels or the storage system. Therefore, the generation
of entanglement with strong quantum correlation and
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robustness to losses is demanding. Various methods have been
proposed to improve the quantum correlation of entangled
pairs, including noiseless linear amplification [13,14],
symmetric photon subtraction from two-mode squeezed
vacuum (PSTMSV) states [15–17] as shown in Fig. 1(a),
non-Gaussian operation on entangled modes generated from
a squeezed vacuum state and a vacuum state [18], quantum
catalysis as a special case of Fig. 1(a) [19], quantum scissors
as shown in Fig. 1(b) [20], nonlocal single-photon subtraction
from a TMSV (nonlocal PSTMSV) as illustrated in Fig. 1(c)
[21], and so on. Entropy and logarithmic negativity are typical
figures of merit to evaluate pure and mixed entangled states,
respectively [17,20,22,23]. Entanglement enhancement with
a factor less than 2 was reported based on non-Gaussian
operation such as photon subtraction on entangled two-mode
squeezed vacuum states (i.e., PSTMSV) reported in
Ref. [17]. Quantum scissors and quantum catalysis generated
entanglement with higher entropy than those based on both
PSTMSV and TMSV [20]. In addition, free-propagating
distilled EPR states based on noiseless linear amplification
are generated with an ancilla photon [14], which demonstrated
that the logarithmic negativity in a lossy channel is about five
times that of TMSV. However, ancilla photons are required
in quantum catalysis, quantum scissors, and noiseless linear
amplification, which makes the system quite complicated.

Different from PSTMSV and nonlocal PSTMSV as shown
in Figs. 1(a) and 1(c), in this work we present a protocol
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FIG. 1. Schematic diagram of entanglement generation based on
(a) TMSV, PSTMSV (l1 = l2 = 0 and k1 = k2 = 1), and quantum
catalysis (l1 = k1 and l2 = k2); (b) quantum scissors; and (c) nonlocal
PSTMSV. BS: beam splitter; PND: photon-number detector; APD:
avalanche photodiode.

to generate entanglement with two-mode photon-subtracted
squeezed vacuum (TMPSSV) states as shown in Fig. 2, in
which photons are subtracted from single-mode squeezed
vacuum states before the entanglement is generated. The
performance of the scheme is compared with entanglement
improvement based on quantum scissors, PSTMSV, nonlocal
PSTMSV, and TMSV in terms of entropy. In the meanwhile,
mixed entanglement produced via TMPSSV with experimen-
tal imperfections is evaluated with logarithmic negativity and
compared with that based on PSTMSV and TMSV.

The paper is organized as follows. In Sec. II, a general
model for entanglement generation based on TMPSSV is
developed. The impacts of losses in squeezed vacuum states,
detection inefficiency, and loss in communication channels are

FIG. 2. Schematic diagram of entanglement generation based on
TMPSSV. BS: beam splitter; PND: photon-number detector.

investigated and the performance of the protocol is compared
with other schemes in Sec. III. A conclusion is provided in
Sec. IV.

II. PROTOCOL FOR ENTANGLEMENT GENERATION
BASED ON TMPSSV

A. General model of entanglement generation based
on TMPSSV

Non-Gaussian states including Schrödinger cat states
are important resources in quantum information process-
ing, which have been successfully generated via photon
subtraction from squeezed vacuum states [7,24–26]. We
have developed a general model of l-photon-added and k-
photon-subtracted squeezed vacuum states in Ref. [27]. As
shown in Fig. 2, two non-Gaussian states are generated with
li-photon-added and ki-photon-subtracted squeezed vacuum
states, S|0〉i, with i = 1, 2. After combining the generated two
non-Gaussian states with BS3, an entangled TMPSSV state is
derived with tensor operation [28–31], which can be written
as [27]

|�E 〉 =
∞∑

n1=0

∞∑
n2=0

γn1, �1k1γn2, �2k2

2n1+�1−k1∑
j=0

2n2+�2−k2∑
l=0

γn1,n2, j,l | j + l〉1|2n1 + �1 − k1 + 2n2 + �2 − k2 − j − l〉2, (1)

where

γni, liki = α2ni√
li!(2ni )!

min(ki,2ni )∑
j=max(ki−li,0)

(
li

li − ki + j

)(
2ni

2ni − j

)√
ki!(2ni + li − ki )!(−1) jT 2ni+ki−2 j

i Rli−ki+2 j
i , (2)

γn1,n2, j,l �
(−1)lT 2n2+�2−k2+ j−l

3 R2n1+�1−k1− j+l
3√

(2n1 + �1 − k1)!(2n2 + �2 − k2)!

(
2n1 + �1 − k1

j

)(
2n2 + �2 − k2

l

)

×
√

( j + l )!(2n1 + �1 − k1 + 2n2 + �2 − k2 − j − l )!, (3)

α2ni = 1√
cosh ξi

√
(2ni )!einθi tanhni ξi

2ni ni!
, (4)

where i = 1, 2, and ξi and θi are the squeezing parameter and squeezed angle of the input squeezed vacuum state S|0〉i. In-phase
and out-of-phase squeezed vacuum states can be obtained with θ1 − θ2 = 0 and θ1 − θ2 = π

2 , respectively, which lead to in-phase
and out-of-phase non-Gaussian states. Tj and Rj with j = 1, 2, 3 are the amplitude transmission and reflectivity of BS j with
T 2

j + R2
j = 1.
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B. Figures of merit of entanglement

Both the von Neumann entropy and the logarithmic neg-
ativity are monotone measures of entanglement [22,23].
Entropy is usually used to quantify the entanglement of pure
states, while logarithmic negativity is an effective figure of
merit for both pure and mixed entanglement. In an ideal
case, pure entanglement could be generated. However, ex-
perimental imperfections in entanglement generation have
to be considered in practice, which results in mixed entan-
gled states. Entropy and/or logarithmic negativity are used
to quantify the generated entangled states in the reported
works [15–20]. To facilitate the comparison of entanglement
generated from different schemes, we use both entropy and
logarithmic negativity in this work.

1. Entropy for pure entangled states

For a pure two-mode state in Schmidt form, |�AB〉 =∑
n cn|an〉A|bn〉B, the von Neumann entropy is defined as

[18,32]

E = −Tr(ρAlog2ρA)

= −Tr(ρBlog2ρB)

= −
∑

n

c2
n log2 c2

n, (5)

where ρA = TrB(ρAB) = ∑
n c2

n|an〉〈an|, ρB = TrA(ρAB) =∑
n c2

n|bn〉〈bn|, and ρAB = |�AB〉〈�AB|. In terms of
TMSV, the von Neumann entropy can be derived as [20]
ETMSV = cosh2ξ log2 cosh2ξ − sinh2ξ log2 sinh2ξ , where
ξ is the initial squeezing parameter. The entropy of the
quantum entangled state shown in Eq. (1) can be obtained
based on Eq. (5) with ρAB = |�E 〉〈�E |. When l1 = l2 = 0 and
k1 = k2 = 1 in Fig. 2, i.e., when one photon is subtracted from
each of these two single-mode squeezed vacuum states, two
non-Gaussian states (also called Schrödinger kitten states)
are obtained. Combining these non-Gaussian states with
BS3, a TMPSSV state is produced, in which the two modes
are entangled. The entropy variation of the entangled states
generated via TMPSSV, a quantum scissor, and TMSV are
shown in Fig. 3 when the squeezing parameter ξ = 0.10 (i.e.,
−0.87 dB), ξ = 0.40 (i.e., −3.47 dB), and ξ = 0.70 (i.e.,
−6.08 dB). The transmissions of BS3 in TMSV, PSTMSV,
and TMPSSV are all denoted as T3 as shown in Figs. 1(a) and
2, while T3 = T4 in the case of quantum scissors in Fig. 1(b).
According to Eq. (1), when the initial squeezing is weak, two
kitten states are equivalent to two single photons. Thus, we
can obtain a qutrit state described as

|�E 〉 =
√

2T3R3(|02〉 − e−2iφ |20〉)

+ (
T 2

3 − R2
3

)
e−iφ |11〉 + o(ξ ), (6)

where φ is the phase difference between two non-Gaussian
states. The maximum qutrit entangled state, |02〉 + |20〉 +
|11〉, with an entropy over 1 will be obtained when all coeffi-
cients have the same magnitude, which requires T3 to satisfy√

2T3

√
1 − T 2

3 = 2T 2
3 − 1, i.e., T 2

3 = 0.21 or T 2
3 = 0.79. As

shown in Fig. 3(a), the transmission of BS3 for both in-phase
and out-of-phase Schrödinger kitten states is optimized at
T 2

3 = 0.21 and T 2
3 = 0.79 with the maximum entropy, which

well matches the prediction in theory; while in the case of
quantum scissors, only the maximum entangled qubit state
|01〉 + |10〉 is possibly generated, thus its entropy cannot go
beyond 1 even with optimized parameters.

With the increase of the initial squeezing, similar to TMSV,
T 2

3 is optimized at T 2
3 = 0.5 for the scheme with two out-

of-phase Schrödinger kitten states, while the optimization of
T 2

3 = 0.21 and 0.79 is obtained in the case of in-phase kitten
states. Thus, comparing with TMSV, TMPSSV shows bet-
ter flexibility to generate strong entanglement with an extra
degree of freedom. In addition, when the initial squeezing
is increased, the scheme with two out-of-phase Schrödinger
kitten states outperforms that of two in-phase Schrödinger
kitten states, quantum scissors, and TMSV. As out-of-phase
kitten states haver better performance than the in-phase case
when the initial squeezing is increased, we will focus on the
entanglement generation based on out-of-phase non-Gaussian
states in the following discussion.

Figure 4 shows the variation of entropy with the initial
squeezing parameter ξ for different schemes, TMPSSV, quan-
tum scissors, PSTMSV, nonlocal PSTMSV, and TMSV. The
pink line describes the case of TMPSSV with two out-of-
phase kitten states and T 2

3 = 0.50. The blue crosses and red
squares represent the quantum scissors shown in Fig. 2 with
the optimized transmission of BS3 and BS4 of T 2

3 = T 2
4 = T 2

and T 2
3 = T 2

4 = T 2 = 0.80 for each initial squeezing parame-
ter ξ , respectively. The purple squares, orange plus, and green
dot-dashed line denote the scheme of PSTMSV, nonlocal
PSTMSV, and TMSV, respectively. The energy transmission
of the beam splitters, BS1 and BS2, for single-photon subtrac-
tion in PSTMSV and nonlocal PSTMSV shown in Figs. 1(a)
and 1(c) are taken as T 2

1 = T 2
2 = 0.95. It can be seen that

entanglement generated from TMPSSV with two out-of-phase
kitten states has higher entropy than those generated from
quantum scissors, quantum catalysis (shown in Ref. [20]),
and TMSV in the full range of the initial squeezing ξ ∈
(0, 1] since a higher dimensional quantum state with larger
maximum entanglement could be generated in TMPSSV as
indicated by Eq. (6). When ξ � 0.32 (i.e., −2.78 dB), non-
local PSTMSV has larger entropy than PSTMSV. Whereas
when ξ � 0.60 (i.e., −5.30 dB), TMPSSV with two out-of-
phase kitten states performs better than PSTMSV. Therefore,
the entanglement generated from TMPSSV shown in Fig. 2
outperforms nonlocal PSTMSV, quantum catalysis, quantum
scissors, PSTMSV, and TMSV. In particular, when the ini-
tial squeezing is extremely weak, Schrödinger kitten states
generated from single-photon subtracted squeezed vacuum
states approach single-photon states. When such two sin-
gle photons are combined by BS3 with T 2 = 0.50, the
generated entangled state approaches a Bell state with max-
imum entanglement |02〉+|20〉√

2
due to the Hong-Ou-Mandel

effect. A Bell state of |01〉−|10〉√
2

can be obtained in the case
of nonlocal PSTMSV, which causes the same entropy with
TMPSSV; while only vacuum modes are available in the
case of TMSV and PSTMSV. With the increase of the initial
squeezing level, a qutrit state indicated by Eq. (6) is generated,
which leads to higher entropy than that of nonlocal PSTMSV
and TMPSSV. Therefore, the entanglement generation based
TMPSSV shown in Fig. 2 implies stronger quantum
correlation than other schemes.
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FIG. 3. Variation of entropy with T 2
3 in TMPSSV with in-phase and out-of-phase kitten states and quantum scissor with different squeezing

parameters (a) ξ = 0.10, (b) ξ = 0.40, and (c) ξ = 0.70.
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FIG. 4. Comparison of entropy in different schemes.

It is worth noting that conditional measurement is in-
volved in nonlocal PSTMSV, PSTMSV, and TMPSSV for
single-photon subtraction. Success probabilities (in logarith-
mic scale) of entanglement based on nonlocal PSTMSV,
PSTMSV, and TMPSSV are shown in Fig. 5. Nonlocal
PSTMSV shows the highest success probability since only
one photon is subtracted from two correlated modes; while
in the cases of two single-photon subtraction on both modes,
PSTMSV shows a higher success probability than that of
TMPSSV because two single photons are subtracted from two
correlated modes of TMSV in PSTMSV. It is indicated that
the single-photon subtraction order causes a difference in the
success probability of entanglement generation. Although the
success probability of TMPSSV is relatively lower, a stronger
correlation between two parties can be achieved, which is very
critical to enhance the performance of a quantum information
system. In addition, compared with the schemes of nonlocal
PSTMSV and PSTMSV with a fixed T 2

3 = 0.50, an extra
degree of freedom, i.e., a variable T3, is available to achieve
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higher entanglement in TMPSSV for lower initial squeezing
as shown in Fig. 3(a).

2. Logarithmic negativity

Logarithmic negativity of a bipartite state ρAB is defined as
[22]

EN = log2 ‖ρPT
AB‖, (7)

where ρPT
AB is the partial transpose of the bipartite, and

‖ρPT
AB‖ = Tr[

√
ρPT

AB ∗ ρ
PT †
AB ] is the trace norm of the par-

tial transpose of ρAB. For a pure entanglement generated
from TMSV, the logarithmic negativity can be derived as
[17]

ETMSV
N = log2

[
1 + λ

1 − λ

]
, (8)

where λ = tanh ξ with ξ being the squeezing parameter. In
terms of PSTMSV, i.e., symmetrically subtracted one photon
from each mode of TMSV, the logarithmic negativity is de-
rived as [33]

EPSTMSV
N = 2 log2

[
1 + λT

1 − λT

√
1 − λ2T 2

1 + λ2T 2

]
. (9)

3. Logarithmic negativity of entanglement generated
from TMPSSV

To generalize the model of entanglement based on
TMPSSV shown in Fig. 2, two input non-Gaussian states can
be written as

ρ1 =
∞∑

m,n=0

αmn|m〉〈n|, ρ2 =
∞∑

p,q=0

βpq|p〉〈q|, (10)

and the density matrix of the generated entangled state after
BS3 can be described as [27]

ρAB =
∞∑

m,p=0

∞∑
n,q=0

αmnβpq√
m!n!p!q!

m∑
j1=0

p∑
i1=0

n∑
j2=0

q∑
i2=0

(
m

j1

)(
p

i1

)(
n

j2

)(
q

i2

)
(−1)i1+i2 T p+q+ j1+ j2−i1−i2

3 Rm+n+i1+i2− j1− j2
3

×
√

( j1 + i1)!( j2 + i2)!(m + p − j1 − i1)!(n + q − j2 − i2)!| j1 + i1〉|m + p − j1 − i1〉〈n + q − j2 − i2|〈 j2 + i2|.
(11)

The partial transpose of ρAB is derived as

ρPT
AB =

∞∑
m,p=0

∞∑
n,q=0

αmnβpq√
m!n!p!q!

m∑
j1=0

p∑
i1=0

n∑
j2=0

q∑
i2=0

(
m

j1

)(
p

i1

)(
n

j2

)(
q

i2

)
(−1)i1+i2 T p+q+ j1+ j2−i1−i2

3 Rm+n+i1+i2− j1− j2
3

×
√

( j1 + i1)!( j2 + i2)!(m + p − j1 − i1)!(n + q − j2 − i2)!| j2 + i2〉A〈 j1 + i1| ⊗ |m + p − j1 − i1〉B〈n + q − j2 − i2|.
(12)

According to Refs. [22,34], the trace norm is simply the sum
of the absolute value of eigenvalues of ρPT

AB since ρPT
AB is Hermi-

tian. Therefore, the logarithmic negativity of the entanglement
generated from TMPSSV can be numerically obtained.

Figure 6 compares the logarithmic negativity of the entan-
glement generated from single-photon-subtracted squeezed
vacuum states (l1 = l2 = 0, k1 = k2 = 1), single-photon-
added squeezed vacuum states (l1 = l2 = 1, k1 = k2 = 0),
single-photon-added and two-photon-subtracted squeezed
vacuum states (i.e., l1 = l2 = 1, k1 = k2 = 2), two-photon-
added and one-photon-subtracted squeezed vacuum states
(i.e., l1 = l2 = 2, k1 = k2 = 1), as well as single-photon-
added and single-photon-subtracted squeezed vacuum states
(i.e., l1 = l2 = 1 and k1 = k2 = 1) with those generated from

PSTMSV and TMSV. It indicated that the first four schemes
perform better than both PSTMSV and TMSV in lower
initial squeezing. Single-photon addition (i.e., l1 = l2 = 1
and k1 = k2 = 0 indicated by a pink line) and single-photon
subtraction (i.e., l1 = l2 = 0 and k1 = k2 = 1 described by
a dashed blue line) from squeezed vacuum states lead
to equivalent entanglement, since both generate squeezed
single-photon states [35]; while the logarithmic negativity
of entanglement generated from two-photon-added and one-
photon-subtracted squeezed vacuum states (i.e., l1 = l2 =
2, k1 = k2 = 1 denoted by diamond symbols) is higher
than that from one-photon-added and two-photon-subtracted
squeezed vacuum states (i.e., l1 = l2 = 1, k1 = k2 = 2 indi-
cated by square symbols). In addition, single-photon-added
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FIG. 6. Logarithmic negativity of entanglement generated from
different schemes.

and single-photon-subtracted (i.e., l1 = l2 = 1 and k1 = k2 =
1 described by circle symbols) squeezed vacuum states are
equivalent to the quantum catalysis operation on two single-
mode squeezed vacuum states, which has lower logarithmic
negativity than that of PSTMSV and TMSV. It implied that
quantum catalysis on each mode of TMSV is helpful to en-
hance entanglement, while such operation on two single-mode
squeezed vacuum states before an entanglement is generated
does not work. It is noticed that the entanglement generated
with photon addition (i.e., li 
= 0, i = 1 and 2) does not show
better performance with more complicated operation. There-
fore, it will help us to select a good-quality entanglement
generation scheme with simpler non-Gaussian operation,
i.e., single-photon-subtracted operation on squeezed vacuum
states, i.e., l1 = l2 = 0, k1 = k2 = 1. This is quite helpful to
construct the experimental setup in practice.

Furthermore, the enhancement factor, defined as the ratio
between the logarithmic negativity of entanglement generated
from two kitten states (i.e., l1 = l2 = 0 and k1 = k2 = 1) and
TMSV, is shown in Fig. 6 via the orange dotted line with circle
symbols. It indicates that an enhancement factor over 2 can be
obtained when ξ < 0.34 (i.e., −2.95 dB), which breaks the
factor limit of 2 in PSTMSV mentioned in Ref. [14]. In addi-
tion, the lower the initial squeezing, the higher enhancement
factor in entanglement generated from TMPSSV.

According to the examination of the photon addition and
subtraction operation on two single-mode squeezed vacuum
states in TMPSSV, we concluded that photon subtraction
(i.e., l1 = l2 = 0 and k1 = k2 
= 0) has better performance in
producing entanglement in TMPSSV. Thus, we will stick to
photon-subtracted squeezed vacuum states in the following.
Besides single-photon-subtracted squeezed vacuum states,
the non-Gaussian states shown in Fig. 2 can also be gen-
erated by subtracting multiple photons such as k1 = k2 >

1. The logarithmic negativity of entangled states generated
from symmetric non-Gaussian states, i.e., l1 = l2 = 0 and
k1 = k2 = 1, 2, 3, 4, are shown in Fig. 7 and compared with
those generated from PSTMSV and TMSV. Figure 7 implies
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FIG. 7. Comparison of logarithmic negativity in different schemes.

that entanglement generated from non-Gaussian states has
higher logarithmic negativity than TMSV in the whole range
of squeezing parameters. When ξ � 0.59 (i.e., −5.12 dB),
single-photon subtraction on two single-mode squeezed vac-
uum states (TMPSSV with l1 = l2 = 0 and k1 = k2 = 1)
shows better performance than single-photon subtraction from
TMSV, i.e., PSTMSV. In addition, with the increase of sub-
tracted photon number, the enhancement of entanglement
becomes more significant. Odd-photon subtractions, e.g.,
k1 = k2 = 1 and 3, demonstrate better performance in the
lower initial squeezing region, while even-photon subtrac-
tions, e.g., k1 = k2 = 2 and 4, outperform in the higher initial
squeezing region. However, the more photons are subtracted,
the more complicated the experimental setup. Therefore, as a
typical example, we will focus on l1 = l2 = 0 and k1 = k2 = 1
in the following discussions.

III. IMPACTS OF EXPERIMENTAL IMPERFECTIONS

Similar to Schrödinger kitten states generation [36], when
a non-Gaussian state is generated based on k-photon subtrac-
tion from a squeezed vacuum state, S|0〉, the experimental
imperfections including loss in squeezed vacuum states,
photon-number-resolving ability, detection inefficiency, and
dark counts of photon-number detectors will degrade the
purity of the non-Gaussian states. As a result, mixed
non-Gaussian states are produced, which will affect the en-
tanglement generated in the subsequent step shown in Fig. 2.
In addition, the loss in communication channels will degrade
the entanglement further. Therefore, all imperfections should
be considered to investigate the feasibility of the entangle-
ment generation based on TMPSSV. Fortunately, the rapid
development of photon-number detection techniques offers a
solution to the problem of photon-number-resolving ability.
Furthermore, the dark counts could be decreased to be negli-
gible, and detection efficiency as high as 98% is achievable
in superconducting transition-edge sensors (TESs) [27,37].
Without loss of generality, we will consider the loss in two
squeezed vacuum states, γi (i = 1, 2), single-photon detection
efficiency, ηSPDi (i = 1, 2), and losses in both communication
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FIG. 8. Schematic diagram of entanglement generation based on
TMPSSV. BS: beam splitter; SPD: single-photon detector.

channels, γ3 and γ4. Losses in both squeezed vacuum states
and communication channels, γi (i = 1, 2, 3, 4), can be equiv-
alent to the energy reflectivity of imaginary beam splitters as
shown in Fig. 8. We will discuss the impact of γi (i = 1, 2) and

ηSPD first. Then the impact of the losses in the communication
channels, γ3 and γ4, will be analyzed.

A. Impact of the loss in squeezed vacuum states and the
detection efficiency of single-photon detector

In this part, we will analyze the impact of losses in the
initial squeezed vacuum states, γi (i = 1, 2), and the detection
efficiency of single-photon detectors for single-photon sub-
traction, ηSPDi (i = 1, 2). According to the model developed
in Ref. [27], the loss of squeezed vacuum states, γi, and the
detection efficiency of a single-photon detector (SPD), ηSPDi

(i = 1, 2), result in mixed non-Gaussian states, which can be
represented by ρ1 and ρ2. Then the entangled state output from
BS3 is derived as Eq. (11) [27]. As a result, the logarithmic
negativity of the entanglement generated from the scheme
shown in Fig. 8 can be obtained based on the partial transpose
derived in Eq. (12).

Figure 9 indicates the variation of the logarithmic negativ-
ity as a function of T3 with the initial squeezing parameter
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ξ when γ1 = γ2 = 0.01 and ηSPD1 = ηSPD2 = η = 0.98. As
expected, the logarithmic negativity in both in-phase and
out-of-phase kitten states is decreased. When ξ = 0.10, the
transmission of BS3 is optimized at T 2

3 = 0.22 and T 2
3 =

0.78 as shown in Fig. 9(a), which is slightly different from
the perfect case. With the increase of the initial squeezing,
T 2

3 is optimized as T 2
3 = 0.50 for out-of-phase kitten states

when ξ = 0.40 and ξ = 0.70 as indicated in Figs. 9(b) and
9(c); while the experimental imperfections do not change the
optimized value of T 2

3 for two in-phase kitten states in the
full range of initial squeezing levels. Therefore, T 2

3 = 0.50
is utilized in the entanglement generation based on non-
Gaussian states in the following discussion. The impact of
loss in the initial squeezed vacuum states, γ1 = γ2 = γ , and
the detection efficiency, ηSPD1 = ηSPD2 = ηSPD, are analyzed
as shown in Fig. 10. When ξ = 0.346 (i.e., −3.00 dB) and
γ = 0.05, the logarithmic negativity of entanglement gener-
ated from imperfect non-Gaussian states is larger than both
ideal PSTMSV and TMSV as long as ηSPD � 0.18 as shown
in Fig. 10(a). Comparing with the influence of the loss in the
initial squeezing shown in Fig. 10(b), the influence of single-
photon detection efficiency on the logarithmic negativity is
quite weak. In practice, a TES with detection efficiency over
0.90 is commercially available [37]. Thus, the impact of the
detection efficiency of single-photon detectors could be com-
pensated. When ξ = 0.40 (i.e., −3.47 dB), ηSPD = 0.90, the
initial squeezing loss, γ � 0.05, is required to keep the loga-
rithmic negativity of entanglement generated from imperfect
non-Gaussian states larger than those of ideal PSTMSV and
TMSV as shown in Fig. 10(b). The loss of squeezed vacuum
states could be controlled as low as γ � 0.05 in experiments
at both 860 and 1550 nm [38,39], which facilitates the imple-
mentation of the protocol in practice.

Figure 11 shows the variation of logarithmic negativity
of entanglement with the initial squeezing parameter ξ . The
purple asterisk and violet circles represent entanglement
generated from TMPSSV with two imperfect kitten states of
γ = 0.01, ηSPD = 0.90 as well as γ = 0.03, ηSPD = 0.45,
respectively. The pink line, orange cross, dotted blue line,

and dash-dotted green line describe the logarithmic negativity
of entanglement generated from perfect TMPSSV, perfect
nonlocal PSTMSV, perfect PSTMSV, and perfect TMSV.
It implies that when γ = 0.01, ηSPD = 0.90, entanglement
based on TMPSSV outperforms ideal nonlocal PSTMSV and
TMSV in the whole range of ξ ∈ (0, 1] and performs better
than PSTMSV as long as ξ � 0.51 (i.e., −4.43 dB). In a
more realistic case, i.e., γ = 0.03, ηSPD = 0.45, TMPSSV
shows stronger entanglement than ideal TMSV, ideal
nonlocal PSTMSV, and ideal PSTMSV when ξ � 0.85
(i.e., −7.38 dB), ξ � 0.70 (i.e., −6.08 dB), and ξ � 0.40
(i.e., −3.47 dB), which indicates the good robustness and
feasibility of TMPSSV.

B. Losses in the communication channels

With the influence of experimental imperfections in
TMPSSV, the generated entanglement state is a mixed
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rather than a pure state. Without loss of generality, the
case of an impure entanglement state, denoted by ρAB =∑

m,n, j,k=0 cmn jk|m, n〉〈 j, k|, is considered. Loss in a channel is
equivalent to the reflectivity coefficient of an imaginary beam

splitter as shown in Fig. 8, in which γ3 and γ4 are the loss of
the channel for particle A and B, respectively. After passing
through lossy channels, the density matrix of the entangled
state is derived as

ρoutloss E =
∑
m,n

∑
j,k

min(m,k)∑
j1=0

min(n, j)∑
j2=0

cmn jk

√(
m

j1

)(
n

j2

)(
j

j2

)(
k

j1

)
(1 − γ3)(m+k−2 j1 )/2

× γ
j1

3 (1 − γ4)(n+ j−2 j2 )/2γ
j2

4 |m − j1〉A〈k − j1| ⊗ |n − j2〉B〈 j − j2|. (13)

The partial transpose of ρoutloss E can be derived as

ρPT
outloss E =

∑
m,n

∑
j,k

min(m,k)∑
j1=0

min(n, j)∑
j2=0

cmn jk

√(
m

j1

)(
n

j2

)(
j

j2

)(
k

j1

)
(1 − γ3)(m+k−2 j1 )/2

× γ
j1

3 (1 − γ4)(n+ j−2 j2 )/2γ
j2

4 |k − j1〉A〈m − j1| ⊗ |n − j2〉B〈 j − j2|. (14)

Therefore, the logarithmic negativity of the entanglement
through two lossy channels can be analyzed. When the
losses of the communication channels are γ3 = γ4 = 0.05,
degradations in the logarithmic negativity for entanglement
generated from two imperfect kitten states with γ1 = γ2 =
0.03 and ηSPD1 = ηSPD2 = 0.45 are compared with that of
ideal PSTMSV and imperfect TMSV as shown in Fig. 12.
It is indicated that imperfect TMPSSV propagating in lossy
channels has higher logarithmic negativity than that of an
ideal PSTMSV traveling in lossless communication channels
when ξ � 0.40 (i.e., −3.47 dB). Furthermore, when ξ � 0.90
(i.e., −7.82 dB), TMSV shows a stronger correlation than that
of TMSV when both experimental imperfections and losses in
channels are considered.

In addition, the enhancement factors defined as the ratio
between the generated entanglement based on non-Gaussian
states and TMSV in a lossless/lossy channel are investigated
as shown in the right y axis of Fig. 12. The enhancement
factor of 2 can be obtained when ξ < 0.30 (i.e., −2.61 dB)
in both loss and lossless communication channels. The lower
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the initial squeezing the higher enhancement factor, which re-
veals a stronger correlation between entangled particles based
on TMPSSV. Therefore, TMPSSV provides an approach to
generate high-quality quantum resource for long-distance
communication.

IV. CONCLUSION

In conclusion, a protocol to generating an entangled
state based on TMPSSV is proposed and evaluated. Two
non-Gaussian states produced from l-photon-added and k-
photon-subtracted squeezed vacuum states are combined with
a beam splitter. Two-mode non-Gaussian entanglement with
stronger nonlocal quantum correlation than that from quantum
scissors, quantum catalysis, nonlocal PSTMSV, PSTMSV,
and TMSV is predicted when l = 0 and k = 1, i.e., the non-
Gaussian states are Schrödinger kitten states in the case of
a balanced BS3, i.e., T 2

3 = 0.50. In addition, much stronger
entanglement can be achieved in TMPSSV when T 2

3 = 0.21 in
lower initial squeezing levels, which indicates that TMPSSV
is more flexible with an extra degree of freedom T3 than
PSTSMV, nonlocal PSTMSV, and TMSV since T 2

3 = 0.50 is
required in all these schemes. A general model embedding
experimental imperfections in the Schrödinger kitten states
generation and lossy channels during the propagation of the
entangled state is developed. Entanglement generated from
TMPSSV shows stronger entanglement than an ideal nonlocal
PSTMSV, PSTMSV, and TMSV when all imperfections are
considered, including losses in the initial squeezed vacuum
states, detection inefficiency of single-photon detectors, and
losses in the quantum channels.

Therefore, the protocol provides a quantum resource with
stronger nonlocal correlation for quantum information pro-
cessing, in particular long-distance quantum communication
and quantum metrology.
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