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In pursuit of enhancing the prediction capabilities of neural networks, it has been a longstanding objective
to create datasets encompassing a diverse array of samples. The purpose is to broaden the horizons of the
neural network and continually strive for improved prediction accuracy during the training process, which
serves as the ultimate evaluation metric. However, in this paper, we explore an intriguing avenue for enhancing
algorithm effectiveness through exploiting the knowledge blindness of the neural network. Our approach centers
around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double
quantum dot system, a system characterized by highly constrained control degrees of freedom. We artificially
define the characteristics of local optima in the state preparation task. When the optimization falls into a local
optimum, disturbances are introduced through stochastic prediction, which gives a chance to escape from the
local optimum. Notably, unlike previous methodologies that employ reinforcement learning to identify pulse
patterns, we adopt a training approach akin to supervised learning, using it to dynamically design the pulse
sequence. This approach has broad applicability and improves the efficiency of the algorithm.
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I. INTRODUCTION

Quantum optimal control, which refers to the design of
the external field shapes in quantum dynamical processes
for given tasks in the best way possible, has become one
of the cornerstones for current quantum technologies [1,2].
The physical platform includes nuclear magnetic resonance
experiments [3], captured ions [4,5], superconducting qubits
[6,7], nitrogen-vacancy centers [8], and semiconductor quan-
tum dots [9–15]. Among these, spin qubits in semiconductor
quantum dots show promise due to their scalability and long
coherence times [16–22]. The singlet-triplet (S-T0) qubit,
which is encoded in the singlet-triplet spin subspace of two
electrons trapped in a double quantum dot (DQD), is widely
used. The advantage over other qubit candidates includes fast
qubit operation and independence from uniform fluctuations
in the magnetic field, allowing for complete control by elec-
trical pulses [23–26].

Universal quantum computing relies on precise single-
qubit rotations around different axes of the Bloch sphere and
two-qubit gates capable of performing entanglement [27]. Ef-
ficient and precise quantum gate control constructed by deep
reinforcement learning (RL) has been investigated [28], which
involves executing gates within the constraints of platforms
and mitigating errors during execution [29]. In the case of
singlet-triplet spin qubits in semiconductor DQDs, fast elec-
trical control of the exchange coupling is necessary for precise
control of the rotation rate around the z axis of the Bloch
sphere [30]. The quantum state preparation (QSP) algorithm
is commonly employed as a subroutine for various tasks. In
particular, Refs. [31,32] utilize QSP to implement general
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quantum measurements on quantum systems and to simulate
noisy quantum channels, respectively.

Typically, performing an arbitrary quantum spin gate
requires numerically solving a set of coupled nonlinear equa-
tions to determine a composite pulse sequence [23,29,30],
which is resource and time consuming. Machine learning, a
field born out of artificial intelligence, enables the analysis
of vast amounts of data beyond human ability or previously
imagined methods of enumeration [33,34], and has shown
wide applicability on quantum control [35–44]. It is now an
active research area and has demonstrated great success in
solving lots of physical problems [45–48]. Reference [33]
uses the supervised learning algorithm to design pulse se-
quences that closely match solutions of nonlinear equations.
However, in practice complex pulse shapes and lengthy execu-
tion times limit the application [49]. RL, one of the subfields
of machine learning, has also been used to solve various quan-
tum optimal control problems [50,51]. References [49,52]
utilize deep RL [28,37,41,42] to design discrete dynamic
pulses for driving an initial state to a fixed state or resetting
an arbitrary quantum state to a specific target state. In addi-
tion, deep RL has successfully generated arbitrary states from
specific states in nitrogen-vacancy center systems [53]. By
combining Refs. [52,53], driving between arbitrary quantum
states can be realized.

For the pulse design, several optimization methods are
available and have been widely used, such as greedy algo-
rithm (GA) [54], gradient ascent pulse engineering (GRAPE)
[55,56], and chopped random-basis optimization (CRAB)
[57,58], while the latter two methods are based on gradient.
These traditional methods have proven to be effective for the
optimal control of lots of quantum systems. However, a major
challenge with these methods is that they often converge to
local optima instead of global maxima. Consequently, the
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search may become stuck on a local maximum, leading to
an insufficient fidelity. For gradient-based optimization algo-
rithms, traps of local maxima can be avoided by considering
a series of optimization processes with different trial control
fields. Reference [59] employs a revised greedy (RG) algo-
rithm to attain universal QSP with a high fidelity through the
introduction of external interference, but it is less efficient
because of trial and error at every step.

In this paper, we propose a stochastic prediction (SP)
of neural network strategy, which can obtain reliable pulse
sequences for high fidelity universal QSP. We use a large
number of initial and target states to train the neural network
and subsequently use the well-trained network to generate
the pulse sequence, providing the control trajectory for state
preparation. Our dataset solely consists of nonlocal optima,
following the definition provided in Ref. [59]. A local op-
timum is defined as a scenario where the fidelity fails to
improve compared to the previous step, indicating that the op-
timization process has reached a local maximum. During the
state preparation process, we employ the knowledge blindness
of the neural network to escape these local optima. When the
network encounters such a situation, it randomly predicts an
action as the introduction of external disturbance, allowing
us to break free from the local optimum. RL specializes in
addressing multistep tasks such as dynamic programming,
which has been used to predict multiple impulses for QSP
[52]. Although it shows that RL is effective to discern and
navigate local optima, long optimization time is required.
We propose a different route that can dynamically design
control pulses. This approach simplifies the learning process
and enhances the efficiency of the algorithm when compared
to other methods. Our evaluation results show that our pulse
design scheme is more efficient than traditional optimization
methods in a discrete control space and higher fidelity can
be obtained. Compared to conventional pulse optimization
methods, our scheme jumps out of the local optimum by
introducing disturbances through randomly predicted pulses,
while improving the preparation efficiency. Our approach can
be efficiently applied to small quantum systems with a limited
number of qubits.

II. MODEL

Semiconductor quantum dots are promising candidates for
quantum computing due to the advantage that they can be fully
electrically driven [60]. Here, we describe the single-qubit
and two-qubit models in S-T0. The effective Hamiltonian of
a single S-T0 qubit controlled by an external electrical pulse is
[19,61–64]

H = Jσz + hσx, (1)

under the computational basis states: spin singlet state |0〉 =
|S〉 = (| ↑↓〉 − | ↓↑〉)/

√
2, and spin triplet state |1〉 = |T0〉 =

(| ↑↓〉 + | ↓↑〉)/
√

2. h is the Zeeman energy gap caused by
magnetic field and it represents rotation around the x axis of
the Bloch sphere. The exchange interaction J causes rotation
around the z axis. h is not easy to be changed experimentally,
we assume it to be a constant h = 1 [25]. The reduced Planck
constant h̄ = 1 is assumed for simplicity throughout. Thus,
the only controllable parameter is J between the two electrons,

which can be adjusted by applying an external voltage. Due
to the nature of the exchange coupling, J is finite and non-
negative [65], and these constraints allow the construction of
composite pulses for the implementation of universal quantum
gates.

Quantum information processing typically requires a two-
qubit entanglement gate. In semiconductor DQDs, the Hamil-
tonian describing two entangled qubits based on Coulomb
interactions can be expressed as follows [24,26,53,66–68]:

H2-qubit = h̄

2
{J1(σz ⊗ I ) + J2(I ⊗ σz ) + h1(σx ⊗ I )

+ h2(I ⊗ σx ) + J12

2
[(σz − I ) ⊗ (σz − I )]}, (2)

under the basis states of {|SS〉, |ST0〉, |T0S〉, |T0T0〉}. Ji and
hi represent the exchange interaction and magnetic-field gra-
dient across the double quantum dot, respectively, with the
subscripts i = 1, 2 denoting the corresponding qubits. Ex-
perimentally, the coupling strength J12 between the qubits is
proportional to J1J2, where both Ji values need to be positive.
For simplicity, we set J12 = J1J2/2 and h1 = h2 = 1 as in
Ref. [59]. To manipulate this two-qubit system, it is only
necessary to control the electrical pulses that adjust J1 and J2.

III. METHODS

Now our task is to design discrete control pulses that can
drive one arbitrary state to another arbitrary state. The pulse
sequences are generated by the neural network. To optimize
various parameters of the neural network, the scheme requires
us to construct a dataset in advance. During the process of
constructing composite pulses, the trained neural network can
predict the appropriate pulse based on input that is not part
of the training set. To reduce computational cost, the control
pulses are discretized into the segmented constant function
[56], with the maximum evolution time T uniformly divided
into N segments and the pulse duration dt set as T/N . The
fidelity F , which quantifies the distance between the evolution
state and the target state, is used to assess the quality of
the state preparation. F = |〈Sn|Star〉|2, where Sn denotes the
evolution state at a time step of n, and Star represents the target
state.

Our approach includes several steps: First, we construct a
dataset with a large number of initial and target states and their
corresponding actions, which is then used to put into a neural
network for training. The trained network is saved as a model
for use in future. Secondly, we begin by setting the initial-
ization time step to step = 0 and feeding a pair of initial state
Sinit and target state Star into the network model to calculate the
fidelity F of the initial state. And we define it as the maximum
fidelity Fmax. After feature extraction in the fully connected
layer, we obtain the output of the actions, which is a set of
discrete actions output as a probability distribution under the
activation function, and the sum of these probabilities is 1. We
choose the best action ak = argmax(action), which represents
the pulse strength J (t ). We use the word “action” to represent
the intensity of the control pulse at each time step, which is
similar as in the RL framework. Using the current quantum
state Sinit and the action obtained from the network prediction,
we calculate the evolution state Sn = exp[−iH (ak )dt]Sinit and
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Algorithm 1. The SP algorithm for designing control trajectory

Input: initial state Sinit and target state Star

Output: the maximum fidelity Fmax and pulse sequence
from step = 0 to stepend

1: Calculate the initial fidelity F and let Fmax = F
2: Initialize the time step step = 0
3: while True do
4: Feed initial and target states into the network model to

predict the action probability distribution
5: Choose the action ak = argmax(action)
6: Next state Sstep are the state obtained by performing ak

and calculate the corresponding fidelity Fstep

7: Compare the two fidelities Fstep and Fmax

8: if Fstep > Fmax then
9: Let Fmax ← Fstep

10: end if
11: Let Sinit ← Sstep and step = step + 1
12: Break if Fmax > 0.999 or step > stepmax

13: end while

its corresponding fidelity Fn for the next moment. Then we
compare it with the previous maximum fidelity and select the
larger of the two values as Fmax. The evolution state Sn is then
fed into the network model as the new initial state with the
target state at the time step step = step + 1. We repeat this
process until either the time step reaches the maximum step
N or the fidelity exceeds a satisfactory threshold. The control
trajectory for the QSP consists of the sequence of actions pre-
dicted by the neural network, with this sequence representing
the solution for obtaining the maximum of the fidelity. At last,
the trained neural network can formulate appropriate control
trajectories for quantum states in the test set or other states
in the Hilbert space. The pulse design process is illustrated
in Fig. 1. Algorithm 1 presents the pseudocode for the SP
algorithm.

Figure 2 plots the process of data collection in detail.
Taking a single qubit as an example, the data are uniformly
sampled on the Bloch sphere to form a set of quantum states.
This set of states is taken as both the initial and target quantum
states. For a pair of initial and target states |0〉, 1√

2
(|0〉 + |1〉),

eight discrete actions J ∈ [0, 1, 2, 3, 4, 5, 6, 7] are chosen as
pulse intensities. The fidelity F0 of the initial state is 0.5

FIG. 1. Diagram of the stochastic prediction (SP) algorithm for
designing control trajectory. The specifics of the algorithm are elab-
orated in Sec. III and the pseudocode is presented in Algorithm 1.

FIG. 2. The process of constructing the dataset.

initially. Executing these actions produces eight states with
the fidelities 0.71, 0.65, 0.61, 0.56, 0.58, 0.62, 0.63, and 0.68.
The maximum fidelity F1 = 0.71 for this time step surpasses
F0. Then the initial state, target state, and corresponding action
with F1 are recorded in the dataset. Simultaneously, the state at
the point of attaining the maximum fidelity serves as the new
initial state for executing these actions, resulting in new states
and corresponding fidelities 0.71, 0.67, 0.63, 0.59, 0.6, 0.64,
0.66, and 0.69. Notably, the new maximum fidelity F2 = 0.71
does not exceed F1, thus the data will not be included in the
dataset in this step. The cycle continues, with the intermediate
state corresponding to F2 being the new initial state. These
steps repeat until the fidelity exceeds a certain threshold or
the step reaches the maximum limit. Finally the preparation
data from the next initial state to the target state are collected
and the dataset is constructed.

During the process of dataset construction, we exclude data
points that fall into local optima. We artificially define the
characteristics of local optima, which means the maximum
fidelity of the next step is not higher than the previous step.
Consequently, the dataset solely comprises nonlocal optima,
ensuring that the fidelity improves at each step.

Our scheme employs a classification mechanism of su-
pervised learning to predict actions, effectively handling
multistep tasks, as demonstrated in this paper where a mul-
tistep pulse is designed for state preparation. In contrast to the
RG algorithm that relies on trial and error for exploring suit-
able actions, our approach directly and efficiently determines
the next action. The training process of the neural network
mirrors supervised learning, involving the construction of a
dataset in advance. However, the dataset exclusively incor-
porates correct choices, with incorrect ones being excluded.
In situations where the control process falls into a local op-
timum, randomly predicted errors can be introduced, serving
as disruptions. This offers a chance for the control process to
escape from the local optimum.

IV. RESULTS AND DISCUSSIONS

In this section, we focus on the state preparation of
single-qubit and two-qubit states in semiconductor DQDs
and compare our approach with conventional optimization
methods. The details of the default parameters of the algo-
rithm are listed in Table I.
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TABLE I. Default parameters of the neural network.

Parameters Single-qubit Two-qubit

Total evolution time 4π 10π

Action duration π/5 π/2
Maximum time step 20 20
Number of allowed actions 8 16
Batch size 64 128
Neurons per hidden layer 256/64/32/32/8 256/128/64/16
Learning rate 0.0005 0.001
Number of epochs 200 100
Activation function softmax softmax

A. Universal single-qubit state preparation

An arbitrary single-qubit state can be represented by
a point on the Bloch sphere |ψ (θ, ϕ)〉 = cos( θ

2 )|0〉 +
eiϕ sin( θ

2 )|1〉, where the polar angle θ ∈ [0, π ] and the
azimuthal angle ϕ ∈ [0, 2π ). We take the dataset for a single-
qubit state preparation as in Ref. [59], where 128 testing
points distributed uniformly at the angles θ and φ are sampled
on the Bloch sphere. Each of these points is prepared in turn
as a target state, enabling us to assess the performance of
our method. For one preparation task, there is one fidelity F̄ .
The mean of these average fidelities 〈F̄ 〉 is calculated over all
target states. For example, the single-qubit state preparation
corresponds to 128 × 127 = 16 256 tasks.

The state preparation can be achieved by performing
successive rotations on a Bloch sphere, with the exchange
coupling J (t ) as the only adjustable parameter [29]. In
our approach, we use eight discrete control pulses, J ∈
{0, 1, 2, 3, 4, 5, 6, 7}. The total evolution time T is set to 4π ,
and the pulse duration dt is set to π/5, resulting in a maximum
allowed time step of N = T/dt = 20 for the entire process.
These parameters can be adjusted as required.

Figure 3 plots the test set accuracy, the average fidelity of
the SP algorithm, and the average fidelity of the GA versus
the number of epochs during the neural network training.
Classical algorithms such as the GA are not involved in the
training process, so the average fidelity of the GA is a con-
stant. Figure 3 shows that after about 75 epochs, the test set
accuracy of the network and the average fidelity of the SP
algorithm do not improve significantly as the number of epoch
increases, indicating that the network has converged and the
two trends are consistent. Furthermore, the average fidelity
of the SP algorithm is significantly better than that of the
GA, demonstrating that our proposed scheme for preparing
quantum states produces higher-quality results. Therefore, we
conclude that our approach is viable, and the trained network
can be applied to universal QSP tasks.

High efficiency QSP means high fidelity with short design
time. To evaluate the efficiency of our SP algorithm against
other methods, we present the distribution of the average
fidelity F̄ versus the average designing time t̄ of the SP,
GRAPE, CRAB, GA, and RG for preparing target states in
Fig. 4. The control parameters are taken as the same as in
Fig. 3. The average is based on the 128 state preparation tasks.
To satisfy the discrete control requirement, we discretize the
continuous control of GRAPE and CRAB to the nearest al-

FIG. 3. The mean of all average fidelities 〈F̄ 〉 of two algorithms
and test set accuracy as the functions of the number of epochs in the
training process for single-qubit preparation.

lowable action at the end of the execution [49]. As shown in
Fig. 4, our SP algorithm outperforms all the other four con-
ventional optimization algorithms in terms of efficiency in the
discrete control space, with GRAPE and CRAB algorithms
performing poorly in the same space. During optimization,
the SP algorithm reduces the required time step adaptively to
efficiently find the optimal solution. In contrast, GRAPE and
CRAB use a fixed number of time steps and sometimes the
optimal solution is missed. These two gradient-based meth-
ods require a prolonged optimization process and give better
results under conditions of continuous control.

FIG. 4. The distribution of average fidelities F̄ vs average design
time t̄ for the preparation of arbitrary single-qubit target states using
various optimization algorithms, based on 128 sampled tasks. 〈F̄ 〉
= 0.97, 0.9121, 0.9117, 0.9206, and 0.97 and 〈t̄〉 = 0.0211, 0.0212,
0.3142, 0.0246, and 0.0347 with SP, GRAPE, CRAB, GA, and RG,
respectively. 〈F̄ 〉 and 〈t̄〉 represent the mean of all average fidelities
and all average pulse design times over 128 preparation tasks.
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FIG. 5. The mean of the average fidelities 〈F̄ 〉 of two algorithms
and test set accuracy as the functions of the number of epochs in the
training process for two-qubit preparation.

B. Universal two-qubit state preparation

For a two-qubit state preparation of a semiconductor DQD,
the allowed control pulses for each qubit can be discretized
as {(J1, J2)|J1, J2 ∈ {1, 2, 3, 4}}, resulting in a total of 16 al-
lowed actions. During this process, the total evolution time
is set to T = 10π and the pulse duration is set to dt = π/2.
The points in the data set for train and test are defined as
{[a1, a2, a3, a4]T }, where a j = eiφc j represents the probabil-
ity amplitude of the corresponding jth basis state, and φ ∈
{0, π/2, π, 3π/2}, and these c js together represent the points
on the hypersphere of the four-dimensional unit⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 = cos θ1,

c2 = sin θ1 cos θ2,

c3 = sin θ1 sin θ2 cos θ3,

c4 = sin θ1 sin θ2 sin θ3,

(3)

with θi ∈ {π/8, π/4, 3π/8} [52]. We select randomly 256
testing points to form the data set.

As plotted in Fig. 5, the neural network converges after
about 30 epochs. After 100 epochs of training, the aver-
age fidelity of the SP algorithm converges to 0.93. On the
other hand, average fidelity of our proposed algorithm for
the two-qubit state preparation still performs better than the
GA. Figure 6 shows the frequency distribution of the average
fidelity F̄ for the 512 target states prepared by SP, GA, and
RG, respectively. The results again verify that our algorithm
outperforms the other two algorithms. Although some bad
spots exist, the overall performance is excellent.

C. Universal state preparation in a noisy environment

The complete quantumness is always expected when per-
forming universal QSP. However, normally the quantum noise
will destroy the quantumness and then decrease the fidelity.
How do the optimal pulse sequences perform when consider-

FIG. 6. The frequency distributions of average fidelities F̄ for
two-qubit preparation over 512 preparation tasks. The mean of all
average fidelities 〈F̄ 〉 = 0.9295, 0.8381, and 0.8962 with SP, GA,
and RG.

ing the noises? Next we introduce noises in the quantum line
by adding the bit flip channel, phase flip channel, or amplitude
damping channel, respectively. The bit flip and phase flip
channels are modeled by applying an additional X or Z gate
to the qubit with a probability of occurrence. These two noise
channels are the so-called Pauli channels. We take the bit flip
channel as an example, which can be expressed as

ε(ρ) = (1 − p)IρI + pXρX, (4)

where I is the unit matrix and X is the Pauli X gate. The
corresponding Kraus operators for this channel are

E0 =
√

1 − p

[
1 0
0 1

]
, E1 = √

p

[
0 1
1 0

]
, (5)

where p is the probability of occurrence of bit flip. The ampli-
tude damping channel accounts for the dissipation of energy
from the quantum system and the mathematical form can be
expressed as

ε(ρ) = E0ρE†
0 + E1ρE†

1 , (6)

with Kraus operators

E0 =
[

1 0
0

√
1 − p

]
, E1 =

[
0

√
p

0 0

]
, (7)

where p is the dissipation factor.
We have found the ideal optimal pulse sequence that corre-

sponds to the maximum fidelity through training the dataset in
the absence of noises. For the noise model, we consider two
cases. The first is that we use the ideal pulse sequence. We
apply the noise channel after each time step of the pulse to
create a noisy quantum line, which is used to drive the initial
state to the final state. For the second case, we directly search
the optimal pulse in the noise model. Now for the first cases,
in Fig. 7 we plot the fidelity 〈F̄ 〉 as a function of the occur-
rence probability (dissipation factor) p for single-qubit and
two-qubit state preparation. For two-qubit state preparation,
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(a)

(b)

FIG. 7. The mean of average fidelities with the SP algorithm
vs occurrence probability or dissipation factor of different noise
quantum channels. (a) Single-qubit state preparation. (b) Two-qubit
state preparation.

we assume that both qubit noise channels are identical, and
the probability or dissipation factor of the noise channels is
the same (p1 = p2 = p). 〈F̄ 〉 decreases with increasing p as
expected. For single- and two-qubit cases and for the same
p, 〈F̄ 〉 decreases most significantly for the bit flip, phase flip
is in the middle, and amplitude damping corresponds to the
minimal impact.

It has been clearly shown that the fidelity will decrease in
the presence of noise even with the ideal pulse sequence. Can
we use our method to directly design the pulse sequence with
noises? In this case, the optimal pulse sequence depends not
only on the system but also on the noises. In a recent paper
[69], optimized pulse sequences for the adiabatic speedup
are found by using stochastic search procedures in a noisy
environment. The detrimental effects of the environment on
the system are reduced for the optimal pulses compared with
the ideal closed-system pulses. Now we will train the net-
work with noises. Initially, we add a noise channel on the

(a)

(b)

FIG. 8. (a) The mean of average fidelities using the SP algorithm
vs occurrence probability of the bit flip channel with and without
noise in the train process. (b) The designed control trajectory for
these two cases with occurrence probability p = 0.005. The initial
state and target state are set as |0〉 and |1〉.

Hamiltonian and construct a data set incorporating the noises.
Then we obtain a model after training. For the demonstration,
we take a single-qubit QSP with bit flip channel as an exam-
ple. The initial state is taken as |0〉 and the target state is taken
as |1〉. Figure 8(a) plots the mean of the average fidelity versus
the flip probability for these two cases: train with (without)
noise. Obviously, when using the ideal pulse sequences, 〈F̄ 〉
decreases quickly with increasing p as expected. However,
when training with noises, 〈F̄ 〉 is almost stable for different p.
The value of 〈F̄ 〉 oscillates around 0.965. This result indicates
that once the environmental parameter is given, the neural
network is able to adjust its weight parameters appropriately
during the training to combat the noises. Figure 8(b) shows the
obtained control trajectories using the SP algorithm training
with and without noises. These two trajectories are different
from both the steps and the strengths. It only needs eight steps
when training without noise and 16 steps are required with
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FIG. 9. The corresponding motion trail for the reset task on the
Bloch sphere. (a) Train without noise, with the final fidelity F =
0.9752. (b) Train with noise, with the final fidelity F = 0.9858.

noises. Furthermore, we plot the corresponding motion trail
of Fig. 8(b) for the reset task from |0〉 to |1〉 on the Bloch
sphere in Fig. 9.

Given the limitations of available quantum computing, we
simulate quantum computing on a classical computer and gen-
erate the corresponding data. Our algorithm was implemented
using PYTHON 3.8.8, TENSORFLOW 2.12.0, QUTIP 4.7.1, and
MINDQUANTUM 0.8.0, running on a computer with a six-core
2.60-GHz CPU and 16 GB of RAM.

V. CONCLUSIONS

In this paper, we propose an efficient SP algorithm for
designing control trajectories that can prepare an arbitrary
state from an arbitrary state. The scheme involves training a
large number of initial and target states along with their corre-
sponding actions using a neural network. Once the network
is trained, it can be used to predict control pulses without
any further training. We demonstrate the efficacy of our ap-
proach on single-qubit and two-qubit states of semiconductor
quantum dots, highlighting its potential application in the

future quantum computation. We construct a dataset com-
posed of exclusively nonlocal optima. In instances where the
control process falls into a local optimum, disturbances can
be introduced by randomly predicting errors, providing an
opportunity to escape the local optimum. Our SP algorithm
shows its advantage over conventional pulse optimization
algorithms by achieving a higher fidelity. Furthermore, the
control pulses are predicted directly through the network,
resulting in shorter pulse design time than other numerical
optimization algorithms. At last, we consider noises including
the Pauli channel and amplitude damping channel. We find
that our SP algorithm is still effective for the design of pulse
sequences when training with noises. Our investigation shows
that machine learning is a powerful tool for the design of
control pulse sequences in quantum information processing.

It is reasonable to question whether the effectiveness of
the algorithm can be extended to complex systems. Our al-
gorithm is suitable for simple tasks characterized by shallow
local optima, but it might be challenged when encountering
complex tasks. The prediction approach based on supervised
learning may result in a limited number of classes that it can
accurately categorize. Moreover, our algorithm is specifically
applicable when a strong similarity exists among objects to
be recognized, such as predicting the correct action based on
quantum states. For scenarios such as dynamic scene changes
during the control process or the existence of a policy link
between the front and back steps, the algorithm will lose
its effectiveness. For the complexity of the control, discrete
actions with limited numbers are required in our scheme.
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