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Optimal quantum resource generation by coupled transmons immersed in Markovian baths
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We analyze quantum resource generation of capacitively coupled multilevel transmon circuits surrounded
by bosonic baths, within the Markovian limit. Superconducting circuit elements are in practice usually part of
a larger circuit, constructed with many other elements, which along with their environment is assumed to be
mimicked by the baths. We study the response, to variation of the temperature of the thermal baths and the
coupling strength, of resource generation for the system prepared in zero-resource initial states. We focus, in
particular, on entanglement and quantum coherence as resources. We find that capacitive coupling, even if weak,
can compete with Markovian decay of quantum resources and lead to significant steady-state values of the same.
At short and moderate timescales, the resources exhibit nonmonotonic oscillatory behavior, reminiscent of the
same in non-Markovian environs in absence of intrasystem coupling. We quantify the entanglement generation
power of coupled transmon qutrits, taking into account the maximum entanglement the system can generate and
the timescale over which the system can sustain a significant amount of the same. We identify the optimal initial
separable states leading to maximum entanglement generating power.
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I. INTRODUCTION

In recent years, quantum information processing has be-
come an important field of research due to its wide-ranging
applications in quantum techniques such as computational
speedup [1–3] and cryptographic security [4]. Quantum com-
puters can potentially be realized with trapped ions [5,6],
superconducting qubits [7–14], photons [15–19], silicon chips
[20,21], etc. The superconducting Josephson-junction qubit
[22–25] is a leading candidate for the experimental realiza-
tion of quantum computers. These superconducting systems
derived from Josephson junctions, separated, or joined by
carefully chosen circuit elements, can primarily be divided
into three subclasses according to their degree of freedom ex-
ploited to realize the qubit, viz., charge [26,27], flux [28,29],
and phase [30]. But short coherence times pose a major
challenge in extracting the optimal performances from such
systems.

The transmon, a superconducting qubit, has been proposed
as a promising physical substrate for overcoming this limita-
tion [31]. The structure of a transmon qubit is very similar to
the Cooper pair box (CPB) qubit [26] shunted with a large ca-
pacitor, and its ratio of Josephson energy to charging energy,
EJ/EC , lies in between that of charge and phase qubits. Two
important parameters of a transmon qubit, viz., anharmonic-
ity and charge dispersion of the energy levels, are usually
determined by this ratio [32–35]. The anharmonicity should
be sufficiently large in order to prevent qubit operations
from exciting other transitions in the system. Consequently,
the charge dispersion needs to be reduced to minimize the
system’s sensitivity to charge noise due to change in gate
charge and stray electric fields [36]. In a transmon qubit, the
charge dispersion of the energy levels decreases exponentially
with EJ/EC and the anharmonicity of the same reduces al-
gebraically with a slow power law of EJ/EC [37]. Hence, in
order to obtain the suitable operating regime of a transmon

qubit, the ratio EJ/EC has to be chosen properly. For experi-
mental realization of transmon qubits, see [38–51].

Entanglement [52–54] and quantum coherence [55–58] are
two important resources for quantum information processing.
The presence of environment influences the effective oper-
ating time of a transmon, resulting in a shorter coherence
time. The coherence times of transmon qubits have been rig-
orously studied in previous literature in presence of various
Markovian [59] and non-Markovian [60,61] environments.
Entanglement between coupled transmon qubits has also been
studied [62–71].

In this paper, we consider two capacitively coupled trans-
mon qutrits, locally surrounded by harmonic oscillator baths.
This setup provides not only a realistic setup, but also, inter-
estingly, can self-generate quantum resources in the system,
evolving from zero-resource initial states. We observe that an
increased temperature gap between the two local baths accel-
erates the decay of quantum resources of the two-transmon
system. We also show enhancement in the generation of the
quantum resources with increasing coupling strength. The
maximum attainable as well as the long-time values of the
quantum resources generated by the system increase almost
linearly with the increase in the strength of capacitive cou-
pling, restricting ourselves to the regime of weak to moderate
coupling strength between the subsystems. We study the en-
tanglement generating power of such a coupled transmon
setup, which depends on the maximum entanglement the sys-
tem can generate, and the timescale over which the system
can sustain this self-generated entanglement to a significant
amount. Furthermore, we find the optimal initial separable
states of the composite system providing the maximum en-
tanglement generating power, for small strengths of capacitive
coupling between the two transmon qutrits.

The rest of the paper is arranged as follows. In Sec. II,
we describe the system under study. In Sec. III, we discuss
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measures of the quantum resources that we analyze in this
paper. Section IV presents the results of quantum resource
generation in the coupled-transmon system, for certain classes
of paradigmatic initial states. In Sec. V, we define the max-
imum entanglement generating power of the system, and
compute the optimal initial separable states that can generate
maximum entanglement in presence of Markovian baths for
fixed sets of system and bath parameters. A conclusion is
presented in Sec. VI.

II. TRANSMONS COUPLED THROUGH
CHARGE-CHARGE INTERACTION

Structurally, a transmon is close to a Cooper pair box [23],
and it can be constructed by two superconducting islands (or
one island and ground), coupled through a Josephson junc-
tion and isolated from all other elements of the circuit [31].
The system is described by a pair of canonically conjugate
quantum operators constructed from the number of Cooper
pairs transferred through the junction and the phase across it.
The charge-based systems are sensitive to stray electric-field
noise. This unwanted situation can be largely overcome by
putting the Cooper pair box in the “transmon” regime, where
the Josephson tunneling energy dominates over the Coulomb
charging energy [10,30,31,72–75].

The effective Hamiltonian of a CPB in the transmon regime
can be written as [31,76]

Htr = 4ECn̂2 − EJ cos φ̂, (1)

where EJ = I0�0/2π is the Josephson energy and EC = e2

2C
is the charging energy. Here we ignore the offset (or “gate”)
charge, given that the system is not sensitive to the offset
charge in the transmon regime. n̂ = Q̂/2e is the reduced
charge operator (2e being the charge content of a Cooper
pair) and φ̂ = 2π�/�0 is the phase (�0 = h/2e being the
flux quanta) operator for the number of Cooper pairs and the
phase across the Josephson junction, respectively. Here, h is
Planck’s constant. I0 is the maximum current allowed through
the Josephson junction maintaining the superconducting state
and C is the total capacitance of the transmon circuit to its en-
vironment. The current (I) and flux (�) across the Josephson
junction are connected by the following Josephson relation:

I = I0 sin (2π�/�0). (2)

Quantization of this system is approached by constructing
the ladder operators in terms of the zero-point fluctuations of
charge and phase as

n̂ = inZPF(ĉ† − ĉ) and φ̂ = φZPF(ĉ† + ĉ),

with nZPF = (EJ/32EC )
1
4 and φZPF = (2EC/EJ )

1
4 . The oper-

ator ĉ = ∑
j

√
j + 1 | j〉 〈 j + 1| is the transmon annihilation

operator and the ĉ† is the corresponding transmon creation
operator. Note that the action of n̂ provides integer values
and changes by ±1 when a Cooper pair tunnels through
the Josephson junction. In the transmon regime, EJ/EC � 1,
and hence φ̂ � 1, providing the opportunity to simplify the
Hamiltonian by expanding cos φ̂ in Taylor series and then
approximating the expression by ignoring small higher-order
contributions. If we retain terms up to second order in φ̂

only, and then express the canonical operators in terms of
the raising or lowering operators, the transmon Hamiltonian
is approximated as

HT ≈
√

8ECEJ

(
ĉ†ĉ + 1

2

)
− EC

12
(ĉ† + ĉ)4 − EJ . (3)

This Hamiltonian resembles that of a quantum oscillator
in a harmonic potential modified by a comparatively smaller
quartic potential. One can solve this by using certain varia-
tional techniques, such as the “explicitly correlated Gaussian
method” [77]. Consistent results have been obtained if this
quartic term is treated perturbatively in the transmon regime
(EJ � EC), or solved using the explicitly correlated Gaussian
method.

In this paper, we consider a pair of coupled transmon
qutrits. Thus, we concentrate on three lowest-energy states of
a multilevel transmon. We study the global quantum coher-
ence of the combined system and the bipartite entanglement
between the qutrits. The two transmons are coupled via an
electric field. This type of coupling occurs when the individual
transmon circuits are coupled through an electric field via a
capacitor. This is particularly plausible when the impedance of
the source circuit is high [31,78,79]. This kind of interaction
between two transmons can be modeled as [12,80]

Hint = h̄γ n̂1n̂2 = −h̄
γ√
32

(
EJ1 EJ2

EC1 EC2

) 1
4

(ĉ†
1 − ĉ1)(ĉ†

2 − ĉ2).

(4)
Here we neglect the charge offset terms, since the transmon

regime provides us with the charge-insensitive (insensitive to
gate charge) regime to work in. The coupling constant γ is
taken to be roughly one order of magnitude smaller than the
first excitation energy of a single transmon qutrit (the energy
required for a transition from the ground state to the first
excited state), in view of the fact that this kind of coupling
is often weak compared to the energy scales of the individual
systems. The Hamiltonian of this composite two-transmon
system is taken as

Hs =
2∑

i=1

[
h̄ω0i

(
ĉ†

i ĉi + 1

2

)
− ECi

12
(ĉ†

i + ĉi )
4

]
+ Hint, (5)

where ω0i = √
8ECi EJi/h̄ (i = 1, 2). Here, we have dropped

the constant contributions coming from EJ1 and EJ2 [see
Eq. (3)] as these terms just give a constant shift to all
energy values. In all the further discussions of this paper,
we have taken EJ1 = EJ2 ≡ EJ , EC1 = EC2 ≡ EC , and ω01 =
ω02 ≡ ω0 = √

8ECEJ .

III. MEASURES OF QUANTUM RESOURCES

Our aim in this paper is to investigate the dynamics of var-
ious quantum resources, in particular of quantum coherence
and quantum entanglement, in the system studied. Of these
two resources, quantum coherence is a basis-dependent quan-
tity, while entanglement is basis independent. In this paper, the
l1-norm of quantum coherence and logarithmic negativity are
chosen as the quantum coherence and entanglement measures,
respectively.
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A. l1-norm of quantum coherence

The l1-norm of quantum coherence of an arbitrary d-
dimensional state ρ, possibly mixed, is defined as the sum
of the moduli of the off-diagonal terms, when the state is
expressed in a fixed reference basis [55–58]. Let us consider
a d-dimensional Hilbert space Cd and fix a basis of it, {|i〉},
for i = 1, 2, . . . , d , as the reference basis. Then, the l1-norm
of quantum coherence of an arbitrary d-dimensional quantum
state ρ = ∑

i, j pi j |i〉 〈 j|, with respect to the basis {|i〉}, is
given by C̃l1 (ρ) = ∑

i 	= j |pi j |.
The maximum value of the l1-norm of quantum coherence

of a state on Cd is given by C̃l1max
= (d2 − d )/d = d − 1. So,

in order to normalize the obtained value of quantum coher-
ence, and make the maximum dimension independent, C̃l1 (ρ)
is rescaled by C̃l1max

. In this paper, we consider the states on the
Hilbert space constructed from the three lowest-lying states of
each of the two coupled transmon systems. The two-transmon
states are therefore defined on C3 ⊗ C3, and so, C̃l1max

= 8.
Hence, the expression of the l1-norm of quantum coherence,
taken in all further considerations of this paper, is given by

Cl1 (ρ) = 1

8

∑
i 	= j

|pi j |. (6)

The maximum value of Cl1 (ρ), therefore, reaches to unity
in the C3 ⊗ C3 system. This l1-norm of quantum coherence,
normalized by the quantum coherence of a maximally coher-
ent density matrix in the same Hilbert space, expresses the
quantum coherence of the system in the unit of cobits [81–83].

B. Logarithmic negativity

One of the most popular measures of bipartite entangle-
ment is the logarithmic negativity [84,85]. Suppose, ρ is a
two-party (A and B) density matrix and ρTA is the partial
transpose of ρ on the subsystem A. The negativity of the
density matrix ρ is defined as

N (ρ) = ||ρTA ||1 − 1

2
. (7)

Here, the trace norm of an operator A stands for ||A||1 =
Tr(

√
A†A). This N (ρ) presents the absolute value of the sum

of negative eigenvalues of ρTA [86,87]. The logarithmic nega-
tivity of ρ is now defined as

LN (ρ) = log2[2N (ρ) + 1]. (8)

If ρ is a maximally entangled state, then LN (ρ) equals 1
ebit. Here, an “ebit,” short for “entanglement bit,” is a unit
of entanglement for bipartite quantum systems.

IV. RESOURCE GENERATION IN A PAIR OF COUPLED
TRANSMON QUTRITS

In this section we investigate the variation of quantum
coherence and entanglement for different initial states of a
pair of interacting transmon qutrits described by the Hamil-
tonian Hs [see Eq. (5)]. We consider two different situations.
First, for completeness, we consider the unitary evolution of
the isolated system solely governed by the Hamiltonian Hs.
Next, we investigate the scenario where each transmon qutrit

is locally connected to a bosonic bath within the Markovian
limit. We consider weakly coupled harmonic baths, where the
coupling between a transmon and a bath is weak and the baths
are infinitely large, having a continuously distributed energy
spectrum, for the validation of the Born-Markov approxima-
tions [88–91].

A. Coupled transmons isolated from the environment

We now present the time dynamics of quantum resources
in the system described, isolated from any environmental ef-
fects. In this paper, we have fixed the EJ/EC ratio to 100,
in order to confine the subsystems to the transmon regime.
We have considered the value of h̄γ , the coupling strength
between the subsystems, to be one order of magnitude smaller
than the charging energy, to remain in the weak-coupling
limit. We took this value to be 0.2EC for further studies. The
anharmonicity in the energy spectrum is quantified by the
difference in the consecutive excitation energies of this sys-
tem, given by E12 − E01, where the energy difference between
two eigenstates is denoted by Emn = En − Em. The aforemen-
tioned parameter space considered in this paper leads the
value of the ground-state oscillator energy to be 20

√
2h̄, and

the anharmonicity in the consecutive energy levels to be −Ec,
keeping terms up to first order in the perturbation coefficient
λ = EC/12. We take the basis B = {|i j〉}, with i and j running
from 0 to 2, as the reference basis for evaluation of the l1-norm
of quantum coherence in this paper, where {|i〉}2

i=0 forms the
three lowest-energy eigenstates of either transmon.

So, in all the succeeding discussions, by “l1-norm of quan-
tum coherence,” we will actually mean the global l1-norm of
quantum coherence of the composite two-transmon system
with respect to the reference basis B.

From Fig. 1(a), one observes a periodic collapse and revival
of entanglement with time when the system is initiated in
the pure product state |00〉. We also study the time dynamics
of the global l1-norm of quantum coherence, along with the
trace distance [94] and fidelity [92–94], of the time-evolved
state from the initial one. The trace distance D and fidelity F
between two arbitrary states ρ and σ are defined as

D(ρ, σ ) = 1
2 ||ρ − σ ||1, (9)

F (ρ, σ ) = (Tr
√√

ρσ
√

ρ )2. (10)

We observe that these quantities also vary in a qualitatively
similar fashion like the entanglement, but with different am-
plitudes, and in some cases with a phase shift of ±π .

In Fig. 1(b), we demonstrate the time variation of the
l1-norm of quantum coherence and trace distance under the
same unitary evolution when the system is initially prepared
in the |11〉 state. As in the previous case [Fig. 1(a)], and
as it may be expected, oscillatory behavior in time per-
sists. The entanglement generated from the composite initial
state |11〉 changes in a similar manner as the quantum co-
herence of the same initial state [see Fig. 1(b) blue line],
the only difference being the absence of the small “eddy”
oscillations present in the coherence dynamics. When we
initialize the system with separable states of higher energy,
such as |22〉, we observe a generation of entanglement with
very small amplitudes, although the oscillatory nature of this
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FIG. 1. Time dynamics of quantum resources generated in a pair of coupled transmon qutrits isolated from their surroundings. We plot
the variation of the logarithmic negativity with time for the composite system of interacting transmon qutrits described in Eq. (5) in panel (a).
The initial state of the system is |00〉. The long-time behavior of entanglement for this case is presented in the inset. The l1-norm of quantum
coherence of the system with the initial state |11〉 is depicted in panel (b) with the blue line. The green dashed line in panel (b) presents the
trace distance between the time-evolved state and the initial state |11〉. Panel (c) describes the the time dynamics of logarithmic negativity in
the system, when it starts out from the state |ψ1〉 ⊗ |ψ2〉, where ψ1 = (|0〉 + |1〉)/

√
2 and ψ2 = (|0〉 + |2〉)/

√
2. The ratio of the Josephson

energy to the charging energy for both the subsystems is taken to be EJ/EC = 100. The coupling strength between the subsystems is chosen
such that γ = 0.2EC/h̄. The quantities LN and Cl1 , demonstrated along the vertical axes, are in ebits and cobits, respectively, and the quantity
D depicted by the green dashed line in panel (b) is dimensionless. The quantity plotted along the horizontal axes of all the panels and the inset
is the dimensionless quantity, ω0t .

entanglement generation remains similar with the cases de-
picted in Figs. 1(a) and 1(b). Also, the quantum coherence
generation in this case is qualitatively the same as we obtained
for the initial states |00〉 and |11〉. Various other initial separa-
ble states, e.g., |++〉, have been considered. The qualitative
features remain similar irrespective of the choice of initial
separable state. The amplitude profiles of the oscillatory dy-
namics of entanglement and quantum coherence change in a
periodic manner, as can be seen from the inset of Fig. 1(a).
Noticeably, the frequency and maximum amplitude of this
envelope increase rapidly with increasing coupling strength.
See also Fig. 1(c), for the state |ψ1〉 ⊗ |ψ2〉, where |ψ1〉 =
(|0〉 + |1〉)/

√
2 and |ψ2〉 = (|0〉 + |2〉)/

√
2. In this scenario,

entanglement again displays oscillatory behavior, but the pe-
riod of these oscillations is greater than that observed in the
cases when the initial states are |00〉 and |11〉. In short, the
measures of the quantum resources studied in this paper be-
have in a qualitatively similar fashion under unitary evolution,
when the system starts from separable states.

In contrast, entanglement remains almost constant in time
when the system starts from the entangled state, (|01〉 +
|10〉)/

√
2. We find that this result remains the same for

some other entangled states, e.g., (|12〉 + |21〉)/
√

2, as well.
However, the global quantum coherence of the system still
maintains the oscillatory behavior, which is very similar to
the entanglement in Fig. 1(a) for these entangled states.

Therefore, from the observations of the unitary evolution
of a pair of coupled transmons, we can infer that one can
generate significant quantum resources by a coupled trans-
mon system, when the composite system is isolated from its
surroundings. These scenarios are far from the actual situa-
tions, as in reality the described transmon qutrits are never
isolated, but are connected to other circuit elements as well.
These circuit elements along with noncircuit environs can be
considered as environments attached to the individual qutrits.
Environments may cause substantial adverse effects on the
time dynamics of the quantum resources for the system under

consideration. In the succeeding parts of this paper, we will
study the effects of environments on the “ideal” coupled-
transmons setup.

B. Dynamical equation in presence of Markovian baths

Quantum systems are generally susceptible to environmen-
tal effects, and hence it is important to study the influence
of environments on the generation of quantum resources in
coupled transmon qutrits, if these resources are to be used
in real quantum devices. In that spirit, here we consider the
system described by the Hamiltonian Hs [see Eq. (5)], in pres-
ence of two independent harmonic oscillator baths, separately
coupled to the two transmon qutrits locally. As mentioned
before, the system-bath coupling is taken to be weak for the
validation of Born-Markov approximations [88–91]. The bath
Hamiltonians are given by

HBi =
∑

j

h̄ν i
jb

i†
j bi

j, (11)

for i = 1 and 2. ν i
j is the frequency of the jth mode of the ith

bath. bi
j (bi†

j ) is the bosonic annihilation (creation) operator
of the ith bath corresponding to the jth mode. The oscillator
modes interact with the system through the net content of
Cooper pairs across the junction, i.e., the reduced charge (n̂)
of the system. This introduces a system-bath interaction of the
following form [60]:

HSB =
2∑

i=1

h̄qi
∑

j

gi
j

(
b̂i†

j + b̂i
j

)
, (12)

with gi
j being the coupling constant having the unit of fre-

quency, for tuning the interaction strength between the ith sys-
tem and jth mode of the ith bath. Here q1 = (

∑
l,m |l〉 〈l| n̂1 ⊗

I3 |m〉 〈m| ) and q2 = (
∑

l,m |l〉 〈l| I3 ⊗ n̂2 |m〉 〈m| ), i.e., the
reduced charge (number of Cooper pairs) operators expressed
in the eigenbasis of system-Hamiltonian Hs, and I3 is the
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identity matrix on the three-dimensional Hilbert space of a
transmon qutrit. Hence, the total Hamiltonian of the compos-
ite system-bath setup, with a harmonic oscillator bath coupled
to each transmon qutrit locally in the circuit, reads

Htotal = Hs +
2∑

i=1

HBi + HSB. (13)

In presence of these Markovian bosonic baths, the system
undergoes an open-system dynamics governed by the Gorini-
Kossakowski-Sudarshan-Lindblad master equation, given by
[88–91]

dρs(t )

dt
= − i

h̄
[Hs, ρs(t )] +

2∑
i=1

Di[ρs(t )]. (14)

Here ρs(t ) is the composite two-transmon state at time t after
tracing out the Markovian baths. Di[ρs(t )] is the dissipative
term coming from the interaction between the ith system and
the ith bath, presented as

Di(ρs(t )) = 1

2

∑
ωnm>0

Si(ωnm)
[
2�i

nmρs(t )�i†
nm

− {
�i†

nm�i
nm, ρs(t )

}] + 1

2

∑
ωnm>0

Si(−ωnm)

× [
2�i†

nmρs(t )�i
nm − {

�i
nm�i†

nm, ρs(t )
}]

+ 1

2

∑
n

Si(0)
[
2�i

nnρs(t )�i
nn

− {
�i

nn�
i
nn, ρs(t )

}]
, (15)

where ωnm = ωm − ωn. Here ωn denotes the eigenfrequencies
of the composite system described by Eq. (5), and �i

nm are the
Lindblad operators, for i = 1 and 2, where �i

nm = qi
nm|n〉〈m|

and qi
nm = 〈n| qi |m〉. The transition rate, Si(ω), turns out to be

Si(ω) = Ji(ω)

1 − e−h̄βiω
, (16)

where βi = 1/kBTi. Here Ti denotes the absolute temperature
of the ith bath and kB is the Boltzmann constant. Ji(ω) repre-
sents the spectral density function of the harmonic oscillator
baths, which we have chosen to be Ohmic, the functional form
of which is given by

Ji(ω) = κiω/ω01

[1 + (ω/�ci )2]2
, (17)

where h̄ω01 denotes the energy difference between the first
two levels of the composite transmon system described by
the Hamiltonian Hs. We fix the algebraic cutoff �c1 = �c2 =
50ω01 in order to keep this cutoff frequency sufficiently large
compared to the low-lying energy levels of the system. The
relation (17) holds for Ohmic baths with second-order Drude
cutoff. κi, the spontaneous emission rate in the Lindblad
equation, modulates the coupling strength between the ith
subsystem and corresponding bath. The system-bath coupling
constants are considered to be such that κ1 = κ2 = ω01/20,
for subsequent computations throughout this paper, so that
the Markovian approximations remain valid. As a result, the

system-bath interaction belongs to the weak-coupling regime:
S(ωnm) � |ωnm| [88–91].

C. Resource generation in presence of Markovian baths

In Fig. 2, we describe the time variations of logarithmic
negativity and l1-norm of quantum coherence of the two-
transmon system considered in Eq. (5), initially starting from
separable states. We observe that the entanglement between
the two qutrits of the system, as well as the global quan-
tum coherence of the system, initially increases quickly to
a maximum value and then decays to a steady value in an
oscillatory manner with decreasing amplitudes of oscillations.
These intermediate oscillations between the maximum and
the saturated value are more prominent when the system is
initialized in the |00〉 state than the case when the system
starts from an excited state |11〉 [Figs. 2(a) and 2(b)]. When
initiating both qutrits in their highest excited states, i.e., |22〉,
we observe that the amplitude of the generated entanglement
is very small and quantum coherence exhibits similar be-
havior as in the cases of |00〉 and |11〉. For the initial state
|ψ1〉 ⊗ |ψ2〉, as illustrated in Fig. 2(c), the amplitude of quan-
tum entanglement diminishes when subjected to Markovian
baths, demonstrating a similar behavior to that of the |00〉 and
|11〉 states. However, in contrast to the cases initiated with the
|00〉 and |11〉 states, here quantum coherence begins with a
nonzero value and rapidly diminishes without any noticeable
intermediate revival, following an exponential decay pattern.

This behavior is, however, distinctly different when the
system is initially prepared in an entangled state. When we
start from the entangled state (|01〉 + |10〉)/

√
2 for the each

subsystem, the entanglement and quantum coherence decay
exponentially. See Fig. 3. We also found the same behavior
for the state (|12〉 + |21〉)/

√
2.

In absence of any interaction in the system Hamiltonian,
i.e., for γ = 0, the system only goes through decoherence.
As a result, an initial system density matrix with nonzero
quantum coherence decays to a zero resource state very soon,
and a separable state remains separable. In contrast, the sys-
tem studied in this paper has a nonlocal interaction term
Hint in the system Hamiltonian, arising due to the interac-
tion between the transmon components present in the system.
This nonlocal interaction term works in favor of continuously
feeding quantum resources into the system, whereas quantum
resources leak out into the environment simultaneously, due
to the Markovian baths. These two mechanisms act in oppo-
sition. For small initial times, the quantum resources exhibit
oscillatory nature as in the unitary case (see Fig. 1) since the
decoherence due to the baths is very small then, which gradu-
ally build ups to a substantial value. In the long-time limit, the
competition between these two mechanisms leads the system
towards a steady state. Consequently, the quantum resources
considered in this paper attain nonzero steady values as well.

The following comment is in order here. The oscilla-
tory behavior seen, e.g., in entanglement decay in Fig. 2(a)
is reminiscent of the behavior of entanglement for local
non-Markovian baths in presence of intertransmon coupling
(see, e.g., [95] and references therein). It therefore seems that
the typical non-Markovian phenomenon can be mimicked by
Markovian baths in presence of intrasystem interactions.
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FIG. 2. Mimicking non-Markovianity: Time dynamics of entanglement and quantum coherence for initial separable states of coupled
transmon qutrits locally immersed in Markovian bosonic baths. Here we demonstrate the logarithmic negativity between the qutrits of the
system in the main figures and the global l1-norms of quantum coherence of the system in the insets for the initial states (a) ρs(0) = |00〉 〈00|,
(b) ρs(0) = |11〉 〈11|, and (c) ρs(0) = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|, where |ψ1〉 = (|0〉 + |1〉)/

√
2 and |ψ2〉 = (|0〉 + |2〉)/

√
2. The system parameters

are the same as in Fig. 1. We have taken κ1 = κ2 = ω01/20, and the temperatures of the baths are chosen to be such that β1 = β2 = 5/(h̄ω01).
The quantities LN and Cl1 plotted along the vertical axes are in ebits and cobits, respectively. The quantity presented along the horizontal axes
in all panels and insets is the dimensionless quantity, ω0t .

D. Resource generation in presence of local baths
with different temperatures

In the depiction of Figs. 2 and 3, we have focused on
scenarios in which the two transmon qutrits are individually
submerged in two distinct thermal baths, both operating at
the same temperature. Under the condition that the dynamics
of the system adhere strictly to Markovian approximations
[88–91], and the contribution of three- and higher-body inter-
action terms between the transmons and the bath is negligible,
these two local thermal baths, despite their separate existence,
effectively function as a single heat bath connected to both
the transmons. The possibility of bath mediated interaction
in presence of a common bath can be ignored within the ap-

FIG. 3. Time dynamics of entanglement and quantum coherence
for an initial entangled state of the coupled transmon qutrits locally
immersed in Markovian bosonic baths. Here we depict the time
evolution of logarithmic negativity between the two qutrits (in the
main figure) and the global l1-norm of quantum coherence of the
system (in the inset) in presence of Markovian baths for the initial
state ρs(0) = |ψs(0)〉 〈ψs(0)|, with |ψs(0)〉 = (|01〉 + |10〉)/

√
2. All

other considerations are the same as in Figs. 1 and 2. The quantities
LN and Cl1 plotted along the vertical axes are in ebits and cobits,
respectively. The quantity presented along the horizontal axes is
dimensionless.

proximate evolution considered. The situation can be altered
to explore the impacts of two distinct local baths by adjusting
their temperatures accordingly. As depicted in Fig. 4, employ-
ing baths at different temperatures results in a significantly
faster decay of bipartite entanglement, in comparison to using
baths at the same temperature, when both transmon qutrits ini-
tially start in a separable state originating from their respective
ground states. See Fig. 4(a). The same figure also highlights
the correlation that a greater temperature difference between
the local baths leads to a faster decay in bipartite entangle-
ment between the two transmons. It is essential to note that
the rate of decay of entanglement depends upon the chosen
initial state of the system. See Figs. 4(a)–4(d). Nonetheless,
as exemplified by the states presented in the four panels of
Fig. 4, it is apparent that the entanglement generating capacity
of the system is compromised in the presence of local baths
at different temperatures. Note that quantum coherence also
exhibits a qualitatively similar behavior to entanglement in
response to changes in bath temperatures. Hence, to maximize
the generated entanglement and quantum coherence of the ca-
pacitively coupled two-transmon system, we carry this study
forward with the transmons connected to same temperature
Markovian baths.

E. Dependence of resource generation on capacitive
coupling strength

The capacitive coupling between the transmon qutrits can
be implemented in real experimental setups conveniently. The
experimental setup of the system studied in our paper can be
built with two Josephson junctions of Josephson energy EJ ,
shunted with two capacitors C1 and C2, yielding a charging
energy EC in the individual circuits. When a capacitor with
capacitance Cg is placed between the voltage nodes (with
voltages V1 and V2) of the two participating transmon circuits,
we obtain the capacitive coupling. This yields a nonlocal
interaction term in the Hamiltonian of the form [12]

HI = CgV1V2.

Circuit quantization in the limit of Cg � C1,C2 yields an
interaction term in the form of Eq. (4), where we can express
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FIG. 4. Comparison of entanglement dynamics between two capacitively coupled transmon qutrits in contact with local baths at same or
different temperatures, for different initial states ρ0 = |ψ0〉〈ψ0|. All other considerations are the same as in Figs. 1 and 2. The corresponding
bath temperatures are specified in the legends, wherein h̄ω01 is the energy required for any of the transmons to make a transition from the
ground state to the first excited state. Logarithmic negativity (LN ) plotted along the vertical axes is in the unit of ebits, and the quantities
depicted along the horizontal axes are dimensionless.

the interaction parameter γ in terms of the circuit elements as

h̄γ = 4e2 Cg

C1C2
. (18)

The quantum resources exhibit an oscillatory nature and
reach a maximum value during the oscillation for the unitary
evolution of the system described in Sec. IV A (see Fig. 1).
We observe that these maximum values of the bipartite entan-
glement and the global quantum coherence in such an isolated
system of two capacitively coupled transmon qutrits increase
with increasing strength of the interaction γ . The case for
logarithmic negativity is depicted in Fig. 5 for increasing
values of γ . The global l1-norm of quantum coherence of
the system also varies similarly with the transmon-transmon
coupling strength γ .

We now scrutinize the dependence of resource genera-
tion on the coupling strength γ for the coupled transmons
setup immersed in Markovian bosonic baths, described in the
preceding subsection. In Figs. 6(a) and 6(b) we depict the

FIG. 5. Variation of maximum entanglement with varying ca-
pacitive coupling strength under unitary evolution, described by the
Hamiltonian in Eq. (5). The initial state is chosen to be the separable
state ρs(0) = |00〉 〈00|. All other considerations are the same as in
Fig. 1. The quantity plotted along the vertical axis is in ebits and the
same plotted against the horizontal axis is dimensionless.
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FIG. 6. Quantum resource generation in coupled transmons for
different values of interaction strength between two capacitively cou-
pled transmon qutrits, both immersed in bosonic baths, as described
by Eq. (13). Panel (a) describes the time variation of logarithmic
negativity in the system, and panel (b) describes the time evolution
of the l1-norm of quantum coherence of the system. The initial state
is taken as |ψs(0)〉 = |00〉, which has vanishing amounts of both
quantum resources. The values of the interaction strength γ are
given in the legend in units of Ec/h̄. All other considerations are the
same as in Figs. 1 and 2. The quantities LN and Cl1 plotted along
the vertical axes are in ebits and cobits, respectively. The quantity
presented along the horizontal axes is dimensionless.

time dynamics of logarithmic negativity and the l1-norm of
quantum coherence, respectively, for different strengths of
the capacitive coupling between the two transmon qutrits.
Here we vary the interaction strength in the regime so that
the circuit quantization yielding the interaction term in the
form mentioned in Eq. (18) remains valid. As can be seen
from Fig. 6, the maximum values of bipartite entanglement
and quantum coherence, along with the long-time steady-state
values of the same, increase with stronger coupling between
the subsystems, and finally sustain a nonzero finite value.
This demonstrates that for initial states with zero quantum
resources and even for small nonzero interactions in the form
of Eq. (4), not only the maximum quantum resources in the
system studied increase, but the decoherence time increases
profoundly. This result shows that the ability of creation
of coupled transmon circuits with tunable charge-charge in-
teraction promises us control over the decoherence time of
the system, which translates to potentially improved practi-
cal implementations and utilizations of the described system
in future. Note that we cannot increase the self-generated
quantum resources indefinitely by choosing a higher value
of γ . In the range from zero to one-fifth of the ground-state
energy (of the isolated coupled transmon qutrits) of γ , the
quantum resources increase almost linearly with the increase
of γ . Beyond this weak-coupling (between the subsystems)
regime, the rate of increase of maximum self-generated quan-
tum resources with increase in γ starts to slow down and
approaches saturation to a finite value, for both the ideal cou-
pled transmon setup isolated from the environment as well as
in presence of Markovian environments. In our depiction, we
have not studied that region of γ , as the treatment used here is
exclusively suitable only for the weak-coupling regime of the

system. In Figs. 5 and 6 we have shown the cases for the
initial state ψs(0) = |0〉, but we have also studied the case for
some more paradigmatic initial separable states. The results
are qualitatively similar.

V. OPTIMAL ENTANGLEMENT GENERATION
WITH UNENTANGLED INITIAL STATES

In the previous sections, we have witnessed that two in-
teracting transmon qutrits can generate quantum resources
even in presence of decoherence effects of the environment
and can sustain a substantial amount of the same for a fi-
nite duration of time, when we start off from certain zero
resource states. We have also described that if we start from
the states of the system with nonzero resources, they may be
incapable of generating significant quantum resources. It is
also plausible that for generating a resource, we will mostly
encounter situations where we are required to begin with an
insignificant amount of the same resource. This leads us to
search for the optimal generation of a resource when we start
off from a zero quantum resource state. In connection to this,
here we define the entanglement generation power of coupled
transmon systems with initial separable states.

The definition depends on two aspects: (a) the maximum
value of the entanglement the system can self-generate, and
(b) the timescale over which the system can retain a substan-
tial value of this entanglement. Let the maximum generated
logarithmic negativity for a separable initial two-qutrit state
be Lmax

N . We set the threshold for defining the timescale
over which the generated entanglement remains substantial to
half of the maximum generated entanglement, 1

2Lmax
N , beyond

which the entanglement is assumed to be too small to be
useful and hence not taken into account. This reminds one
of the correction of using full width (duration) at half maxi-
mum measure resolution in signal processing and other fields.
Therefore, the entanglement generation power of a coupled
transmon system, as a function of its initial state, can be given
by

E
(
ρ0

s

) =
∑

n

∫ tn+

tn−
LN

(
ρ0

s

)
dt . (19)

Here tn− to tn+ is the time interval during which the system
can generate entanglement � Lmax

N /2 under the nth peak, and
we are taking the summation over all such time intervals to
measure entanglement generating power of the system.

In search of the initial state providing the maximum gener-
ation of bipartite entanglement in the system described, we
optimize the quantity and define the optimal entanglement
generating power of the system as

Eopt = max
ρ0

s ∈S
E
(
ρ0

s

)
, (20)

with S being the set of all pure or mixed product states on the
C3 ⊗ C3 Hilbert space.

In Fig. 7, we depict the logarithmic negativity for the op-
timal initial state ρ0

sopt
. The form of ρ0

sopt
is described in the

caption of the same figure. For this optimal state, we get the
optimal entanglement generating power, Eopt � 0.01433 ebits.
The optimization is performed by separate Haar-uniform gen-
erations of 2×103 pure product and mixed product states.
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FIG. 7. Maximum entanglement generating power of coupled
transmons. Here we plot the logarithmic negativity against time
for the optimal initial state ρ0

sopt
. The optimal state is found to be

ρ0
sopt

= |ψ1
0 〉 〈ψ1

0 | ⊗ |ψ2
0 〉 〈ψ2

0 | with |ψ1
0 〉 = (−0.256 − 0.492ι) |0〉+

(−0.479+0.680ι) |1〉 and |ψ2
0 〉= (−0.395 + 0.392ι) |0〉 + (−0.768

− 0.316ι]) |1〉. All other considerations are the same as in Figs. 1
and 2. The quantity plotted along the vertical axis is in ebits and the
same plotted along the horizontal axis is dimensionless.

VI. CONCLUSION

We have studied a system of two transmons, coupled
through their charge degrees of freedom. We have taken
into account up to the second excited state of the individual
subsystems, appealing to the typical decoherence times of
transmon systems, with very small values of the charging
energy of Cooper pairs, compared to the Josephson energy.
Transmons, coupled through a capacitor of capacitance very
small compared to that of the individual transmon circuits,
allows us to write the total Hamiltonian in a compact form
through circuit quantization, thereby providing us with the
scope of systematic studies of such realistic systems. The
obtained results reported in this paper are drawn upon the
assumption that the transmons are immersed in independent
bosonic baths, within the Markovian limit.

It turns out that such a system can attain a substantial
value of entanglement and quantum coherence, even when it
starts from states with zero resource. We noticed that a larger
temperature difference between the two local baths speeds up
the decay of quantum resources in the two-transmon system.
In the weakly interacting limit, we have also found that for
interaction strengths that are small compared to other energy
scales in the system, this self-generated resource in the system
increases almost linearly with increasing coupling strength
and the long-time value of entanglement and global quantum
coherence of the system maintains a significant value. Without
the nonlocal interaction term between the two transmons,
entanglement in the system would only decay due to loss of
information to the Markovian baths. However, the interaction
present in between the subsystems opposes this decay by
feeding resources into the system. We found that even for
relatively small nonzero interactions in the system, the en-
tanglement of the composite system does not entirely vanish.
The competition between the pumping of the resource by the
nonlocal interaction and the loss of the same due to the inter-
action with the baths results in a sustenance of a stable value
of entanglement between the transmons. The nonmonotonic
oscillation, in time, of the intertransmon entanglement is rem-
iniscent of backflow effects in non-Markovian environments
in absence of intrasystem coupling. We also define the opti-
mal entanglement generating power for a coupled transmon
system and obtain the best two-qutrit input state, initialized
in the corresponding qubit subspaces, which can offer the
optimal entanglement generating power of the system under
consideration.
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