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Unitary ¢-designs have a wide variety of applications in quantum information theory, such as quantum data
encryption and randomized benchmarking. However, experimental realizations of #-designs are subject to noise.
Here we investigate the effect of noise channels on the quality of single-qubit 7-designs. The noise channels we
study are bit flips, phase flips, bit and phase flips, phase damping, amplitude damping, and depolarizing noise.
We consider two noise models: The first has noise applied before the ¢-design unitary operations, while the
second has noise applied after the unitary operations. We show that the single-qubit 1-design is affected only by
amplitude damping, while numeric results obtained for the 2-, 3-, 4-, and 5-designs suggest that a 27-design is
significantly more sensitive to noise than a (2¢ — 1)-design and that, with the exception of amplitude damping,
a (2t 4+ 1)-design is as sensitive to noise as a 2¢-design. Numeric results also reveal substantial variations in
sensitivity to noise throughout the Bloch sphere. In particular, 7-designs appear to be most sensitive to noise
when acting on pure states and least sensitive to noise for the maximally mixed state. For depolarizing noise, we
show that our two noise models are equivalent, and for the other noise channels, numeric results obtained for the
model where noise is applied after the unitaries reflect the transformation of the noise channel into a depolarizing

channel, an effect exploited in randomized benchmarking with 2-designs.
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I. INTRODUCTION

Unitary operators chosen randomly with respect to the
Haar measure on the unitary group play a fundamental role
in quantum information theory. Unfortunately, the resources
required to sample from the uniform Haar ensemble grow
exponentially with the number of qubits [1]. Unitary #-designs
are therefore used as an efficient substitute in many im-
portant applications (the resources required to implement
an approximate f-design scale polynomially with the num-
ber of qubits [2,3]). In particular, 1-designs are used for
encrypting quantum data [4,5]; 2-designs are used for random-
ized benchmarking [6—14], characterizing correlations within
multipartite quantum systems [15], and formulating quantum-
mechanical models of black holes [16]; 3-designs are used
for detecting entanglement [17-20] and solving black-box
problems [21]; and 4-designs are used for quantum state dis-
tinction [22] and estimating the self-adjointness of quantum
noise [23]. Higher-order ¢-designs also find applications in
noise estimation for even ¢ [24].

Two main techniques for generating exact and approximate
unitary 7-designs exist, namely, random circuit construc-
tions [2,25-27] and measurement-based techniques [3,28].
Random circuit constructions involve the application of non-
deterministic sequences of gates from a universal set. In
contrast, measurement-based techniques involve performing
deterministic sequences of single-qubit measurements on
highly entangled cluster states. Irrespective of the method
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used, experimental realizations of 7-designs are subject to
noise [29,30].

In this paper we investigate the effect of noise on the qual-
ity of unitary 7-designs for single qubits, similar to the way the
effect of noise on randomized benchmarking [31] and the vari-
ational quantum eigensolver [32] have been simulated. Since
the extent to which applications of ¢-designs are affected by
noise in the underlying 7-design is likely to differ, depending
on the application, we study the effect of noise on the quality
of ¢-designs without reference to any particular application.
We determine the effect of the bit-flip channel, the phase-flip
channel, the bit- and phase-flip channel, the phase-damping
channel, the amplitude-damping channel, and the depolarizing
noise channel on the quality 7-designs for ¢ € {1, 2, 3, 4, 5}.
To this end, we consider two noise models, one in which noise
is applied before the unitary operations of the 7-design and one
in which noise is applied after the unitary operations. This is in
line with the noise models used in randomized benchmarking
[6-14], one of the primary applications of 7-designs.

For the model where noise is applied before the unitary
operations, we are able to show analytically that the quality
of the single-qubit 1-design is completely unaffected by an
arbitrary noise channel, and for the model where noise is
applied after the unitaries, we show that the 1-design is un-
affected by noise, unless amplitude damping is applied. We
obtain numeric results for the 2-design, 3-design, 4-design,
and 5-design. These results suggest that a 2¢-design is sig-
nificantly more sensitive to noise than a (2t — 1)-design and
that, with the exception of the amplitude-damping channel,
a (2t + 1)-design is as sensitive to noise as a 2¢-design. We
also find large variations in sensitivity to noise throughout
the state space, with #-designs generally being most sensitive
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to noise for pure states and least sensitive to noise for the
maximally mixed state. The findings presented in this paper
will be helpful for researchers studying and developing appli-
cations using 7-designs under realistic conditions. While we
hope that our work will encourage research into the effect of
noise on the quality of multiqubit 7-designs, we also note that
there are many protocols which exclusively use single-qubit
t-designs [15,17,18,33] for which our results may have direct
consequences.

Our paper is structured as follows. In Sec. II we give the
definition of a unitary 7-design as well as the definitions of
the various noise channels. In Sec. III we describe the two
noise models considered. Our main numeric results for the
2-design, 3-design, 4-design, and 5-design are presented in
Sec. IV. A summary of the results and concluding remarks
are given in Sec. V. Appendixes follow, in which we present
analytic results for the 1-design and further numeric results for
the higher-order ¢-designs, as well as some important proofs.
Supplemental Material [34] is available, in which we present
and discuss complementary numeric results which give a ge-
ometric picture of the state dependence of the effect of noise
channels on the quality of single-qubit ¢-designs.

II. BACKGROUND
A. Unitary ¢-designs

An ensemble of unitary operators is an exact unitary ?-
design if its statistical moments are equal to the corresponding
statistical moments of the uniform Haar ensemble up to order
t. For any matrix p € B(H®"), with H = C? for single qubits,
the expectation of the uniform Haar ensemble is given by

Fly(p) = / U pU) dU. (1)

An ensemble of unitaries {p;, U;} is an e-approximate ¢-design
if there exists an € such that for all p € B(H®"),

(1 - Oy (0) < Y pUE p(US) < (1 +OEy(p). ()

where the matrix inequality A < B holds if B — A is positive
semidefinite [3,28]. An exact t-design can also be defined as
an e-approximate ¢-design with € = 0.

Since the positive-semidefinite property defines a par-
tial order (the Loewner order) on Hermitian matrices, the
inequality (2) is a natural generalization of an error bound
inequality from scalars to Hermitian matrices. However, an
interpretation of € in terms of defining an error range for the
Haar ensemble expectation determined with an e-approximate
t-design is unclear, as the Haar ensemble expectation £}, (p)
is a matrix comprising many different scalar entries, not a
single scalar expectation value. This is further complicated by
the fact that the inequality (2) need not be symmetric, that is,
the € required to satisfy the left inequality may differ from the
€ required to satisfy the right inequality, and only the larger
of these, which is the € required to satisfy the inequality (2),
is known. It is also unclear how € can be linked to a distance
measure. Nevertheless, it is clear that at a fundamental level,
€ quantifies an e-approximate #-design’s ability to replicate
the moments of the uniform Haar ensemble. The smallest
possible € is zero, for which we recover an exact t-design,

and any larger value quantifies the deviation from an exact
t-design, which is unbounded in theory. In practice, an ar-
bitrarily chosen bound, which depends on the application at
hand, is typically enforced [30].

Our models for a noisy ¢-design (see Sec. III) rely
heavily on the definition of an e-approximate ¢-design, as
given by inequality (2). We note that while there are many
state-independent quantifiers of the extent to which a given
ensemble of unitary operators deviates from an exact unitary
t-design, such as the frame potential [35,36], it is unclear
how these can be applied in the context of noise modeling,
since noise channels act on states and cannot be applied to the
unitary operators directly. In the next section we introduce the
noise channels that we use to study noisy ¢-designs.

B. Noise channels

The action of a noise channel on an input density matrix
p is described by a completely positive and trace-preserving
map ¢ and the output density matrix is denoted by £(p). In
what follows we consider four different types of single-qubit
noise channels. These types of noise channels occur in many
different physical systems [37].

1. Flip channels

We consider the bit-flip channel and the phase-flip channel,
as well as the bit- and phase-flip channel. The bit-flip channel
[38] is described by

e(p) = pXpX + (1 - p)p, 3

that is, a bit flip is applied to a state p with probability p. The
phase-flip channel [38] is described by

e(p) = pZpZ + (1 — p)p, 4)
that is, a phase flip is applied to a state p with probability p.
The bit- and phase-flip channel [38] is described by

e(p) = pYpY + (1 —p)p, 5)

that is, a bit and phase flip, in the form ¥ = iXZ, is applied to
a state p with probability p.

2. Phase-damping channel

Phase damping is information loss from a quantum system
without energy loss. The phase-damping channel [38] is de-
scribed by

e(p) = EopEq + Ei pE], 6)

where

B — 1 0 B = 0 0
o vi=x) "' \o Vi)
with A € [0, 1]. The advantage of this parametrization is that
it leads to a convenient description of maximal phase damping

if we set A = 1. This parametrization is related to the conven-
tional parametrization of the phase-damping channel by

e = T2, (7)
where ¢ is the time and 7, is the phase-damping time constant,
so the phase-damping rate is given by I'pp = i The parame-
ter A in the phase-damping channel is related to the parameter
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p in the phase-flip channel by
p=31+1=2). (8)

3. Amplitude-damping channel

Amplitude damping is energy loss from a quantum sys-
tem. Energy loss occurs when the computational basis state
[1) (excited state) decays into the computational basis state
|0) (ground state). The amplitude-damping channel [38] is
described by

e(p) = EopE] + E\pE], 9)

where

S )

with A € [0, 1]. This parametrization once again has the ad-
vantage that we can describe maximal amplitude damping by
setting . = 1. The parametrization is related to the conven-
tional parametrization of the amplitude-damping channel by

e = 1=, (10)
where ¢ is the time and 7 is the amplitude-damping time
constant, so the amplitude-damping rate (decay rate) is given
by FAD = ﬁ

4. Depolarizing noise channel

Depolarizing noise is another common type of noise. It
is the simplest noise model for incoherent gate errors on
noisy intermediate-scale quantum computers such as the IBM
quantum processors [30,39]. The depolarizing channel [38] is
described by

£(p) = §1+ (1 = p)p, (11)

that is, a state p is replaced by the maximally mixed state with
probability p. This channel can also be written as

e(p) = ’3_’(xpx +YpY +2p2)+ (1 —pp,  (12)

that is, in the depolarizing channel, a bit flip, a phase flip,
and a bit and phase flip are each applied with probability ’g’
Specialized error mitigation techniques are available to reduce
the effect of depolarizing noise on quantum computers [40].
However, these methods can only be applied in applications
of #-designs where the final outcome is an expectation value.

III. NOISE MODELING

Our models for a noisy #-design use an adapted form
of inequality (2), the defining inequality for an approximate
t-design. Even though the definition applies to any den-
sity matrix in B[(C*)®'], we restrict our noise models to
density matrices which are ¢ copies of an arbitrary single-qubit
density matrix, as was done in our previous work [30]. This
has two major benefits, namely, that numeric results can be ob-
tained efficiently for all 7, since the number of parameters that
need to be varied when creating samples of density matrices
remains constant with increasing ¢, and that numeric results
can be analyzed geometrically, since single-qubit states can

be represented by points in the Bloch sphere. We therefore
quantify the effect of a noise channel ¢ on the quality of an
exact single-qubit z-design {p;, U;} using the smallest possible
€ such that the inequality

(1 — e, (o) < By (p) < (14 ), (o) (13)

holds for all single-qubit density matrices p. This € quantifies
the noisy #-design’s ability to replicate the moments of the
uniform Haar ensemble and represents a lower bound in the
more general definition of an approximate ¢-design where p €
BL(C*H®].

The definition of [E},(,o) depends on the noise model.
Inspired by the noise models typically used in randomized
benchmarking [6-14], we consider a noise model in which
noise is applied before the unitary operations, for which we
define

E () =) pilUie(0)U1®, (14)

as well as a noise model in which noise is applied after the
unitary operations, for which we define

E(0) =Y pileUipU®". (15)

In both models, the same noise channel ¢ is applied to each
single-qubit state in the 7-fold tensor product. Both noise mod-
els are well defined in the sense that the value of € obtained is
independent of the choice of ensemble and a general property
of the 7-design for a given ¢. This is proven in Appendix A.

Based on the fact that for ¢+ > 2 a ¢-design transforms any
noise channel into a depolarizing channel [6-8,12—-14], one
might expect our two noise models to be equivalent. However,
since we are studying the effect of a noise channel on the qual-
ity of a t-design, not the effect of a 7-design on a noise channel,
equivalence of the noise models is a question of whether the
noisy Haar ensemble expectations given by Eqs. (14) and (15)
are equal, not a question of whether the resulting depolarizing
channels are equal for the two models. Our noise models
are therefore not generally equivalent. Furthermore, the 7-fold
tensor product makes it difficult to find a relation between the
two noisy Haar ensemble expectations by commuting noise
through the unitary operations.

We note that a third noise model, in which noise is applied
during the unitary operations, could also be considered due to
the finite time duration for these operations in an experimental
realization. However, this is dependent on the method used to
implement the unitaries in an experiment (e.g., with control
pulses) and so we focus on the former two models which are
implementation independent.

IV. RESULTS

Analytic results for the 1-design are presented in
Appendix B. For the model where noise is applied before
the unitary operations, we were able to show that the qual-
ity of the 1-design is completely unaffected by an arbitrary
noise channel, and for the model where noise is applied after
the unitaries, we showed that the quality of the 1-design is
unaffected by noise, unless amplitude damping is applied.
Furthermore, we showed that € = A quantifies the effect of
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the amplitude-damping channel on the quality of the 1-design
for the model where noise is applied after the unitaries.

When s > 1, E},(p®") depends on the state p, which makes
it very difficult to obtain results analytically, since the inequal-
ity (13) contains variables other than € and the noise parameter
(p or A) and so it is difficult to obtain an expression for € in
terms of the noise parameter. Numeric results were therefore
obtained for the 2-design, 3-design, 4-design, and 5-design.
Few exact single-qubit #-designs exist for > 5 and so it is
hard to obtain results for ¢ > 5. It is also of little interest
at present, since there are only a few known applications of
t-designs for t > 4.

With the notable exception of the amplitude-damping
channel, numeric results obtained for the 3-design are iden-
tical to those obtained for the 2-design and numeric results
obtained for the 5-design are identical to those obtained for
the 4-design. Hence, in the sections which follow and in the
Appendixes and Supplemental Material [34] referenced, we
only present numeric results for the 2-design and the 4-design,
unless amplitude damping was applied.

A. Implementation

To obtain numeric results we require samples of single-
qubit density matrices. In our previous work [30], in which
we numerically investigated the effect of depolarizing noise
on the quality of the 2-design and the 3-design, we found
that the € needed to satisfy the inequality (13) for pure states
is very large even for small values of the depolarizing noise
parameter p [see Eq. (11)]. For a comprehensive numerical
investigation, we therefore do not simply consider a sample
of single-qubit density matrices distributed over the entire
Bloch sphere, but rather consider various samples of density
matrices restricted to different regions of the Bloch sphere.
Opening the study of noise in regions of the Bloch sphere
may provide useful information that could be used in specific
applications of z-designs, for instance, those where the full
state space is not required.

To generate a sample of density matrices, we first generate
11 evenly spaced values of € [0, /], 11 evenly spaced values
of 6 €[0,6,], and 11 evenly spaced values of ¢ € [0, ¢,],
where ry, 6;, and ¢, are the points of truncation of the radial
coordinate, the polar angle, and the azimuthal angle, respec-
tively. Together these truncation points define the region of
the Bloch sphere being considered. Unless stated otherwise,
rr=1, 6, =m, and ¢, = 2w were used so that the entire
Bloch sphere was considered. We then convert all 11° = 1331
possible combinations of the generated values of the spherical
coordinates (r, 6, ¢) into the Cartesian coordinates (x,y, z)
using

x =rsinfcos¢, y=rsinfsing, z =rcosb

and obtain a sample of 1331 density matrices using [41]

14z x—iy
p—5<x+iy 1—-z) (16)

Givent € {2, 3, 4, 5}, a noise channel, a noise model, and
a sample of density matrices, we obtain € numerically as
follows. For each single-qubit density matrix p in the sample,
we calculate £, (p®") and LY, (p) using the icosahedral group

[42] (an exact unitary 5-design and therefore also an exact
unitary ¢-design for any ¢ < 5) and determine the smallest
possible € such that the inequality (13) is satisfied. The largest
€ found is the smallest possible € such that the inequality (13)
holds for all density matrices in the sample and is therefore
the value with which we quantify the effect of the given noise
channel on the quality of the #-design.

B. Numeric results

This section covers numeric results obtained for the model
where noise is applied before the unitary operations. Numeric
results obtained for the model where noise is applied after
the unitary operations follow similar trends for a given noise
channel and are presented in Appendix C. The primary dif-
ference is that the values of € obtained for a given ¢ and
noise parameter (p or A) are generally slightly smaller for the
model where noise is applied after the unitary operations. For
the depolarizing noise channel, we prove in Appendix D that
the values of € obtained for the two noise models are equal,
and for the other noise channels, numeric results obtained
for the model where noise is applied after the unitary oper-
ations reflect the transformation of the noise channel into a
depolarizing noise channel, an effect exploited in randomized
benchmarking with 2-designs [6-8,12—14].

1. Flip channels

The effect of the bit-flip channel [see Eq. (3)] on the quality
of the 2-design is shown in Fig. 1(a). For each truncation
radius considered (truncation angles fixed at 6, = 7 and ¢, =
2m), € versus p is a parabola with maximum at p =0.5.
The maxima increase with increasing truncation radius, which
shows that as the set of states considered is expanded to
include states closer to the pure states at r; = 1, the 2-design
becomes more sensitive to bit flips. The symmetry of € versus
p around p = 0.5 can be explained as follows. Note that states
along the x axis of the Bloch sphere, which are eigenstates
of the Pauli X operator, are unaffected by bit flips. However,
applying a bit flip to a state off the x axis and its reflection
in the x axis with probability p < 0.5 shifts both states by the
same distance towards the x axis of the Bloch sphere. On the
other hand, applying a bit flip to the state and its reflection
with probability p’ = 1 — p > 0.5 shifts the state across the
x axis, to where its reflection was shifted when applying a bit
flip with probability p, and shifts the state’s reflection to where
the state was shifted when applying a bit flip with probability
p. Therefore, applying a bit flip to all states in a sphere of
radius r; with probability p results in the same set of states as
applying a bit flip to all states in that sphere with probability
1 — p. Since € must ensure that the inequality (13) is satisfied
for all states considered, ¢ depends only on the effect of the
bit-flip channel on the set of states in the sphere considered
(not on the effect on individual states). Hence the € computed
for a bit flip with probability p is equal to the € computed for
a bit flip with probability 1 — p, so € versus p is symmetric
about p = 0.5.

The effect of the bit-flip channel on the quality of the 4-
design is shown in Fig. 1(b). For each truncation radius, the
maximum of € versus p still occurs at p = 0.5, but € versus p
now has a more sinusoidal shape. The values of € obtained for
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FIG. 1. Effect of the bit-flip channel [see Eq. (3)] on the quality of the (a) 2-design and (b) 4-design for the model where noise is applied

before the unitary operations, for different truncation radii ;.

the 4-design are up to an order of magnitude larger than those
obtained for the 2-design, for a fixed p and r;. This shows that
the 4-design is significantly more sensitive to bit flips than the
2-design. To visualize the variation in sensitivity, we plot €
versus ¢ for p = 0.5. As can be seen in Fig. 2, € versus 7 is
a step function. There is no increase in sensitivity to bit flips
fromt =2tot =3 or fromt =4 tot =35, but a significant
increase in sensitivity from¢ =3 tot = 4.

Numeric results obtained for the phase-flip channel [see
Eq. (4)] and the bit- and phase-flip channel [see Eq. (5)] are
identical to those obtained for the bit-flip channel [shown in
Figs. 1(a), 1(b), and 2]. To further investigate similarities and
differences in the effect of these three channels on the quality
of t-designs, we determine and visualize the region of the
Bloch sphere (which we will refer to as the region of accept-
able quality) for which a noisy #-design is able to replicate
the moments of the uniform Haar ensemble, with a predefined
accuracy, up to order ¢. This investigation is presented in the
Supplemental Material, Sec. I [34]. For each of the three flip
channels, we find that the shape of the region of acceptable
quality is similar to the shape into which the Bloch sphere
is deformed by the relevant channel. For example, the region
of acceptable quality is an ellipsoid along the x axis for the
bit-flip channel. Since bit flips are performed by applying the

30

25 - /

FIG. 2. Plot of € versus ¢ for the bit-flip channel with p = 0.5
[see Eq. (3)] for the model where noise is applied before the unitary
operations, for different truncation radii r,.

Pauli X operator to a state, states along the x axis, which
are closer to the eigenstates of the Pauli X operator, are less
affected by bit flips and so the quality remains acceptable for
states along the x axis even for a large bit-flip probability.
The regions of acceptable quality for the three flip channels
are thus identical up to a rotation, for a fixed p and ¢, which
explains why e versus p is the same for all three flip channels,
for a fixed r, and ¢, as the full range of 6 and ¢ is considered.

To further analyze the dependence of € versus p on the
region of the Bloch sphere considered, we vary the truncation
of the polar angle ¢, and the truncation of the azimuthal angle
¢,. These investigations are included in the Supplemental
Material, Secs. II and III [34], respectively. We find that the
phase-flip channel is the only flip channel for which € versus
p has a nontrivial dependence on 6;. As 6; is increased from
0 to 7, the sample of density matrices is expanded to include
states which are further from the eigenstates of the Pauli Z
operator and therefore more sensitive to phase flips, which
results in a nontrivial dependence for the phase-flip channel.
On the other hand, the states along the positive z axis, which
are among the furthest from the eigenstates of the Pauli X
and Y operators, and therefore among the most sensitive to
bit flips, and bit and phase flips, are included in the sample
of density matrices for all 6, and so the results for the bit-flip
channel and the bit- and phase-flip channel are independent of
6;. The results are independent of ¢, for all three flip channels.
For the bit-flip channel and the bit- and phase-flip channel, this
can be attributed to the fact that the states along the positive
z axis are included in the sample of density matrices for all
¢,. For the phase-flip channel, the independence of ¢, can be
attributed to the fact that the smallest € such that the inequality
(13) holds for a given state remains unchanged when that state
is rotated about the z axis.

2. Phase-damping channel

The effect of the phase-damping channel [see Eq. (6)] on
the quality of the 2-design is shown in Fig. 3(a). For each trun-
cation radius, € increases linearly with A. The linear relation
between € and the parameter A in the phase-damping channel
can be attributed to the fact that both ¢ and A are quadratic
functions of the parameter p in the phase-flip channel [see
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FIG. 3. Effect of the phase-damping channel [see Eq. (6)] on the quality of the (a) 2-design and (b) 4-design for the model where noise is

applied before the unitary operations, for different truncation radii r,.

Fig. 1(a) and Eq. (8), respectively]. The gradient of € versus A
increases with increasing truncation radius, similar to the way
in which the maximum of € versus p increases with increasing
truncation radius for the phase-flip channel.

For the 4-design, € versus A has a more exponential shape
[see Fig. 3(b)]. For a fixed A, € versus ¢ is a step function,
as shown in Fig. 4, just as € versus ¢ is a step function for a
fixed phase-flip probability p. We also investigate variations
in sensitivity to phase damping throughout the Bloch sphere.
We find that both the shape of the region of acceptable quality
and the dependence of € versus A on 6, and ¢, are similar to
those of the phase-flip channel (see the Supplemental Material
[34]).

3. Amplitude-damping channel

The effect of the amplitude-damping channel [see Eq. (9)]
on the quality of the 2-design is shown in Fig. 5. For the most
part, € versus A is a parabola with maximum either at or close
to A = 0.5, but an anomaly occurs for large A and small r,,
where at a given A, the trend spontaneously changes to strictly
increasing. Just as for the bit-flip channel, the maxima of €
versus A increase with increasing truncation radius. The sim-
ilarities to the bit-flip channel are to be expected, considering

30
bl ot =050 J
x 1y =0.70
20 + Ty = 0.80
* 1, =0.90
w15 A 1, =095
m =099
10 1
5-

FIG. 4. Plot of € versus ¢ for the phase-damping channel with
A = 0.5 [see Eq. (6)] for the model where noise is applied before the
unitary operations, for different truncation radii r,.

that the amplitude-damping channel actually performs a bit
flip on the state | 1) with a given probability (the difference be-
ing that the state |0) is never flipped by the amplitude-damping
channel). Bearing in mind that the amplitude-damping chan-
nel shrinks and shifts any subsphere of states in the Bloch
sphere up to the state |0), the anomaly can be interpreted as
follows for a given r,. At the turning point of € versus A, the
south pole of the shifted sphere crosses that sphere’s initial
equator. The anomaly, where the trend changes to strictly
increasing, occurs at the point where the south pole of the
shifted sphere crosses its initial north pole. In the limit A — 1
(maximal amplitude damping), all spheres are reduced to the
state |0), which explains why € = 1 forall r; at A = 1.

Just as for the other noise channels, numeric results ob-
tained for the 3-design are identical to those obtained for the
2-design. The effect of the amplitude-damping channel on the
quality of the 4-design is shown in Fig. 6. The maxima of €
versus A occur at the same values of A as for the 2-design, and
the anomaly still occurs for large A and small r,, but € versus
A has a more sinusoidal shape. Numeric results obtained for
the 5-design are almost identical to those obtained for the 4-
design. The only difference is that for the 4-design € increases
to 2.20 as A — 1, whereas for the 5-design € increases to 4.33
as . — 1. We compare the values of ¢ obtained for different
t-designs, for a fixed A and r,, by plotting € versus ¢ for
different truncation radii, each time using the turning point of
€ versus A as our fixed value of A (see Fig. 7). We find that €
versus ¢ is once again a step function and see a significant
increase in sensitivity to amplitude damping from ¢ = 3 to
t = 4. However, we note that for larger A and smaller r, there
is also a slight increase in sensitivity to amplitude damping
from t = 4 to t = 5. The region of acceptable quality for the
amplitude-damping channel and the dependence of ¢ versus A
on 6, and ¢, are analyzed in the Supplemental Material [34].

4. Depolarizing noise channel

Finally, the effect of the depolarizing channel [see Eq. (11)]
on the quality of the 2-design is shown in Fig. 8(a). These
results have previously been published as part of the supple-
mentary information for Ref. [30]. For each truncation radius
considered, € increases linearly with p, up to about p = 0.4,
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FIG. 5. Effect of the amplitude-damping channel [see Eq. (9)] on the quality of the 2-design for the model where noise is applied before
the unitary operations, for different truncation radii r,. The full set of results is shown on the left and the region in which the anomaly occurs

is shown enlarged on the right.

after which the increase becomes more gradual. In Fig. 8(b)
we see that for the 4-design, € first increases rapidly with
p and then increases linearly with p for p € [0.3,0.6], after
which the increase becomes more gradual. Just as for all the
other noise channels, the values of € obtained for the 4-design
are up to an order of magnitude larger than those obtained for
the 2-design, for a fixed p and r,, once again confirming that
the 4-design is significantly more sensitive to noise than the
2-design. As expected, € versus ¢ is a step function for a fixed
p and r; (see Fig. 9).

As illustrated in the Supplemental Material, Sec. I [34],
the region of acceptable quality for the depolarizing noise
channel has a spherical shape. As such, the numeric results
obtained for € versus p are independent of 6, and ¢, (see the
Supplemental Material, Secs. II and III [34], respectively).

V. CONCLUSION

We studied the effect of different types of noise on the
quality of single-qubit 7-designs. While we hope that our
study will encourage research into the effect of noise on
the quality of multiqubit ¢-designs, we also note that there
are many protocols which exclusively use single-qubit #-
designs [15,17,18,33] for which our work may have direct
consequences. The noise channels we investigated are the

bit-flip channel, the phase-flip channel, the bit- and phase-flip
channel, the phase-damping channel, the amplitude-damping
channel, and the depolarizing noise channel. We quantified
the effect of a noise channel on the quality of a 7-design
using the smallest possible € such that a test inequality,
adapted from the defining inequality for an e-approximate
t-design, holds for all density matrices in a given sample.
Two noise models were considered, namely, a noise model
in which noise is applied before the unitary operations and
a noise model in which noise is applied after the unitary
operations, in line with the noise models used in randomized
benchmarking [6-14].

We showed analytically that for the model where noise is
applied before the unitary operations, the quality of the 1-
design is completely unaffected by an arbitrary noise channel,
and for the model where noise is applied after the unitaries, the
quality of the 1-design is unaffected by noise, unless ampli-
tude damping is applied (see Appendix B). For the 2-design,
3-design, 4-design, and 5-design, results were obtained nu-
merically using the icosahedral group [42]. With the exception
of the amplitude-damping channel, € versus 7 is a step function
for a fixed p or A. We saw a significant increase in sensitivity
to noise from # = 1 to + = 2 and an even larger increase in
sensitivity to noise from ¢t = 3 to ¢t = 4, but no increase in
sensitivity to noise from t =2 to t =3 or from t =4 to
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v o604 | Fa v

1.0
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FIG. 6. Effect of the amplitude-damping channel [see Eq. (9)] on the quality of the 4-design for the model where noise is applied before
the unitary operations, for different truncation radii r,. The full set of results is shown on the left and the region in which the anomaly occurs
is shown enlarged on the right.
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FIG. 7. Plot of € versus ¢ for the amplitude-damping channel,
with the parameter A [see Eq. (9)] taken to be the turning point of
€ versus A, for the model where noise is applied before the unitary
operations, for different truncation radii ;.

t = 5, unless amplitude damping was applied. Based on these
results, we conjecture that for any ¢, a (2¢ 4+ 1)-design is as
sensitive to noise as a 2¢-design, for any noise channel which
deforms the Bloch sphere, but does not shift the Bloch sphere.
While it may be possible to prove this with induction on
t using recently discovered random circuit constructions for
exact t-designs [23], such a proof evaded the authors. Further
work in this direction is needed. Developing and studying
noise models which use the definition of a #-design in terms of
a polynomial function [6] may also help to uncover this even
versus odd behavior.

For all the noise channels considered and for both noise
models, € increases with increasing truncation radius, for a
fixed ¢ and noise parameter (p or A). Hence ¢-designs become
increasingly sensitive to noise as the set of states considered is
expanded to include states further from the maximally mixed
state at r, = 0 (for which the sensitivity to noise is least) and
closer to the pure states at r; = 1 (for which the sensitivity
to noise is greatest). To further investigate variations in sen-
sitivity to noise throughout the Bloch sphere, we determined
the region of acceptable quality (region of the Bloch sphere
for which a noisy #-design is able to replicate the moments of
the uniform Haar ensemble, with a predefined accuracy, up to
order ¢) for each of the noise channels (see the Supplemental
Material, Sec. I [34]). For the model where noise is applied
before the unitary operations, the shape of the region of ac-
ceptable quality for each noise channel is similar to the shape
into which the Bloch sphere is deformed by the relevant noise
channel.

For the model where noise is applied after the unitary
operations, the region of acceptable quality has a spherical
shape for all the noise channels considered. Hence our nu-
meric results reflect the transformation of a noise channel
into a depolarizing channel, an effect exploited in random-
ized benchmarking with 2-designs [6-8,12—14], when the
noise is applied after the unitary operations. For the depo-
larizing noise channel, our two noise models are equivalent
(proven in Appendix D). For the other noise channels, 7-
designs generally show reduced sensitivity to noise for the
model where noise is applied after the unitary operations (see
Appendix C), which seems to suggest that the process by

which a noise channel is transformed into a depolarizing chan-
nel (so the quality of 7-designs is affected equally for all states
at a given radial distance from the maximally mixed state)
mitigates the effect of the noise channel on the quality of ¢-
designs. Future work going beyond states that are #-fold tensor
products of single-qubit states and their geometric interpreta-
tion, as well as investigations into the effect of noise on the
quality of multiqubit #-designs, will help to elucidate further
behavior of ¢-designs under the effects of noise. This kind of
work will be helpful for researchers studying and developing
applications using ¢-designs under realistic conditions.
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APPENDIX A: PROOF OF WELL-DEFINEDNESS
OF NOISE MODELS

Let {p;, U;} and {q;, V;} be exact unitary 7-designs and let

e(p) = ) EwpE] (A1)
k

be a noise channel. We note that

E (o) =Y piUipUDH® =Y qi(VipViH®  (A2)

by the definition of an exact unitary #-design. Let [E;,_ v (p)and
[E;,,V(p) denote {4, (p) determined using {p;, U;} and {g;, Vi},
respectively, each with noise applied. For both noise models,
we will show that £, ,(p) = £, (p) for all p, from which it
follows that the smallest e such that the inequality (13) holds
for all density matrices is the same for the two ensembles.

1. Proof for the model where noise is applied
before the unitary operations

Let p be a density matrix. Since &(p) is also a density
matrix, it follows from Eq. (14) that £}, ;,(p) = Ej,{[£(0)]®'}

and £, (p) = By {[e(p)]'}, so that B, ;;(p) =y (p).

2. Proof for the model where noise is applied
after the unitary operations

Let p be a density matrix. Substituting Eq. (Al) into
Eq. (15) and using the algebraic properties of the tensor prod-
uct, we obtain

1t
Eyu(p) =) pi (Z EkU,-pU;E;>
i k
=> piy. Y Y EUpUE]

i ki ko ki

® ELUipUEl ® -+ ® E, U;pU['E]
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=y > - ZZp, ®Ek WipU;®"

ki ke

t
®E,jf . (A3)
=1

Multiplying both sides of Eq. (A2) by ®’j:1 Ey; from the left
and by ®'_, Eij from the right, we get

i

t t
Y ori| Q& |Uipu)H® [ QE
j=1 j=1

t t
=D 4| QE, |VieV ¥ | QE | (A4
i j=1 j=1

30

FIG. 9. Plot of € versus ¢ for the depolarizing noise channel with
p = 0.5 [see Eq. (11)] for the model where noise is applied before
the unitary operations, for different truncation radii r,.

Performing a term-by-term replacement in the 7-fold summa-
tion of Eq. (A3) by substituting in Eq. (A4) yields

FMOED S ZZ% ®Ek (VipVH®'

ko ke

t
QE |- (AS)
j=1

from which it follows that £, (o) = £}, (p) if we then
perform our original calculation in Eq. (A3) in reverse.

APPENDIX B: ANALYTIC RESULTS FOR THE 1-DESIGN

Using the Pauli 1-design, one can show that E}(p) = %I
for all density matrices p. Let

e(p) = ) EwpE] (B1)
k

be an arbitrary noise channel. For the model where noise is
applied before the unitary operations, we will show that the
quality of the 1-design is completely unaffected by an arbi-
trary noise channel, and for the model where noise is applied
after the unitary operations, we will show that the quality of
the 1-design is unaffected by noise, unless amplitude damping
is applied.

1. Analytic results for the model where noise
is applied before the unitary operations

For any density matrix p, s(,o) is a density matrix and so it
follows from Eq. (14) that £l n(p) = [E1 [e(p)] = 11 It there-
fore follows that the mequahty (13) can be satlsﬁed withe =0
and so the quality of the 1-design is completely unaffected by
an arbitrary noise channel.
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2. Analytic results for the model where noise is applied
after the unitary operations

Let p be a density matrix and let {p;, U;} be an exact 1-
design. Substituting Eq. (B1) into Eq. (15), we have

Er(0) = ZP[ ZEkUiPU[TE/j
i k

= Z Ex (Z P:‘UM)U,-T)E;(T
k i
ZE,((%I)E:
k

% > EE]
k

1
——

2
where we have recognized [E,],(p) = %I and assumed that E;
are Hermitian matrices, which is the case for all the noise
channels defined in Sec. II B except the amplitude-damping
channel. Hence, the inequality (13) can again be satisfied with
€ = 0 for all the noise channels defined in Sec. II B except the
amplitude-damping channel.

For the amplitude-damping channel, we have

(B2)

5 1 s 1/1+x 0

[E},(P)zEXk:EkEkzz( 0 1—1)’ (B3)
and so

5 1

[Eb(p)—(l—e)[E;,(p):5(“5A 6%). (B4)

It follows that for (1 — e)[E},(,o) < [~E}L,(p) to hold, we
must have € > A, so all the eigenvalues of [~E}q(p) —(1 -
€)EL(p) are non-negative, which ensures that £},(p) — (1 —
6)[E,', (p) is positive semidefinite. Similarly, € > X ensures that
[~E}L,(,0) <A+ e)[},(p) holds. Hence, the inequality (13) can
be satisfied with € = A for the amplitude-damping channel
and so € = A quantifies the effect of the amplitude-damping
channel on the quality of the 1-design for the model where
noise is applied after the unitary operations.

APPENDIX C: NUMERIC RESULTS FOR THE MODEL
WHERE NOISE IS APPLIED AFTER THE UNITARY
OPERATIONS

1. Flip channels

The effect of the bit-flip channel [see Eq. (3)] on the
quality of the 2-design is shown in Fig. 10(a). For the model
where noise is applied after the unitary operations, € versus
p is a parabola with maximum at p = 0.5, just as for the
model where noise is applied before the unitary operations
[see Fig. 1(a)]. However, the values of € obtained for a given
p and r; are slightly smaller than those obtained for the model
where noise is applied before the unitaries. For the 4-design, €
versus p for the model where noise is applied after the unitary
operations has the same sinusoidal shape as for the model
where noise is applied before the unitaries [see Fig. 1(b)], but
the values of € are slightly smaller, just as for the 2-design.
Hence ¢-designs show reduced sensitivity to bit flips when
applied after the unitary operations.

Numeric results obtained for the phase-flip channel [see
Eq. (4)] and the bit- and phase-flip channel [see Eq. (5)] are
identical to those obtained for the bit-flip channel [shown in
Fig. 10(a)]. We again investigate similarities and differences
by determining the regions of acceptable quality (see the Sup-
plemental Material, Sec. I [34]). For all three flip channels,
the region of acceptable quality has a spherical shape, that
is, it is similar in shape to the region of acceptable quality
for the depolarizing noise channel for the model where noise
is applied before the unitary operations. Hence, we observe
the transformation of each of the three flip channels into a
depolarizing channel when the flip channels are applied to
states which have been randomized by the unitary operators,
which explains why the results are the same for all three
flip channels. A 2-design’s ability to transform an arbitrary
noise channel into a depolarizing noise channel is exploited in
randomized benchmarking [6-8,12—14].

2. Phase-damping channel

For the phase-damping channel [see Eq. (6)], € versus A
for the model where noise is applied after the unitary oper-
ations has the same shape as for the model where noise is
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applied before the unitary operations, for both the 2-design
[shown in Fig. 10(b)] and the 4-design, but the values of €
are slightly smaller for the model where noise is applied after
the unitaries. Just as for the phase-flip channel, the region
of acceptable quality for the phase-damping channel has a
spherical shape for the model where noise is applied after the
unitaries (see the Supplemental Material, Sec. I [34]).

3. Amplitude-damping channel

For the amplitude-damping channel [see Eq. (9)], € versus
A for the model where noise is applied after the unitary oper-
ations is once again similar to € versus A for the model where
noise is applied before the unitary operations, for the 2-design
[shown in Fig. 11(a)], the 3-design [shown in Fig. 11(b)],
the 4-design, and the 5-design. The most notable differences
are that the values of € at the maxima are much smaller, the
value of € attained for A = 1 is much larger, and the anomaly
occurs for much smaller A and much larger r; for the model
where noise is applied after the unitary operations. It is also
worth noting that numeric results obtained for the 3-design
differ significantly from those obtained for the 2-design [see
Figs. 11(a) and 11(b)] and that numeric results obtained for
the 5-design differ significantly from those obtained for the
4-design. The regions of acceptable quality are once again
discussed in the Supplemental Material, Sec. I [34].

4. Depolarizing noise channel

For the depolarizing noise channel, we were able to show
that the values of ¢ obtained for the two noise models are
equal. The proof is given in Appendix D.

APPENDIX D: PROOF OF EQUIVALENCE OF NOISE
MODELS FOR THE DEPOLARIZING NOISE CHANNEL

Let {p;, U;} be an exact unitary ¢-design. For the model
where noise is applied before the unitary operations, we sub-
stitute Eq. (11) into Eq. (14) to obtain

B0 = Y pi[ui(Br+ - o)y ]

P N\ &
=Y n(51+a-pueyf) . ©
and for the model where noise is applied after the unitary
operations, we substitute Eq. (11) into Eq. (15) to obtain

By =Y n(5r+a-pupr)”. o2

Hence, for the depolarizing noise channel, [NE’H(p) is the same
for the two noise models, so the smallest € such that the
inequality (13) holds for all density matrices is the same for
the two noise models.
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