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Analysis of loss correction with the Gottesman-Kitaev-Preskill code
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The Gottesman-Kitaev-Preskill (GKP) code is a promising bosonic quantum error-correcting code, encoding
logical qubits into a bosonic mode in such a way that many physically relevant noise types can be corrected
effectively. A particularly relevant noise channel is the pure loss channel, which the GKP code is known to protect
against. In particular, it is commonly pointed out that losses can be corrected by the GKP code by transforming
the losses into random Gaussian displacements through a quantum-limited amplification channel. However,
implementing such amplification in practice is not ideal and could easily introduce an additional overhead of
noise from associated experimental imperfections. Here, we analyze the performance of teleportation-based
GKP error correction against loss in the absence of an amplification channel. We show that amplification is not
required to perform GKP error correction and that performing amplification actually worsens the performance
for practically relevant parameter regimes.
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I. INTRODUCTION

Efficient quantum error correction (QEC) is essential for
overcoming inherent gate errors and scaling up quantum
computers. One promising QEC technique that has gained
increased interest in recent years is bosonic QEC, in which
each qubit is encoded into a harmonic oscillator [1–5].
This allows for an error-correctable logical qubit to be
defined within a single physical mode, providing a hardware-
efficient approach to fault-tolerant quantum computing. The
Gottesman-Kitaev-Preskill (GKP) code [1,6] is a bosonic
code which is particularly relevant for optical systems [7,8],
as gates, error correction, and measurements can all be carried
out efficiently with Gaussian interactions. Although it is a
daunting task to generate the non-Gaussian GKP basis states
on an optical platform, it is likely that they will become avail-
able in the future, e.g., using one of the numerous proposed
protocols [7,9–16].

The dominant type of noise in typical optical systems is
loss. This loss can arise from physical components like delay
lines, beam splitters, and couplers. Additionally, it can be a
result of inherent by-products from gate operations, especially
in teleportation-based architectures where finite-squeezing ef-
fects are present [17].

The GKP code is designed to correct small phase-space
displacement errors, and since any channel can be expanded
in terms of such displacements [1], the GKP code is, in prin-
ciple, capable of correcting many different types of errors,
provided the expansion contains only small displacements.
Unfortunately, the loss channel, as well as the physically
relevant dephasing channel, is not expanded only in terms
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of small displacements [18]. For example, the loss channel
with transmissivity η acting on a coherent state reduces the
amplitude as α → √

ηα = α − (1 − √
η)α, corresponding to

a displacement of magnitude (1 − √
η)α. Thus, the magnitude

of the displacement can be arbitrarily large for any η < 1 if
α is sufficiently large. On the other hand, if α is small, the
magnitude of the displacement will also be small even for
small η. This simple example shows that the severity of the
loss channel depends not only on the strength of the channel
but also on the size of the input state; that is, states containing
many photons will experience larger displacements than states
containing fewer photons [18]. This results in an interesting
trade-off for GKP-encoded states since the intrinsic properties
of GKP states are generally improved by considering states
containing higher photon numbers. Nonetheless, it has been
shown numerically that the GKP code performs well against
loss and in some aspects outperforms the cat [19–21] and
binomial codes [22], which are designed specifically to protect
against the loss channel [2]. Furthermore, GKP states contain-
ing more photons always seem to perform better against loss
than GKP states containing fewer photons [2,23].

So far, the question of how to correct loss with the GKP
code in practice is usually answered by the statement that
loss can be transformed into a random Gaussian displace-
ment channel by adding a quantum-limited phase-insensitive
amplification channel. The effect of the random Gaussian
displacement channel is to randomly displace the input state
by a magnitude that is independent of the state, and there-
fore, increasing the photon number of the GKP state has
no negative side effects for this channel, thus resolving the
problem of potentially large displacements. However, imple-
menting a strictly quantum-limited amplification channel is
highly challenging in practice and will inevitably introduce
an additional overhead of noise. Additionally, it is not clear
whether practically relevant GKP states are so large that the
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displacement associated with loss cannot be corrected without
amplification. Even the ideal quantum-limited amplification
channel will add noise to the state [24], and so it is important
to consider whether this added noise contributes more logical
errors than what is avoided by applying the amplification in
the first place.

Recently, a method to correct loss on GKP states without
amplification was proposed by Fukui et al. [25] in the context
of a long-distance communication protocol. In that work, the
authors showed that if the loss is distributed evenly between
the input mode to be corrected and the ancilla used for QEC,
the combined noise on the two modes will be equivalent to
a random Gaussian displacement on the input mode. Further-
more, this approach was shown to outperform strategies based
on amplification in this particular setting. However, in other
settings, such as in a quantum computer, one would likely
be unable to redistribute the loss between the encoded state
and the QEC ancilla states, and therefore, this strategy is not
universally applicable.

In this work we quantify the performance of GKP QEC
against losses both with and without added amplification. Our
analysis shows that for practically relevant states, i.e., GKP
squeezing levels below 15–20 dB, the application of an am-
plification channel introduces more errors than it fixes. Thus,
one does not have to, and should not, worry about implement-
ing efficient quantum-limited amplification to take advantage
of the GKP encoding against loss. Our analysis is inspired
and enabled by recent developments in the phase-space
description of GKP states [26–29]. We note that a comple-
mentary extensive noise analysis of several bosonic codes,
including the GKP code, was recently presented by Hill-
man et al. [30]. However, their analysis was limited to GKP
states with squeezing less than 10 dB due to computational
constraints.

II. PRELIMINARIES

We consider bosonic modes with position and momentum
operators denoted q̂ and p̂, using the scaling convention of
[q̂, p̂] = i, corresponding to h̄ = 1. Ideal square GKP states
can be defined as superpositions of position eigenstates at
integer multiples of

√
π :

|0L〉 =
∑
s∈Z

|2s
√

π〉q, (1a)

|1L〉 =
∑
s∈Z

|(2s + 1)
√

π〉q. (1b)

These states are not normalizable and thus are nonphysical.
However, we can use them to mathematically construct physi-
cally valid states with the nonunitary photon-number-damping
operator e−εn̂:

|0ε
L〉 = e−εn̂|0L〉, (2a)

|1ε
L〉 = e−εn̂|1L〉, (2b)

where n̂ = 1
2 (q̂2 + p̂2 − 1) is the number operator and ε

denotes the strength of the damping. These states are
composed of squeezed peaks in phase space of variance
1
2 tanh(ε) [29,31], such that the squeezing level compared
to vacuum in decibels is given by −10 log10[tanh(ε)].

Furthermore, peaks far from the origin are dampened by a
Gaussian envelope of width 1

2 tanh(ε)−1, ensuring that the
states have finite energy. Another subtle effect of the operator
e−εn̂ is that the positions of the peaks are slightly reduced by a
factor sech(ε) ≈ 1 − 1

2ε2 in both quadratures [32]. The states
of Eq. (2) approach the ideal GKP states of Eq. (1) in the limit
of ε → 0.

We will refer to the finite-energy GKP states simply as
GKP states in the remainder of this paper, with the superscript
ε reminding us that these are not ideal GKP states. We now
use |0ε

L〉 and |1ε
L〉 to define a logical GKP identity operator

Iε ≡ σ ε
0 ≡ ∣∣0ε

L

〉〈
0ε

L

∣∣ + ∣∣1ε
L

〉〈
1ε

L

∣∣, (3a)

as well as logical Pauli operators

X ε ≡ σ ε
1 ≡ ∣∣1ε

L

〉〈
0ε

L

∣∣ + ∣∣0ε
L

〉〈
1ε

L

∣∣, (3b)

Y ε ≡ σ ε
2 ≡ i

∣∣1ε
L

〉〈
0ε

L

∣∣ − i
∣∣0ε

L

〉〈
1ε

L

∣∣, (3c)

Zε ≡ σ ε
3 ≡ ∣∣0ε

L

〉〈
0ε

L

∣∣ − ∣∣1ε
L

〉〈
1ε

L

∣∣. (3d)

While these operators are strictly not unitary due to the
nonzero overlap of |0ε

L〉 and |1ε
L〉 and their improper nor-

malization, we can still use them to define physically valid
finite-energy GKP states as

ρε = 1

N

(
σ ε

0 +
3∑

k=1

akσ
ε
k

)
, (4)

where �a = [a1, a2, a3] is a GKP Pauli vector which char-
acterizes the state, analogous to a conventional qubit Pauli
vector [27]. The normalization factor N is given by

N = Tr(σ ε
0 ) +

3∑
k=1

akTr
(
σ ε

k

)
. (5)

The Wigner functions of the GKP Pauli operators are shown
in Fig. 1(a). Since the Wigner function is linear in the den-
sity matrix, the Wigner functions of logical GKP states are
constructed by simply adding together the Wigner functions
of σ ε

0 , σ ε
1 , σ ε

2 , and σ ε
3 according to the weighting given by

�a. Some examples are shown in Fig. 1(b). Note that unlike
conventional qubit Pauli operators, the GKP Pauli operators
have nonzero trace [except for σ ε

2 , for which Tr(σ ε
2 ) = 0 due

to its antisymmetric Wigner function for all ε]. As a result, the
normalization factor N depends slightly on �a as per Eq. (5).
Still, for all ε > 0 the states defined by Eq. (4) are physically
valid states as long as |�a| � 1. Furthermore, for small ε the
traces of σ ε

1 and σ ε
3 vanish compared to that of σ ε

0 .
Describing GKP states in terms of their GKP Pauli vec-

tors allows us to analyze them as qubits, despite them being
embedded in a larger continuous-variable Hilbert space. For
example, we can define a logical fidelity between two GKP
states with GKP Pauli vectors �a and �b as

FL(�a, �b) = 1
2 (1 + �a · �b +

√
(1 − |�a|2)(1 − |�b|2)). (6)

This definition is motivated by the fact that if �a and �b are the
Pauli vectors of two qubit states ρa and ρb, their Uhlmann
fidelity Tr(

√√
ρaρb

√
ρa)2 is given exactly by Eq. (6). Note

that the logical fidelity defined by Eq. (6) for GKP states is
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FIG. 1. (a) Contours of the Wigner functions of the finite-energy
GKP Pauli operators in Eq. (3). Red indicates positive regions, and
blue indicates negative regions. (b) Wigner functions of various
GKP states, namely, a logical Z eigenstate, a logical Y eigenstate,
an H -type magic state, and a T -type magic state. The states are
described by the GKP Pauli vectors [0,0,1], [0,1,0], [ 1√

2
, 0, 1√

2
], and

[ 1√
3
, 1√

3
, 1√

3
], respectively.

not exactly the same as their Uhlmann fidelity. This is most
evident in the limit of large ε, for which both |0ε

L〉 and |1ε
L〉

converge to the vacuum state. In this regime the Uhlmann
fidelity between |0ε

L〉 and |1ε
L〉 approaches 1, whereas their

logical fidelity remains 0. By characterizing, e.g., a channel
fidelity in terms of the Uhlmann fidelity, this convergence to
vacuum can lead to high fidelities at large ε, which would be
misleading as GKP states do not represent useful qubits in
that regime. To avoid misleading conclusions due to this effect
we use the logical fidelity defined in Eq. (6) instead of the
Uhlmann fidelity as our figure of merit. In the regime of large
squeezing (�5 dB), which is more relevant for applications,
the logical fidelity and the Uhlmann fidelity converge.

III. EFFECTS OF LOSS ON GKP STATES

The loss channel of transmittance η � 1 is defined in the
Kraus representation as

Lη(ρ) =
∞∑

k=0

K loss
k ρ

(
K loss

k

)†
, (7a)

with Kraus operators

K loss
l =

√
1

k!

(
1 − η

η

)k

âkηâ†â/2, (7b)

where â and â† are the photon annihilation and creation opera-
tors. The loss channel reduces the energy of an input state by a
factor η and is equivalent to mixing the input with vacuum on
a beam splitter with transmittance η. Losses have two effects
on GKP states. First, the state shrinks in phase space by a
factor

√
η. This shifts the peaks of the GKP state closer to

the origin in phase space. Second, the variance of each peak

FIG. 2. (a) q-quadrature marginal distribution of the state |0ε
L〉,

with ε = 0.05 (13-dB squeezing). (b) Marginal distribution of the
state in (a) after a loss channel with η = 0.7. The red regions will
be misinterpreted as a logical 1 by homodyne detection. (c) Marginal
distribution of the state in (a) after amplification and loss. (d) The
total channel considered in this paper, comprising noise from a loss
channel Lη with transmissivity η, teleportation-based GKP QEC, and
a possible preamplification channel AG with gain G.

of the GKP state is increasing towards that of the vacuum
state. Specifically, the variances increase from 1

2 tanh(ε) to
1
2 tanh(ε)η + 1−η

2 . Either of these two effects, as well as their
combination, can cause parts of the wave function to shift by
more than

√
π/2, which may lead to an erroneous bit or phase

flip in the subsequent GKP error-correction operation. This is
illustrated in Figs. 2(a) and 2(b), showing an example of a
position marginal distribution of a GKP state before and after
loss with the erroneous parts highlighted in red.

The quadrature-shrinking effect of losses can be compen-
sated by adding a quantum-limited amplification channel with
gain G � 1 defined as

AG(ρ) =
∞∑

k=0

Kamp
k ρ

(
Kamp

k

)†
, (8a)

with Kraus operators

Kamp
l =

√
1

k!

1

G

(
G − 1

G

)k

(â†)kG−â†â/2. (8b)

In particular, the shrinking can be perfectly canceled by
choosing G = 1/η and applying the amplification either be-
fore the loss channel (preamplification) or after the loss
channel (postamplification) [23]. However, both pre- and
postamplification come at the cost of a further increase of
the peak variances. Preamplification adds less noise to the
state than postamplification and is thus considered the refer-
ence strategy for this work. In particular, the variance after
preamplification and loss is 1

2 tanh(ε) + 1 − η. This case is
illustrated in Fig. 2(c). As shown in Fig. 2(c), the errors due to
the displacement of the peaks, in particular the peaks located
further from the origin, are almost eliminated using pream-
plification. However, because of the additional broadening,
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more errors occur in the tail of each peak, which is most
noticeable at the central peak of Fig. 2(c). The qualitative
effect of preamplification is thus to redistribute the errors
from the outer peaks out across all peaks. However, it is
not obvious whether this redistribution of errors reduces or
increases the total number of errors. Yet we might intuitively
expect that if the input state contains many peaks, i.e., if ε

is very small, preamplification should be beneficial as peaks
far from the origin otherwise experience a very large absolute
displacement from the loss.

IV. GKP ERROR CORRECTION

We now proceed by quantifying the performance of the
GKP QEC protocol, comparing the pure loss channel with
the amplifier-loss channel. We consider teleportation-based
QEC [33], which is shown in Fig. 2(d). The input state af-
ter the loss channel is mixed on a 50:50 beam splitter with
one half of a GKP Bell state ρε

Bell, and the resulting output
modes are detected by two homodyne detectors measuring the
conjugate quadratures, q̂ and p̂, respectively. The corrected
input state is then recovered at the other half of the GKP Bell
state by applying a corrective Pauli gate depending on the
homodyne measurement outcome.

The GKP Bell state is given by

|BellεL〉 = 1√
NBell

(∣∣0ε
L

〉∣∣0ε
L

〉 + ∣∣1ε
L

〉∣∣1ε
L

〉)
, (9)

with a corresponding density matrix

ρε
Bell = ∣∣BellεL

〉〈
BellεL

∣∣
= 1

NBell

(
σ ε

0 ⊗ σ ε
0 + σ ε

1 ⊗ σ ε
1 − σ ε

2 ⊗ σ ε
2 + σ ε

3 ⊗ σ ε
3

)

= 1

NBell

3∑
k=0

(−1)δk,2σ ε
k ⊗ σ ε

k (10)

and normalization

NBell = Tr
(
σ ε

0

)2 + Tr
(
σ ε

1

)2 + Tr
(
σ ε

3

)2
, (11)

with δi, j denoting the Kronecker delta function. This Bell state
can be generated by mixing two scaled GKP states, “GKP
qunaught states,” on a 50:50 beam splitter [33]. By mixing
one half of the Bell state with the input state ρ0 on the beam
splitter and obtaining homodyne measurement outcomes qm

and pm, the (not normalized) output state is

ρout =
3∑

k=0

(−1)δk,2

NBell
〈qm|〈pm|ÛBS

[
ρ0 ⊗ σ ε

k

]
Û †

BS|qm〉|pm〉σ ε
k .

(12)

Defining

λk (qm, pm; ρ0)= (−1)δk,2

NBell
〈qm|〈pm|ÛBS

[
ρ0 ⊗ σ ε

k

]
Û †

BS|qm〉|pm〉,
(13)

we can write

ρout = λ0

(
σ ε

0 +
3∑

k=1

λk

λ0
σ ε

k

)
. (14)

Compared to Eq. (4), the output is a GKP state described by
the GKP Pauli vector,

�aout(qm, pm; ρ0) = 1

λ0
[λ1, λ2, λ3]. (15)

The probability density of obtaining measurement outcome
(qm, pm) is given by

P(qm, pm; ρ0) =
3∑

k=0

λk (qm, pm; ρ0)Tr
(
σ ε

k

)
. (16)

We use the output GKP Pauli vector to quantify the total
channel comprising optional preamplification, loss, and error
correction. Ideally, this channel should amount to a unitary
Pauli rotation resulting from the teleportation protocol, with
the measurement outcome dictating which Pauli rotation was
applied. Thus, the ideal output GKP Pauli vector is

�aideal = �s(qm, pm) ◦ �ain, (17)

where ◦ denotes elementwise multiplication, i.e., (�x ◦ �y)i =
xiyi, and �s = [sx, sxsz, sz], with sx = ±1 and sz = ±1, pro-
vide sign flips according to the measurement-dependent Pauli
rotation. For a given input GKP state ρε

in and measurement
outcomes (qm, pm), the logical input-output fidelity of the
channel is thus

Fin-out
(
qm, pm; ρε

in

) = FL(�aout(qm, pm; ρ0), �aideal), (18)

with ρ0 = Lη(AG(ρε
in)). Averaging over the measurement out-

comes, we get the mean input-output fidelity:

F̄in-out
(
ρε

in

) =
∫

dqm d pm Fin-out
(
qm, pm; ρε

in

)
P(qm, pm).

(19)
To define a channel fidelity [34], we average the mean input-
output fidelity over the six GKP Pauli eigenstates, i.e., the
states with �ain ∈ {[±1, 0, 0], [0,±1, 0], [0, 0,±1]}. Denoting
these states as ρε

±k , with k ∈ {1, 2, 3}, the logical channel
fidelity is defined as

FC = 1

6

∑
j=±1,±2,±3

F̄in-out
(
ρε

j

)
. (20)

In the Appendix we show how to calculate the coefficients λk

of Eq. (13) needed to compute FC for arbitrary values of η, G,
ε, and �ain.

V. RESULTS

Figure 3 shows the logical channel infidelity, 1 − FC , as a
function of ε for different amounts of loss, with (dashed lines)
and without (solid lines) preamplification. The sign function
�s(qm, pm) in Eq. (17) is chosen to maximize FC . The errors
in the absence of losses (black solid line) are intrinsic to the
error-correction process due to the finite squeezing of the GKP
states. As the squeezing level of the GKP state increases, i.e.,
when ε becomes small, these errors are rapidly suppressed.
When losses are considered, improving the quality of the
GKP states (by reducing ε) initially decreases the channel
infidelity both with and without amplification. Importantly,
the infidelity is generally lower without amplification. For
very small ε, the infidelity starts to increase with reduced ε
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FIG. 3. Logical channel infidelity (as defined in the text) for the
QEC circuit depicted in Fig. 2(d) as a function of the GKP squeezing
parameter ε for different values of the loss channel transmissivity
η. Solid lines show the results without amplification (corresponding
to G = 1), and dashed lines show the results with amplification
(G = 1/η). The gray line shows the average Uhlmann infidelity to
the target output state in the η = 1 case.

in the absence of amplification. This is as expected and is due
to the peak-shifting effect in Fig. 2(b), which causes errors
due to the mismatch between the lattices of the GKP
state after loss and the GKP Bell state used for error
correction. However, preamplification does not beat the am-

plificationless strategy until the squeezing level is well above
15 dB. This is significantly larger than realistically obtainable
squeezing levels and also higher than recently estimated fault-
tolerance threshold values, which are in the range from 10 to
15 dB [31,35–41]. Thus, amplification would not realistically
be required or beneficial in practical settings.

VI. CONCLUSION

We have used newly developed phase-space meth-
ods [27,29] to model the effects of loss on finite-energy GKP
states. Our analysis has shown that GKP states which have
undergone loss can be error corrected without applying a loss-
compensating amplification channel, provided that the GKP
state does not have an unrealistically high squeezing level
(
 15 dB). Furthermore, we have shown that in practically
relevant regimes even ideal amplification contributes more
errors than it fixes and should therefore not be implemented in
practice. This demonstrates the versatility of the GKP encod-
ing, strengthening its candidacy as an optimal code for optical
continuous-variable systems.

Note added. A complementary analysis was recently car-
ried out by Shaw et al. [42] that confirmed the result presented
here using a subsystem stabilizer method.

ACKNOWLEDGMENTS

This project was supported by the Danish National Re-
search Foundation through the Center of Excellence for
Macroscopic Quantum States (bigQ, DNRF0142) and the
European Union’s Horizon 2020 research and innovation pro-
gram CiViQ (Grant Agreement No. 820466).

APPENDIX

In this Appendix we show how to calculate the output coefficients λk of Eq. (13), which are used to calculate the channel
fidelity of the main text. We use a phase-space representation of GKP states, in which GKP states are described as a sum of
Gaussian peaks. This representation is useful since all of the channels considered, i.e., amplification, loss, beam splitting, and
homodyne detection, are Gaussian, enabling everything to be described using a Gaussian framework [29,43,44]. As a result
λk can be described by a sum of Gaussian functions, as we will see in the following. The key goal of the derivations in this
Appendix is then to reduce the total number of Gaussian functions to a manageable level such that λ can be computed efficiently.

The Wigner functions of the GKP Pauli states, illustrated in Fig. 1(a), can be written as a sum of Gaussians [28,29]:

Wk (q, p) ≡ W
(
q, p; σ ε

k

) = (−1)δk,2
∑

m∈Mk

cε
msk (m)Gμε

m,�ε (q, p), (A1)

where

Gμ,�(x) = 1√
det(�)(2π )n

exp

[
−1

2
(x − μ)T �−1(x − μ)

]
(A2)

is a multivariable Gaussian function with mean μ and covariance matrix �. The covariance matrix and means for the approximate
GKP states in Eq. (2) are given by

�ε = 1

2
tanh(ε)1, με

m = sech(ε)

√
π

2
m, (A3)

where 1 is the 2 × 2 identity matrix. The vector m = [m1
m2

] depends on the Pauli state, i.e., k, and is defined by the following sets:

M0 = {[m1, m2]T |m1, m2 ∈ Z, m1 is even and m2 is even}, (A4a)

M1 = {[m1, m2]T | m1, m2 ∈ Z, m1 is odd and m2 is even}, (A4b)
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M2 = {[m1, m2]T | m1, m2 ∈ Z, m1 is odd and m2 is odd}, (A4c)

M3 = {[m1, m2]T | m1, m2 ∈ Z, m1 is even and m2 is odd}. (A4d)

The sign function sk (m), which gives rise to the negative peaks of the Wigner function, is given by

s0,m = 1, (A5a)

s1,m = (−1)
m2
2 , (A5b)

s2,m = (−1)
m1+m2

2 , (A5c)

s3,m = (−1)
m1
2 . (A5d)

The additional sign flip when k = 2, i.e., the factor (−1)δk,2 in Eq. (A1), could also have been included in s2,m, but here we write
it separately as it will simplify the following derivation.

Finally, the weighting coefficients cε
m are given by

cε
m = exp

[
− tanh(ε)

π

4

(
m2

1 + m2
2

)]
. (A6)

The amplification and loss channels change the covariance matrix and mean according to

� → G� + G − 1

2
1, μ →

√
Gμ (amplification), (A7)

� → η� + 1 − η

2
1, μ → √

ημ (loss), (A8)

Thus, after preamplification and loss the covariance matrix is

�ε → �̃
ε =

(
ηG

2
tanh(ε) + η

G − 1

2
+ 1 − η

2

)
1, (A9)

and the means are

με
m → μ̃ε

m =
√

ηGsech(ε)

√
π

2
m. (A10)

Setting G = 1/η thus leaves the means unaltered, which is the motivation for adding an amplification channel. In the following
we consider arbitrary G � 1. The results in Fig. 3 are then obtained by choosing G = 1 and G = 1/η.

The Wigner functions for the GKP Pauli states after amplification and loss are now

W̃k ≡ W
(
q, p;Lη(AG(σ ε

k ))
) = (−1)δk,2

∑
m∈Mk

cε
msk,mGμ̃ε

m,�̃
ε (q, p). (A11)

The Wigner function of an arbitrary GKP state with GKP Pauli vector �ain = [a1, a2, a3] after amplification and loss is thus

W
(
q, p;Lη(AG(ρε

in))
) = 1

N

3∑
k=0

akW̃k, (A12)

where a0 = 1 and N is given by Eq. (5). The Wigner function for the three-mode state before the beam-splitter interaction of the
error-correction circuit of Fig. 2(d) is then given by

W (x(1), x(2), x(3) ) =
3∑

k2=0

⎛
⎝ (−1)δk2 ,2

NNBell

3∑
k1=0

ak1W̃k1 (x(1) )Wk2 (x(2) )

⎞
⎠Wk2 (x(3) ), (A13)

where x(i) = (qi, pi ). Here, the superscript 1 refers to the input mode, and the superscript 2 refers to the half of the GKP Bell
state which is to be measured together with the input state. We now consider the term in the parentheses of the sum in Eq. (A13),
which will give us λk2 after beam splitting and homodyne detection [29]:

(−1)δk2 ,2

NNBell

3∑
k1=0

ak1W̃k1 (x(1) )Wk2 (x(2) ) = 1

NNBell

3∑
k1=0

(−1)δk1 ,2 ak1

∑
m(1)∈Mk1

∑
m(2)∈Mk2

cε
m(1) cε

m(2) sk1,m(1) sk2,m(2) Gμ̃m(1) ,�̃
(x(1) )Gμm(2) ,�(x(2) )

= 1

NNBell

3∑
k1=0

(−1)δk1 ,2 ak1

∑
m(1)∈Mk1

∑
m(2)∈Mk2

cε
m(1) cε

m(2) sk1,m(1) sk2,m(2) Gμ̃m(1) ⊕μm(2) ,�̃⊕�(x(1), x(2) ).

(A14)
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The beam splitter is described by the symplectic matrix S = 1√
2
[ 1 1
−1 1], which transforms the covariance and mean of each

Gaussian component of the Wigner function according to

�̃ ⊕ � → S
(
�̃ ⊕ �

)
ST = 1

2

[
�̃ + � −�̃ + �

−�̃ + � �̃ + �

]
, (A15)

μ̃m(1) ⊕ μm(2) → S(μ̃m(1) ⊕ μm(2) ) = 1√
2

[
μ̃m(1) + μm(2)

−μ̃m(1) + μm(2)

]
. (A16)

The homodyne detectors then measure the q quadrature of mode 1 and p quadrature of mode 2 with measurement results qm and
pm, respectively, and the resulting transformation of Eq. (A14) gives the coefficient λk (qm, pm; ρε

in). As the q1 p2 element of the
covariance matrix [Eq. (A15)] is 0, the Gaussian factorizes, and Eq. (A14) is transformed as

→ 1

NNBell

3∑
k1=0

(−1)δk1 ,2 ak1

∑
m(1)∈Mk1

∑
m(2)∈Mk2

cε
m(1) cε

m(2) sk1,m(1) sk2,m(2) Gμ′
(m(1)

1 ,m(2)
1 )

,
′ (qm)Gμ′
(−m(1)

2 ,m(2)
2 )

,
′ (pm)

= λk2

(
qm, pm;Lη(AG(ρε

in))
)
, (A17)

where 
′ is the top left element of 1
2 (�̃ + �):


′(η, G, ε) = 1
4 [tanh(ε)(1 + ηG) + η(G − 1) + 1 − η] (A18)

and

μ′
m = sech(ε)

√
π

2
√

2
(
√

ηGm1 + m2). (A19)

To factorize the sums we define n(1) = (n(1)
1 , n(1)

2 ) = (m(1)
1 , m(2)

1 ) and n(2) = (n(2)
1 , n(2)

2 ) = (m(1)
2 , m(2)

2 ). Thus, m and n are
related through m( j)

i = n(i)
j . The sets of the summations are correspondingly changed; that is, m(1) ∈ Mk1 and m(2) ∈ Mk2

become n(1) ∈ Ml1 and n(2) ∈ Ml2 , with l1 and l2 depending on k1 and k2. For example, for (k1, k2) = (0, 2) the elements
(m(1), m(2) ) = (m(1)

1 , m(1)
2 , m(2)

1 , m(2)
2 ) = (n(1)

1 , n(2)
1 , n(1)

2 , n(2)
2 ) are (even, even, odd, odd), so (n(1), n(2) ) = (n(1)

1 , n(1)
2 , n(2)

1 , n(2)
2 ) is

(even, odd, even, odd), corresponding to (l1, l2) = (3, 3). The general transformation rules for (k1, k2) → (l1, l2) are

(0, 0) → (0, 0), (1, 0) → (1, 0), (2, 0) → (1, 1), (3, 0) → (0, 1),

(0, 1) → (3, 0), (1, 1) → (2, 0), (2, 1) → (2, 1), (3, 1) → (3, 1),

(0, 2) → (3, 3), (1, 2) → (2, 3), (2, 2) → (2, 2), (3, 2) → (3, 2),

(0, 3) → (0, 3), (1, 3) → (1, 3), (2, 3) → (1, 2), (3, 3) → (0, 2). (A20)

With these new summation indices we get

λk2 = 1

NNBell

3∑
k1=0

(−1)δk1 ,2 ak1

∑
n(1)∈Ml1

cε
n(1) Gμ′

n(1) ,

′ (qm)

∑
n(2)∈Ml2

cε
n(2) sk1,m(1) sk2,m(2) Gμ′

(−n(2)
1 ,n(2)

2 )
,
′ (pm), (A21)

where we have also used the fact that cε
m(1) cε

m(2) = cε
n(1) cε

n(2) . The sign functions sk1,m(1) and sk2,m(2) can also be factorized in terms of

n(1) and n(2) with a suitable change in indices. For example, for (k1, k2) = (0, 2) we get sk1,m(1) sk2,m(2) = 1 × (−1)(m(2)
1 +m(2)

2 )/2 =
(−1)n(1)

2 /2(−1)n(2)
2 /2 = sl ′1,n(1) sl ′2,n(2) , with (l ′

1, l ′
2) = (1, 1). The general transformation rules for (k1, k2) → (l ′

1, l ′
2) are

(0, 0) → (0, 0), (1, 0) → (0, 3), (2, 0) → (3, 3), (3, 0) → (3, 0),

(0, 1) → (0, 1), (1, 1) → (0, 2), (2, 1) → (3, 2), (3, 1) → (3, 1),

(0, 2) → (1, 1), (1, 2) → (1, 2), (2, 2) → (2, 2), (3, 2) → (2, 1),

(0, 3) → (1, 0), (1, 3) → (1, 3), (2, 3) → (2, 3), (3, 3) → (2, 0). (A22)

We thus have

λk2 = 1

NNBell

3∑
k1=0

(−1)δk1 ,2 ak1

∑
n(1)∈Ml1

cε
n(1) sl ′1,n(1) Gμ′

n(1) ,

′ (qm)

∑
n(2)∈Ml2

cε
n(2) sl ′2,n(2) Gμ′

(−n(2)
1 ,n(2)

2 )
,
′ (pm). (A23)

Finally, we flip the sign of n(2)
1 in the last sum. cε

n(2) does not depend on the sign of the elements of n(2). For sl ′2,n(2) , changing the

sign of n(2)
1 yields an additional minus sign when sl ′2,n(2) depends on n(2)

1 , i.e., when l ′
2 ∈ [2, 3], and n(2)

1 is odd, i.e., l2 ∈ [1, 2].
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From the transformation rules in Eqs. (A20) and (A22), this occurs if and only if k1 = 2, conveniently canceling out the factor
(−1)δk1 ,2 . Thus, we get

λk2 = 1

NNBell

3∑
k1=0

ak1

∑
n(1)∈Ml1

cε
n(1) sl ′1,n(1) Gμ′

n(1) ,

′ (qm)

∑
n(2)∈Ml2

cε
n(2) sl ′2,n(2) Gμ′

n(2) ,

′ (pm). (A24)

Defining

gl,l ′ (x) ≡
∑

n∈Ml

cε
nsl ′,nGμ′

n,
′ (x), (A25)

we can write this as

λk2 = 1

NNBell

3∑
k1=0

ak1 gl1,l ′1 (qm)gl2,l ′2 (pm). (A26)

The functions gl,l ′ (x) can be calculated numerically by cutting off the set Ml when cε
n = exp[− tanh(ε)π

4 |n|2] is sufficiently

small. For the results in Fig. 3 we chose cε
n > exp(−23) ≈ 10−10 ⇔ |n| <

√
23 × 4

π
tanh(ε)−1.
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